DOES PUBLIC SPENDING CROWD OUT PRIVATE INVESTMENT?
EVIDENCE FROM A PANEL OF 14 OECD COUNTRIES

Isabel Argimón, José M. González-Páramo
y José M.ª Roldan AlegreAlegre
DOES PUBLIC SPENDING CROWD OUT PRIVATE INVESTMENT?
EVIDENCE FROM A PANEL OF 14 OECD COUNTRIES

Isabel Argimón (*), José M. González-Páramo (**) y José M.ª Roldán Alegre (***)

(*) Research Department, Banco de España.
(**) Universidad Complutense.
(***) Research Department, Banco de España and European Monetary Institute.
In publishing this series the Banco de España seeks to disseminate studies of interest that will help acquaint readers better with the Spanish economy.

The analyses, opinions and findings of these papers represent the views of their authors; they are not necessarily those of the Banco de España.
ABSTRACT

This paper is concerned with the empirical relationship between government spending and private investment. A panel of 14 OECD countries is used. We present evidence which suggests the existence of a significant crowding-in effect of private investment by public investment, through the positive impact of infrastructure on private investment productivity. Moreover, government consumption appears to crowd out private investment. The implications of these results are of foremost importance when it comes to fiscal consolidation. Deficit reductions engineered through cuts in public investment could severely impinge upon private capital accumulation and growth prospects.
1. INTRODUCTION: FISCAL POLICY, GROWTH, AND CROWDING OUT

In this paper we investigate the relationship between private investment and government spending. Empirical evidence is brought to bear upon two closely related questions which lie at the core of the debate on the macroeconomic effects of fiscal policy: 1) Is public spending productive? 2) To what extent, if any, does government spending substitute for private investment?

The first question has stimulated a considerable amount of research since Rubinson (1977) and Ram (1986) found a positive empirical relationship between government size and GDP growth. Although this association has also been obtained in more recent work (see Lin, 1994a), a number of papers have identified an inverse association between government spending and output growth (e.g. Grossman, 1988, Mallow, 1986, Peden and Bradley, 1989, and Grier and Tullock, 1989). In a careful and comprehensive analysis of this issue, Dowrick (1993) concludes that government size does not appear to have a systematic and significant effect on growth.

This literature has been criticized on three main grounds. First, as shown by Hsieh and Lai (1994) and Dowrick (1993), the sign of the association is quite sensitive to the choice of the sample of countries, the period under study, the econometric techniques and the existence of measurement problems. Second, as different categories of spending are well documented to have diverse economic effects, analyses ignoring this fact are not easy to interpret. Easterly and Rