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Abstract

Optimal estimation of missing values in ARMA models is typically performed by using
the Kalman filter for likelihood evaluation, ‘skipping’ in the computations the missing
observations, obtaining the maximum likelihood (ML) estimators of the model para-
meters, and using some smoothing algorithm. The same type of procedure has been
extended to nonstationary ARIMA models in Gómez and Maravall (1994). An alterna-
tive procedure suggests filling in the holes in the series with arbitrary values and then
performing ML estimation of the ARIMA model with additive outliers (AO). When the
model parameters are not known the two methods differ, since the AO likelihood is
affected by the arbitrary values. We develop the proper likelihood for the AO approach
in the general non-stationary case and show the equivalence of this and the skipping
method. Finally, the two methods are compared through simulation, and their relative
advantages assessed; the comparison also includes the AO method with the uncorrected
likelihood. ( 1999 Elsevier Science S.A. All rights reserved.

JEL classification: C22
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1. Introduction and summary

The problem of optimal estimation of missing observations in stationary
autoregressive moving average (ARMA) models was solved in Jones (1980).
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Extension of his approach to nonstationary integrated ARMA (i.e., ARIMA)
models posed serious problems, having mostly to do with the specification of the
starting conditions for the Kalman filter and the definition of a proper likeli-
hood. Several solutions have been proposed, among them, the ‘transformation’
approach of Kohn and Ansley (1986), the ‘diffuse prior’ approach of De Jong
(1991), and the ‘conditional likelihood’ approach of Gómez and Maravall (1994).
These solutions share the basic features of the approach in Jones: the use of
(some version of) the Kalman filter (KF) for likelihood evaluation, ‘skipping’ in
the computations the missing observations. Maximum likelihood estimation of
the ARIMA parameters is then possible, and some smoothing algorithm, such as
the fixed point smoother (FPS), interpolates the missing values. We shall refer to
this general approach as the ‘skipping approach’ (a referee suggested the more
informative term ‘marginalizing the likelihood function approach’; for the sake
of brevity, we shall use the term ‘skipping’). Since the Kohn—Ansley et al.,
approaches are equivalent, due to its simplicity, we shall use the latter to
represent the skipping approach method.

It is also well known (see, for example, Sargan and Drettakis, 1974) that
a sensible alternative to the problem of missing observations estimation is to use
dummy variables; see also Harvey ((1989), pp. 145—146). Subject to a qualifica-
tion to be made below, one could fill first the holes corresponding to the missing
values with arbitrary data, and then use maximum likelihood estimation of an
ARIMA model with additive outliers. The difference between the arbitrary value set
by the user and its corresponding estimated parameter, when the model parameters
are known, coincides with the conditional expectation of the missing value given the
observed data (see, Brubacher and Wilson, 1976). We shall refer to this procedure as
the ‘additive outlier’ (AO) approach to missing observations estimation.

When the model parameters are not known and are to be estimated by
maximum likelihood, the AO and the skipping approaches will differ, due to the
fact that the determinantal term in the Gaussian likelihoods will be different.
The determinantal term in the AO likelihood includes the effect of the filled — in
values; that of the skipping likelihood will ignore this effect. Since differences in
likelihood produce differences in parameter estimates, if the AO likelihood is not
corrected, the AO approach can only be seen as an approximate way to obtain
the maximum likelihood estimators. The difference between the two likelihoods
was pointed out by Pen8 a (1987), in the context of autoregressive models, and, for
stationary ARMA models, analysed by Ljung (1989), who went on to provide
some insights into the nonstationary case, although no attempt was made to
define the likelihood of the nonstationary observed series. In this paper, we
present a rigorous development of the AO approach to missing observations
estimation in the general nonstationary case, which we shall denote the ‘correc-
ted AO’ approach. The paper further shows the equivalence of this and the
skipping (plus smoothing) approach. It is seen how the correction that needs to
be applied to the AO likelihood is trivially obtained from KF computations for
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the usual AO likelihood. Results for the three (skipping, AO, and corrected AO)
approaches are then compared through simulation for different models, different
sample sizes, and different distributions of missing observations in the series.

One practical advantage of the standard AO approach, both in the stationary
and nonstationary cases, is that it can be easily implemented with existing
software if one is ready to accept the approximation implied by not correcting
the determinantal term. In fact, this is the approach followed in the new
X12ARIMA procedure (Findley et al., 1996). Assessing the influence of the
determinantal correction is a by-product of the paper.

The last part of the paper contains a simulation exercise to assess the relative
performance of the different approaches. It is concluded that there is a brief
trade-off between both approaches. When the number of missing observations is
small, the additive outlier approach can be easier and faster to implement.
However, as the number of missing observations increases, it is clearly outper-
formed by the skipping approach.

A word of caution, however, may be appropriate. Except perhaps for a few
near-trivial cases, one may be tempted to conclude that the AO outlier approach
might as well be dropped from consideration. Yet, it displays some other
advantages, and an example of applied interest is the following. In the AO
approach, the same algorithms for automatic model identification and auto-
matic outlier detection can be used than in the case of no missing values. This
fact simplifies enormously programming, because the skipping approach would
require additional specialized (and difficult to program) routines.

The paper is structured as follows. Section 2 reviews briefly first the skipping
approach in the stationary case, as suggested by Jones (1980), and then its
generalization to the nonstationary case, following Gómez and Maravall (1994).
In Section 3, we consider the additive outlier approach, and analyse in detail
a nonstationary series that follows a general ARIMA model where all missing
observations have been replaced by arbitrary values and a dummy variable has
been specified for each of them. Section 4 presents the simulation exercise.
Proofs of the results are presented in an appendix and the detailed computa-
tional algorithms in the working paper Gómez et al. (1997), available from the
authors upon request.

2. Skipping approach

2.1. Stationary series, ARMA model

Let the observed series z
0
"(z(t

1
), z(t

2
),2, z(t

M
))@, 1)t

1
(t

2
(2(t

M
)N,

be the outcome of the ARMA model

/(B)z(t)"h(B)a(t), (2.1)
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where /(B)"1#/
1
B#2#/

p
Bp and h(B)"1#h

1
B#2#h

q
Bq are

finite polynomials in the lag operator B, of degrees p and q, respectively, and
Ma(t)N is a sequence of independent N(0, p2) variables. The model is assumed
stationary, that is, all roots of the polynomial /(B) lie outside the unit circle. To
avoid unbounded standard errors of the interpolators, we further assume the
model invertible, i.e. the roots of h(B) lie outside the unit circle; see Maravall and
Pen8 a (1996). If there are no missing observations, letting r"maxMp, q#1N and
defining /

i
"0 when i'p, one state space representation for this model is

x(t)"Fx(t!1)#Ga(t), (2.2a)

z(t)"H@x(t), (2.2b)

where t"1,2,N, x(t)"(z(t), z(t#1Dt),2, z(t#r!1Dt))@, G"(1,t
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,2,

t
r~1

)@, H"(1, 0,2, 0)@,
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D,
and the t

i
-weights are obtained from t(B)"h(B)//(B)"+=

i/0
t
i
Bi. The expres-

sion z(t#iDt) is the orthogonal projection of z(t#i) on the subspace generated
by Mz(s): s)tN, and coincides with the conditional expectation
E(z(t#i)Dz(s): s)t), i"1,2, r!1. The state vector x(t) contains, thus, the
series z(t) and its (r!1)-periods-ahead forecast function with respect to the
semi-infinite sample Mz(s): s)tN. The Kalman filter can then be applied to
model (2.2) for prediction and likelihood evaluation. As starting conditions, one
takes the first two moments of the unconditional distribution of the initial state
vector, x(1).

For the general case, when some observations may be missing, the observa-
tion Eq. (2.2b) is replaced with

z(t)"H@(t)x(t)#a(t)¼(t), t"1,2, N,

where H@(t)"(1, 0,2, 0), a(t)"0 if z(t) is observed, H@(t)"(0, 0,2, 0), a(t)"1 if
z(t) is missing (Brockwell and Davis 1987, p. 494). The variable ¼(t) represents
an iidN(0,1) variable, independent of Mz(t

1
),2, z(t

M
)N. Thus, when z(t) is missing,

in the Kalman filter equations, x(tDt)"x(tDt!1), R(tDt)"R(tDt!1), where
x(tDt#i)"E(x(t)Dz(1),2, z(t#i)), R(tDt#i)"Var(x(t)Dz(1),2, z(t#i)), 1)
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t)N, i"!1, 0, and both the residual and the standard error corresponding
to a missing value are ignored when evaluating the likelihood function; see Jones
(1980).

Having obtained parameter estimates by maximizing the likelihood function
using the prediction error decomposition, estimators of the missing values can
be obtained through the simplified FPS of Gómez and Maravall (1994); see also
Anderson and Moore (1979).

2.2. Nonstationary series, ARIMA model

Let Mz(t)N be a nonstationary process such that the transformation
u(t)"d(B)z(t) renders it stationary and let Mu(t)N follow the ARMA model (2.1).
Then, Mz(t)N follows the nonstationary model

/(B)d(B)z(t)"h(B)a(t), (2.3)

where d(B)"1#d
1
B#2#d

d
Bd denotes a polynomial in B with all roots on

the unit circle. Typically, d(B) will contain regular and/or seasonal differences.
Suppose first that there are no missing observations, and let z"(z(1),

z(2),2, z(N))@ and u"(u(d#1), u(d#2),2, u(N))@ be the observed series and
the differenced series, respectively. The nonstationarity of Mz(t)N prevents us from
using the prediction error decomposition, since the distribution of x(1) is not
well defined. In order to define the likelihood, we proceed as in Gómez and
Maravall (1994) and make the following assumptions:

Assumption A: The variables Mz(1),2, z(d)N are independent of the variables
Mu(t)N.

Assumption B: The variables Mz(1),2, z(d)N are jointly normally distributed.

The first assumption is a standard one when forecasting with ARIMA
models; see Brockwell and Davis (1987), pp. 304—307. The likelihood of ARIMA
models is usually defined as the likelihood of the differenced series, ¸(u);
see Box and Jenkins (1976), Chapter 7. Letting z

I
"(z(1),2, z(d))@ and

z
II
"(z(d#1),2, z(N))@, it is easily seen that differencing the data implies the

transformation [z@
I
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I
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II
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I
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If we partition J
II
"[J

1
, J

2
] conforming to z

I
and z

II
, one can write

C
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where N"J~1
2

is the lower triangular matrix

N"C
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m
N~d~1 2 m

1
1D .

The m
i
-coefficients are obtained from

1/d(B)"
=
+
i/0

m
i
Bi (2.4)

and the rows of !NJ
1

can be obtained recursively as shown in Bell (1984).
Specifically, letting A

ij
"d

ij
, i,j"1,2, d, where d

ij
is the Kronecker delta, the

row vectors A@
t
"(A

1t
,2,A

dt
), t"d#1,2,N, of the (N!d)]d matrix

A"!NJ
1

can be obtained from the recursions

A
it
"!d

1
A

it~1
!2!d

d
A

it~d
, i"1,2,d, t'd, (2.5)

and the relation

z
II
"Az

I
#Nu (2.6)

holds. Let v"Nu. Then, the likelihood ¸(v) based on v coincides with the
likelihood ¸(u) based on u because N has unit determinant. Given that
v"z

II
!Az

I
, the log-likelihood based on u is (throughout the paper all log-

likelihoods will be defined up to an additive constant)

l(u)"!1
2
M(N!d) ln(p2)#ln DX

v
D#(z

II
!Az

I
)@X~1

v
(z

II
!Az

I
)/p2N, (2.7)

where Var(v)"p2X
v
, X

v
"NX

u
N@, and Var(u)"p2X

u
. Eq. (2.7) constitutes an

expression of the Box—Jenkins log-likelihood in terms of the original series.
Another interpretation can be obtained if assumptions A and B hold. Given that
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the matrix J"[J@
I
,J@

II
]@ has unit determinant, the log-likelihood l(z) of the

observed series z"[z@
I
, z@

II
]@ verifies l(z)"l(z

I
,u)"l(z

I
)#l(u). Therefore, under

assumptions A and B, we have the result

¸emma 1. l(u)"l(z
II
Dz
I
).

That is, the Box—Jenkins log-likelihood is equal to the log-likelihood of
z
II

conditional on z
I
. In order to use the Kalman filter with the original (not the

differenced) series, we need a state space representation suitable for nonstation-
ary series. One such representation is given also by Eqs. (2.2a) and (2.2b), with
the / and t coefficients replaced with the /H and tH ones, respectively, where
/H(B)"/(B)d(B) and tH(B)"h(B)//H(B)"+=

i/0
tH

i
Bi, /H

i
"0 when i'p#d,

and r"maxMp#d, q#1N. The elements of the state vector are now z(t) and
z(t#iDt)"z(t#i)!tH

0
a(t#i)!2!tH

i~1
a(t#1), i"1,2, r!1. The fol-

lowing lemma, whose proof is omitted, ensures that this state space representa-
tion is correct.

¸emma 2. z(t#r!1Dt)"!/H
r
z(t!1)!/H

r~1
z(tDt!1)!2!/H

1
z(t#r!2D

t!1)#tH
r~1

a(t).

The Kalman filter can then be applied to compute the conditional log-
likelihood l(z

II
Dz
I
) through the prediction error decomposition. The starting

conditions can be obtained from Eq. (2.6) as follows. If we consider the de-
finition of the elements of the state vector x(t), it can be seen
that x(d#1)"AHzI#NHºH, where AH is the r]d submatrix of A formed by
the first r rows, NH is the r]r submatrix of N formed by the first r rows
and the first r columns, ºH"[u(d#1), u(d#2Dd#1),2, u(d#rDd#1)]@, and
u(d#iDd#1)"E(u(d#i)Du(t): t)d#1), i"2,2, r. Therefore, we can take as
starting conditions

x(d#1Dd)"E(x(d#1)Dz(s): 1)s)d)"AHzI,

R(d#1Dd)"Var(x(d#1)Dz(s): 1)s)d)"NHRI (d#1Dd)N@H,

where RI (d#1Dd)"E(ºHº@H) can be computed from the stationary process
Mu(t)N, which follows model (2.1); see Jones (1980).

If there are missing observations and the observed series
z
0
"(z(t

1
), z(t

2
),2, z(t

M
))@, 1)t

1
(t

2
(2(t

M
)N, is a subvector of the

complete series z"[z@
I
, z@

II
]@, we can proceed as follows. Let z

I0
"

(z(t
1
),2, z(t

k
))@, k)d, and z

I.
be the subvectors of z

I
corresponding to the

observed and missing values in z
I
, respectively, and let z

II0
be the subvector of
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z
II

formed with the observed values in z
II
. Then, we can write

z
II0
"A

0
z
I
#v

0
"B

0
z
I0
#C

0
z
I.
#v

0
, (2.8)

where A
0
and v

0
are the submatrix and subvector, respectively, of A and v"Nu

corresponding to the observed values in the series. Both Lemma 1 and Eq. (2.8)
suggest a natural way to extend the log-likelihood (2.7) to the case of missing
observations. We can consider in Eq. (2.8) z

I.
as fixed and define the likelihood

of the observed series as the likelihood of the generalized least-squares (GLS)
regression model

y
0
"C

0
z
I.
#v

0
, (2.9)

where y
0
"z

II0
!B

0
z
I0
. This is the definition of Gómez and Maravall (1994).

Then, the log-likelihood when there are missing observations is

l(y
0
)"!1

2
M(M!k) ln(p2)#ln DX

v0
D# (y

0
!C

0
z
I.

)@X~1
v0

(y
0
!C

0
z
I.

)/p2N,

(2.10)

where Var(v
0
)"p2X

v0
. In order to evaluate the log-likelihood and interpolate

missing values, we can now use the method of Gómez and Maravall (1994). The
log-likelihood evaluation is made simpler by concentrating z

I.
and p2 out of the

log-likelihood (2.10). Given the parameters (/
1
,2, /

p
, h

1
,2, h

q
), of the ARMA

model (2.1), this is done by replacing in Eq. (2.10) z
I.

and p2 with their GLS
estimators in model (2.9), which are also the maximum likelihood estimators.

It is important to mention that only the Kalman filter and the simplified fixed
point smoother of Gómez and Maravall (1994) are necessary to perform the
calculations. Compared with the modified versions of these algorithms of Kohn
and Ansley (1986), this means a significant simplification both conceptually and
in the programming burden. Also, as we will see in Section 4, it is not necessary
to evaluate the vector y

0
and the matrix C

0
before applying the Kalman filter.

The computations are done automatically by means of an ‘Augmented Kalman
filter’ (AKF) algorithm, easy to program, and detailed in Gómez et al. (1997).

2.3. Regression model with ARIMA errors

Consider the regression model

z(t)"y@(t)b#l(t), (2.11)

where b"(b
1
,2, b

h
)@ is a vector of parameters, y@(t) is a vector of h independent

variables, z(t) is the dependent variable, and Ml(t)N is assumed to follow the
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ARIMA model given by Eq. (2.3). If, as in the previous section, z
0
denotes the

observed series, defining the vector l
0
"(l(t

1
),2, l(t

M
))@ and the M]h matrix

½
0

with the vectors y@(t), t"t
1
,2, t

M
, as rows, we can write z

0
"½

0
b#l

0
,

where the matrix ½
0
is assumed of rank h. Since Ml(t)N follows the ARIMA model

(2.3), similarly to Eq. (2.8), we can write l
II0
"B

0
l
I0
#C

0
l
I.
#v

0
, where l

II0
,

l
I0

and l
I.

are the vectors of errors corresponding to the subvectors z
II0

, z
I0

and
z
I.

of the complete series z, defined at the end of the previous section. Let ½
I0
,

½
II0

and ½
I.

be the matrices with rows the vectors y@(t) corresponding to the
vectors l

I0
, l

II0
and l

I.
, respectively. Replacing l

II0
with z

II0
!½

II0
b, l

I0
with

z
I0
!½

I0
b and l

I.
with z

I.
!½

I.
b in the above expression, the following

regression model is obtained:

z
II0
"B

0
z
I0
#C

0
z
I.
#½

II0
b!B

0
½

I0
b!C

0
½

I.
b#v

0
,

where the regression parameters are z
I.

and b. Letting y
0
"z

II0
!B

0
z
I0
, it can be

rewritten as

y
0
"[C

0
,½

II0
!B

0
½

I0
!C

0
½

I.
][z@

I.
,b@]@

"[C
0
,½

II0
!A

0
½

I
][z@

I.
,b@]@, (2.12)

where ½
I
is the d]h matrix formed with the vectors y@(t), t"1,2, d, as rows,

and A
0

is the matrix defined by B
0
½

I0
#C

0
½

I.
"A

0
½

I
, which coincides with

that of Eq. (2.8). The log-likelihood of the observed series is defined as that of the
GLS model (2.12). The same algorithms of the previous section can now be used
for prediction, interpolation and log-likelihood evaluation (the vector of regres-
sion parameters is now [z@

I.
, b@]@, instead of z

I.
). If we define the vector

x(t)"(l(t), l(t#1Dt),2, l(t#r!1Dt)), then the state space representation is
given by Eq. (2.2a) and the observation equation z(t)"y@(t)b#
H@(t)x(t)#a(t)¼(t), where H(t), a(t) and ¼(t) are as in Section 2.1 and the
elements of the state vector are as in Section 2.2 with z replaced with l.

3. Additive outlier approach

3.1. Stationary series, ARMA model

Let the observed series z
0

be that in Section 2.1 with the same assumptions
holding, and let z"(z(1), z(2),2, z(N))@ be the complete series, which includes
the unobserved values. If zN denotes the series obtained from z by replacing the
missing values z

.
with tentative values zN

.
, the following theorem provides an

expression for the log-likelihood l(z
0
) based on z

0
, in terms of zN .
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¹heorem 1. ¸et u"zN
.
!z

.
. ¹hen, the log-likelihood of the observed values z

0
is

l(z
0
)"!1

2
MN ln(p2)#ln DX

z
D#ln DX@X~1

z
XD

#(zN!XuL )@X~1
z

(zN!XuL )/p2N,

where Var(z)"p2X
z
, X is the N](N!M) matrix whose columns are unit

vectors, such that the ith column has a one in the position corresponding to the ith
missing value, i"1, 2,2, N!M, uL "(X@X~1

z
X)~1X@X~1

z
zN and uL "zN

.
!E

(z
.
Dz
0
). Also, Mse(uL )"Var(z

.
Dz
0
)"p2(X@X~1

z
X)~1.

A similar result was first obtained by Pen8 a (1987) for a first-order autoregres-
sive model, and was generalized to stationary ARMA models by Ljung (1989).
Theorem 1 implies that, in order to evaluate the log-likelihood l(z

0
), all we have

to do is, first, fill in the series z with tentative values zN
.

and then use a standard
method to compute log-likelihoods for regression models with ARMA errors.
Note, however, that the likelihood in Theorem 1 includes the determinantal
term ln DX@X~1

z
XD. If this correction is not made, only an approximation to the

exact log-likelihood is obtained. The interpolations of the missing values z
.

are
simply zN

.
!uL . In Gómez et al. (1997) we describe in detail the algorithms, simpler

yet equivalent to those of Kohn and Ansley (1985). Note that the filled-in series is
used for likelihood evaluation and, therefore, no skipping takes place. This
allows for faster routines than the ones used with skipping. However, there is
a computational burden implicit in the number of regression parameters.

3.2. Nonstationary series, ARIMA model

Let the observed series z
0
"(z(t

1
), z(t

2
),2, z(t

M
))@, 1)t

1
(t

2
(

2(t
M
)N, be a subvector of the complete series z"[z@

I
, z@

II
]@, with the

assumptions and notation of Section 2.2 holding. Given the definition of the log-
likelihood (2.10), we can proceed as in Section 3.1 because z

I.
is considered fixed

and the covariance structure of the error in model (2.9) is known. Let z
II.

be the
subvector of z

II
containing the missing values in z

II
. Partition

z
II
"Az

I
#v"Bz

I0
#Cz

I.
#v conforming to z

II0
and z

II.
, such that (2.8) and

z
II.

"A
.
z
I
#v

.
"B

.
z
I0
#C

.
z
I.
#v

.
hold. If zN

II
denotes the series obtained

from z
II

replacing the unobserved values z
II.

with tentative values zN
II.

, the
following theorem, analogous to Theorem 1, provides an expression for the
log-likelihood l(y

0
) based on y

0
, in terms of [z@

I
, zN @

II
]@.

¹heorem 2. ¸et u
II
"zN

II.
!z

II.
. ¹hen, the log-likelihood based on y

0
is

l(y
0
)"!1

2
M(M!k) ln(p2)#ln DX

v
D#ln DX@

II
X~1

v
X

II
D

#(zN
II
!Az

I
!X

II
uL

II
)@X~1

v
(zN

II
!Az

I
!X

II
uL

II
)/p2N, (3.1)
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where X
II

is the (N!d)](N!M!d#k) matrix whose columns are unit
vectors, such that the ith column has a one in the position corresponding to the ith
missing value in z

II
, i"1, 2,2, N!M!d#k, uL

II
"(X@

II
X~1

v
X

II
)~1

X@
II
X~1

v
(zN

II
!Az

I
), and uL

II
"zN

II.
!A

.
z
I
!E(z

II.
!A

.
z
I
Dz
II0
!A

0
z
I
). Also,

Mse(uL
II
)"Var(z

II.
!A

.
z
I
Dz
II0
!A

0
z
I
)"p2(X@

II
X~1

v
X

II
)~1.

Note that in Eq. (3.1) the parameters to estimate are (/
1
,2,/

p
, h

1
,2, h

q
),

p2 and z
I.

. No tentative values have been assigned yet to the elements of z
I.

. As
we mentioned at the end of Section 2.2, replacing in Eq. (2.10) p2 and z

I.
with

the GLS estimators pL 2 and zL
I.

, respectively, of model (2.9), we can concentrate
p2 and z

I.
out of the log-likelihood. We will show that the same concentrated

log-likelihood can be obtained replacing also z
I.

with tentative values zN
I.

and
concentrating p2 and u

I
"zN

I.
!z

I.
out of the log-likelihood (3.1). But first we

will give in the next corollary an alternative expression to (3.1) based on
differencing [z@

I
, zN @

II
] and the columns of [0@,X@

II
]@.

Corollary 1. ¼ith the notation of ¹heorem 2, let uH"J
II
[z@

I
, zN @

II
]@ and

XH
II
"J

II
[0@,X@

II
]@, where J

II
is the matrix defined in Section 2.2, be the result of

differencing [z@
I
, zN @

II
]@ and the columns of [0@,X@

II
]@, respectively. ¹hen, the log-

likelihood (3.1) can be expressed as

l(y
0
)"!1

2
M(M!k) ln(p2)#ln DX

u
D#ln DXH@

II
X~1

u
XH

II
D

#(uH!XH
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uL
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u
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uL

II
)/p2N, (3.2)
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II
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u
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II
X~1

u
uH and Mse(uL

II
)"p2(XH@

II
X~1

u
XH

II
)~1, where, as in

Section 2.2, u"J
II
z is the differenced series and Var(u)"p2X

u
.

Suppose now that zN
I
denotes the vector obtained from z

I
replacing the missing

values z
I.

with tentative values zN
I.

and let zN"[zN @
I
, zN @

II
]@ be the complete filled-in

series. Define u
I
"zN

I.
!z

I.
and u"[u@

I
, u@

II
]@. Then, we can write

C
z
I

z
II
D"C

zN
I

zN
II
D!C

X
I

0

0 X
II
DC

u
I

u
II
D,

where X
I
is the d](d!k) matrix whose columns are unit vectors, such that the

ith column has a one in the position corresponding to the ith missing value in z
I
,

i"1, 2,2, d!k, or, in obvious and more compact notation, z"zN!Xu. The
main result of this section is contained in the next theorem.

¹heorem 3. ¸et uN "J
II
zN and XH"J

II
X, where J

II
is the matrix defined in

Section 2.2, be the result of differencing zN and the columns of X, respectively. ¹hen,
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maximizing the log-likelihood (2.10) or, equivalently, (3.2) with respect to z
I.

yields
the z

I.
-maximized log-likelihood

j(y
0
)"!1

2
M(M!k) ln(p2)#ln DX

u
D#ln DXH@

II
X~1

u
XH

II
D

#(uN !XHuL )@X~1
u

(uN !XHuL )/p2N,

where uL is the G¸S estimator of u in the model uN "XHu#u, XH
II
"J

II
[0@, X@

II
]@,

u"J
II
z is, as in Section 2.2, the differenced series and Var(u)"p2X

u
. ¹herefore,

uL "(XH@X~1
u

XH)~1XH@X~1
u

uN and Mse(uL )"p2(XH@X~1
u

]XH)~1.

Note that, by Theorems 2 and 3, the interpolations zL
I.

of z
I.

and zL
II.
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z
II.

are simply zN
I.
!uL

I
and zN

II.
!uL

II
, respectively, where uL "[uL @
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,uL @
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by Theorem 3. [Another expression for zL
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), where P is the matrix such that E(z
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.
,v
0
) Var~1(v

0
).] Note also that in the z

I.
-maximized

log-likelihood j(y
0
) of Theorem 3 the correction ln DXH@

II
X~1

u
XH

II
D in the determi-

nantal term involves only the missing values contained in z
II

and not those
contained in the data lost by differencing z

I
.

In the stationary case, by Theorem 1, the interpolator in the AO approach,
zN
.
!uL , is equal to E(z

.
Dz
0
). Therefore it is identical to the one obtained in the

skipping approach, since that conditional expectation is precisely what the KF,
used as in Jones (1980), provides; see Section 2.1. This result extends to the
nonstationary case, as stated in the following corollary.

Corollary 2. ¹he interpolator of the missing observations obtained with the skip-
ping and the AO approaches are identical.

As already mentioned, compared to the standard estimation of additive
outliers in the series, the AO approach to interpolating missing values implies
a correction in the likelihood. As stated in the following lemma, for a large
enough number of observations, the effect of this correction becomes negligible.

¸emma 3. ¸et M denote the number of observations. If the location and the total
number of missing values remain constant as MPR, the determinantal correction
vanishes.

By Theorem 3, we can use the stationary series uN , obtained by differencing the
filled in series zN , to evaluate the log-likelihood j(y

0
). Hence, we can apply any of

the fast algorithms existing in the literature to evaluate log-likelihoods of
ARMA models. For example, the algorithm of Ansley (1979), the innovations
algorithm of Brockwell and Davis (1987), or the Kalman filtering algorithm of
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Morf et al. (1974), as described by Pearlman (1980) and improved by Mélard
(1984). We use an improved version of this last algorithm, detailed in Gómez et
al. (1997).

3.3. Regression model with ARIMA errors

Consider the regression model (2.11), where the vectors b and y(t) are as in
Section 2.3 and the residuals Ml(t)N follow the ARIMA model (2.3) with z(t)
replaced with l(t). With the notation of the previous section, if we define the
vector l"(l(1),2, l(N))@ and the N]h matrix ½ with the vectors y@(t),
t"1,2, N, as rows, we can write zN"[X,½] [u@,b@]@#l. Differencing this
equation, we can proceed as in the previous section, the only difference being
that the vector of regression parameters is now [u@,b@]@, instead of u.

4. Computational performance of the two approaches

We have presented two approaches to the problem of optimal estimation of
missing observations in possibly nonstationary time series. One uses first the
Kalman filter for likelihood evaluation, skipping the missing observations, and
applies then a smoothing algorithm to interpolate the unobserved values. This
approach will be denoted the SK approach. The second approach fills the holes
in the series with arbitrary numbers and treats them as additive outliers, with the
likelihood function appropiately corrected. We shall refer to this as the AOC
approach. It was seen how the two approaches are equivalent, so that they
represent two alternative algorithms to compute the conditional expectation of
the missing values given the available observations. While the SK approach
avoids GLS estimation of the additive outlier parameters and requires less
memory, the AOC approach uses a ‘complete’ series so that differencing can
take place and faster routines can be applied for likelihood evaluation. Thus, it is
of interest to assess the relative performance in practice of the two approaches.
In the comparison, we shall include a third approach: the additive outlier
approach without determinantal correction, to be denoted AON. As was seen in
Section 3, this approach provides an asymptotic approximation and has the
advantage that, since the likelihood considered is the standard additive outlier
likelihood, it can be implemented with existing software.

We have run a simulation experiment on a 133 Pentium PC with series of
length 100 generated from the following three models

MA(1)

ARIMA(1,1,0)

ARIMA(0,1,1)(0,1,1)

z(t)"(1!0.7B)a(t)

(1!0.8B)(1!B)z(t)"a(t)

(1!B)(1!B12)z(t)"(1!0.4B)(1!0.6B12)a(t),

V. Gómez et al. / Journal of Econometrics 88 (1999) 341–363 353



where, a(t)&N(0,1). To obtain each series, 600 observations were first generated
using independent N(0,1) deviates obtained by Box—Muller’s method. Then, the
first 500 observations of each series were discarded. We have considered three
patterns of missing data: One missing observation (number 50), five consecutive
missing observations (numbers 41—45), and twenty missing observations (num-
bers 2, 7, 15, 20, 25, 32, 33, 38, 42, 45, 50, 51, 63, 72, 79, 81, 84, 85, 86, 90). The
choice of models was based on the following consideration. The third model is
the well-known ‘Airline Model’, popularized by Box and Jenkins (1976). It is
a model that fits many series; a recent study by EUROSTAT (1996) on close
to 15,000 series from the 15 EU countries, plus USA and Japan, found the
model appropriate for about 50% of the series. The second model is a pure AR
model of the type often used by macroeconomists to model, for example, the
seasonally adjusted US GNP series. The first model pretends to introduce pure
MA effects into the discussion. The choice of patterns for the missing values
considers, first, historical estimation of a single missing observation. The second
example attempts to capture the effect of consecutive missing values. The third
example attempts to capture the effect of many, randomly ocurring, missing values.

The missing values have been obtained using three estimation procedures.
The first corresponds to the SK approach, the second to the additive
outlier approach with determinantal correction (AOC), and the third to the
additive outlier approach without determinantal correction (AON). For each of
the three models and for each possible combination of estimation procedure and
pattern of missing data, we have performed 5000 simulations. All estimations have
been made with the program TRAMO (‘Time Series Regression with ARIMA
Noise, Missing Observations, and Outliers; Gómez and Maravall (1996).)

Tables 1—3 below correspond to the three models. In each of these tables, we
show the results of the three methods of estimation for each pattern of missing
data. We have denoted by ME, RMSE, and TRMSE the mean error, root-mean-
squared error and theoretical root-mean-squared error, respectively. The
TRMSEs have been obtained by runnig the program with the specified models
fixed and interpolating the missing values.

To facilitate interpretation of the tables, the following result is of help. For an
infinite realization of an ARIMA series, the optimal interpolator of the missing
values is a two-sided, convergent, filter. When there is only one missing observa-
tion, (at time t), the filter is given by (see, for example, Brubacher and Wilson, 1976)

l(B,F)"!

=
+
k/1

o(i)
k
(Bk#Fk), (4.1)

where F"B~1, and o(i)
k

is the k-lag autocorrelation of the inverse model of (2.3),
namely,

h(B)x(t)"/(B)d(B)a(t). (4.2)
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Table 1
Model z(t)"(1!0.7B)a(t)

Observation
number

SK AOC AON

ME RMSE ME RMSE ME RMSE TRMS
E

1 missing observation
n"50 0.000 0.741 0.000 0.741 0.001 0.744 0.714
5 missing observations
n"41 !0.010 1.013 !0.009 1.012 !0.010 1.013 1.000
42 0.027 1.202 0.027 1.202 0.027 1.202 1.221
43 0.011 1.212 0.011 1.212 0.011 1.212 1.221
44 !0.038 1.222 !0.038 1.222 !0.038 1.222 1.221
45 0.023 0.995 0.023 0.994 0.023 0.996 1.000
20 missing observations
n"2 0.002 0.844 !0.007 0.879 !0.007 0.876 0.828
7 0.000 0.765 0.000 0.828 0.000 0.826 0.726
15 !0.002 0.754 !0.009 0.812 !0.008 0.808 0.726
20 0.009 0.750 0.007 0.813 0.008 0.810 0.735
25 0.000 0.752 0.005 0.824 0.008 0.821 0.727
32 !0.005 1.000 !0.010 1.022 !0.009 1.021 1.002
33 !0.018 1.003 !0.020 1.027 !0.020 1.025 1.007
38 0.004 0.752 0.006 0.820 0.006 0.815 0.746
42 0.019 0.792 0.025 0.838 0.024 0.836 0.781
45 0.007 0.779 0.011 0.827 0.012 0.824 0.770
50 !0.011 1.022 !0.016 1.046 !0.014 1.044 1.007
51 0.014 1.021 0.006 1.043 0.007 1.042 1.000
63 0.005 0.774 0.011 0.841 0.010 0.838 0.715
72 !0.016 0.751 !0.015 0.822 !0.014 0.819 0.717
79 !0.014 0.826 !0.018 0.874 !0.020 0.872 0.821
81 !0.010 0.860 !0.014 0.890 !0.014 0.888 0.860
84 0.006 1.030 0.006 1.044 0.006 1.044 1.033
85 !0.019 1.220 !0.019 1.220 !0.019 1.220 1.221
86 !0.001 1.019 0.002 1.044 0.001 1.042 1.016
90 !0.007 0.765 !0.004 0.821 !0.004 0.820 0.736

SK: Skipping approach.AOC: Additive outlier approach with determinantal correction.AON:
Additive outlier approach without determinantal correction.

Further,

RMSE[zL (t)]"1/p
(i)
, (4.3)

where p
(i)

is the standard deviation of x(t) in model (4.2). In practice, this RMSE
provides a lower bound for the RMSE of estimators in a finite sample. When
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Table 2
Model (1!0.8B)(1!B)z(t)"a(t)

Observation
number

SK AOC AON

ME RMSE ME RMSE ME RMSE TRMS
E

1 missing observation
n"50 0.004 0.455 0.004 0.455 0.004 0.455 0.453
5 missing observations
n"41 !0.016 0.797 !0.016 0.797 !0.016 0.797 0.801
42 !0.015 1.295 !0.015 1.295 !0.015 1.295 1.298
43 0.006 1.463 0.006 1.463 0.006 1.463 1.476
44 !0.002 1.299 !0.002 1.299 !0.002 1.299 1.298
45 !0.001 0.799 !0.001 0.799 !0.001 0.799 0.801
20 missing observations
n"2 0.009 0.492 0.009 0.492 0.010 0.492 0.486
7 !0.010 0.452 !0.010 0.452 !0.010 0.452 0.453
15 !0.005 0.454 !0.005 0.454 !0.005 0.454 0.453
20 !0.006 0.454 !0.006 0.454 !0.006 0.454 0.453
25 0.004 0.447 0.004 0.447 0.004 0.447 0.453
32 0.010 0.608 0.010 0.608 0.010 0.608 0.605
33 0.009 0.611 0.009 0.611 0.009 0.611 0.605
38 !0.006 0.460 !0.006 0.460 !0.005 0.460 0.453
42 !0.008 0.454 !0.008 0.454 !0.008 0.454 0.453
45 0.001 0.449 0.001 0.449 0.001 0.449 0.453
50 0.004 0.610 0.004 0.610 0.004 0.610 0.605
51 0.000 0.609 0.000 0.609 0.000 0.609 0.605
63 0.010 0.448 0.010 0.448 0.010 0.448 0.453
72 !0.004 0.452 !0.004 0.452 !0.004 0.452 0.453
79 !0.015 0.460 !0.015 0.460 !0.015 0.460 0.459
81 0.004 0.456 0.004 0.456 0.004 0.456 0.459
84 0.004 0.695 0.004 0.695 0.004 0.694 0.697
85 !0.005 0.918 !0.005 0.918 !0.005 0.918 0.919
86 0.004 0.696 0.004 0.696 0.004 0.696 0.697
90 !0.005 0.452 !0.005 0.452 !0.005 0.452 0.453

SK: Skipping approach.AOC: Additive outlier approach with determinantal correction.AON:
Additive outlier approach without determinantal correction.

close enough to the end of the series or to another missing value, the RMSE will,
of course, be larger.

For the three models considered above, the inverse ACF show that for the
pure AR model convergence of Eq. (4.1) will occur in just two periods. The MA
model and, in particular, the mixed model imply slower convergences, in
accordance with the convergence properties of the expressions (1!0.7B)~1 and
(1!0.6B12)~1. For the three models, expression (4.3) yields

MA(1): RMSE[(zL (t)]"0.714,
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Table 3
Model (1!B)(1!B12)z(t)"(1!0.4B)(1!0.6B12)a(t)

Observation
number

SK AOC AON

ME RMSE ME RMSE ME RMSE TRMS
E

1 missing observation
n"50 !0.006 0.763 !0.006 0.763 !0.006 0.763 0.751
5 missing observations
n"41 !0.021 0.841 !0.021 0.841 !0.021 0.842 0.837
42 !0.003 0.918 !0.003 0.918 !0.003 0.919 0.905
43 0.012 0.934 0.011 0.934 0.011 0.934 0.927
44 !0.018 0.903 !0.018 0.903 !0.018 0.903 0.905
45 !0.002 0.832 !0.001 0.832 !0.001 0.832 0.837
20 missing observations
n"2 !0.004 0.907 !0.004 0.907 !0.004 0.920 0.884
7 !0.024 0.859 !0.023 0.860 !0.022 0.872 0.849
15 !0.008 0.801 !0.008 0.800 !0.009 0.837 0.792
20 !0.002 0.821 !0.002 0.821 !0.003 0.849 0.814
25 0.000 0.788 0.000 0.788 0.000 0.826 0.772
32 0.010 0.829 0.010 0.829 0.008 0.862 0.826
33 !0.006 0.844 !0.006 0.844 !0.007 0.881 0.818
38 0.002 0.798 0.001 0.798 0.001 0.833 0.788
42 0.005 0.762 0.004 0.762 0.008 0.801 0.759
45 0.001 0.775 0.001 0.775 0.001 0.808 0.780
50 !0.010 0.827 !0.011 0.827 !0.012 0.865 0.815
51 !0.015 0.815 !0.015 0.815 !0.016 0.851 0.810
63 0.020 0.787 0.019 0.787 0.020 0.822 0.777
72 !0.010 0.794 !0.009 0.793 !0.007 0.829 0.786
79 !0.028 0.811 !0.028 0.811 !0.030 0.847 0.790
81 !0.004 0.794 !0.003 0.794 !0.006 0.834 0.791
84 0.007 0.894 0.008 0.894 0.012 0.927 0.865
85 !0.004 0.892 !0.004 0.892 !0.003 0.932 0.874
86 0.017 0.870 0.017 0.870 0.018 0.913 0.847
90 !0.001 0.851 !0.001 0.851 !0.004 0.866 0.846

SK: Skipping approach.AOC: Additive outlier approach with determinantal correction.AON:
Additive outlier approach without determinantal correction.

ARIMA(1,1,0): RMSE[(zL (t)]"0.453,

ARIMA(0,1,1)(0,1,1): RMSE[(zL (t)]"0.748.

From Tables 1—3, it is seen that those (asymptotic) RMSE are identical to the
TRMSE computed by the Kalman filter for the first two models when there is
one missing observation. For the last model, the small discrepancy is caused by
the fact that (1!0.6B12)~1 has not fully converged in 4 years. When there are
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Table 4
Elapsed time in seconds (average)

Approach MA(1) ARIMA(1,1,0) ARIMA(0,1,1)(0,1,1)

1 missing observations
SK 0.07 0.07 0.52
AOC 0.08 0.08 0.17
AON 0.09 0.08 0.19
5 missing observations
SK 0.08 0.07 0.55
AOC 0.14 0.11 0.26
AON 0.12 0.11 0.33
20 missing observations
SK 0.07 0.07 0.65
AOC 0.33 0.32 1.02
AON 0.33 0.33 0.95

SK: Skipping approach.AOC: Additive outlier approach with determinantal correction.AON:
Additive outlier approach without determinantal correction.

5 missing observations, the tables show the deterioration in RMSE caused by
the presence of consecutive observations; this is particularly true for relatively
simple models. When there are 20 missing values, Tables 1 and 3 show how for
the pure AR model, the filter converges fast, and the lower bound for the RMSE is
often achieved. The MA model gets close on a few occasions, while the mixed
model is always above. Comparing the three models, it is of some consolation
however that for the case with RMSE systematically above the lower bound (the
mixed model,) the deterioration due to consecutive missing values is markedly
smaller.

Comparison of the SK and AOC columns reveals differences in the two
alternative algorithms to compute the same conditional mean. Comparison of
the AOC and the AON columns, in turn, shows the effect of the determinantal
correction needed to compute the proper likelihood. The tables indicate that, for
the pure AR model, the SK and the AOC approaches yield identical results, and
that those of the AOC and AON approaches are nearly identical. For the MA
and the mixed models, the SK and AOC approaches provide some differences,
though small, and the same can be said of the AOC and AON approaches.
Clearly, the results reflect the convergence properties of the ‘inverse’ filters. The
two equivalent algorithms yield identical results when the filters converge fast;
when convergence is slow some differences may appear. In particular, for the
more complex model (the mixed one,) the differences implied by not correcting
the likelihood seem non-negligible.

The values of RMSE in the columns of Tables 1—3 are the Monte Carlo
(MC) RMSE of the interpolators for all cases considered, computed, for each
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case, as the sample value over the 5000 replications. It is seen that the MC
RMSE are always close to the theoretical RMSE. When the number of MO is
small, the MC RMSE of the three methods (SK, AOC, AON) are practically
identical.

When the number of missing observations increases to 20, it is seen that it is
still true that for the AR model, the differences between the approaches are
negligible. However, for the MA model the skipping approach becomes notice-
ably better, since all of the 20 missing values are then better estimated. For the
mixed ARIMA model the results obtained with the SK and the AOC ap-
proaches are practically identical. The MC RMSE given by the AOC and AON
approaches are similar for the MA model, although slightly smaller in the case of
the AON approach. For the mixed ARIMA model, the AON approach presents
MC RMSE which are systematically bigger than those of the AOC and SK
approaches.

The results obtained for the MA model in the case of 20 missing values
are a little paradoxical and should be taken with care. After some investigation,
we have come to the conclusion that the results for this model when there is
a large number of missing values are more affected by the numerical perfor-
mance of the algorithms than in the case of the other models. For example, we
have noticed that setting the initial value for the search in the non-linear
optimization algorithm equal to the theoretical parameter !0.7 can reverse the
results and make the AOC approach perform slightly better than the SK
approach.

As for computational efficiency, Table 4 presents the elapsed times in
seconds for the average of the simulations for all combinations: model for
the series — patterns of missing data — estimation approach. In all
cases, the AOC and AON approaches display negligible differences. When
there is only one missing observation, and if the model is small, there are
practically no differences between the approaches. For the larger mixed model,
the additive outlier approach is faster. When the number of missing observa-
tions increases to 5, for the small models the SK approach is slightly faster, while
for the larger model, the additive outlier approach is still preferable. When the
number of missing observations increases to 20, the SK approach is always
much faster.

Taken as whole, the results seem to indicate clearly the following. When
there are few missing observations (1, even 5, in 100) the three approaches
yield practically identical results, in terms of point estimators, their associated
precision, and computational efficiency. When the number of missing observa-
tions is large (20 in 100) the skipping approach becomes preferable in terms
of speed, yielding estimators which are slightly less precise in some cases than
those given by the AOC approach. Finally, from the precision point of view,
enforcing the determinantal correction in the additive outlier approach may be
important.
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Appendix A. Proofs of results

Proof of ¹heorem 1.The likelihood functions verify ¸(z)"¸(z
.
Dz
0
)¸(z

0
), where

the vertical bar denotes conditional distribution. Then,
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where X
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and X
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are the covariance matrices, divided by p2, of ¸(z
0
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), respectively. Given that zN"Xu#z, replacing in Eq. (A.1) z with

zN!Xu, it is obtained that

(zN!Xu)@X~1
z

(zN!Xu)"(zN
.
!E(z

.
Dz
0
)!u)@X~1

z.@z0
(zN

.
!E(z

.
Dz
0
)!u)

#z@
0
X~1

z0
z
0
. (A.2)

The maximum likelihood estimator uL of u on the left-hand side of
¸(z)"¸(z

.
Dz
0
)¸(z

0
) must be equal to the one on the right-hand side. Clearly, the

right-hand side of (A.2) is minimized for uL "zN
.
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.
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0
). To minimize the

left-hand side, consider the regression model zN"Xu#z. Then, uL is as asserted,
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) and the rest of the proof is similar to that of Theorem 1. h

Proof of Corollary 1. Put
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D because N has unit determinant. h
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Proof of ¹heorem 3. Maximizing (2.10) with respect to z
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, we obtain the
maximum likelihood estimator zL
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in two steps, first with respect to u
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, considering u

I
fixed, and then with respect
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, is equivalent to minimizing it in one step with respect to both u

I
and u

II
, or

u"[u@
I
,u@

II
]@. Finally, it is easy to verify that the estimator uL that minimizes
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Proof of Corollary 2. As stated in the text, for the stationary case, the proof is
trivial. When the series is nonstationary, by Theorems 2 and 3 we can write
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or, uN "XHu#u. In the skipping approach, zL
I.

is estimated by GLS in the model
y
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0
(see Section 2.2). By Theorems 2 and 3, zL
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, and running the KF with initial conditions
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Proof of ¸emma 3. With the notation of Section 3.3, consider the regression
model zN"[X,½][u@,b@]@#l. By Theorem 3, we can work with the differenced
series and we showed in Section 2.2 that differencing a series is equivalent to
multiplying it by the left by the matrix J

II
defined in that section. Hence, we

consider the model
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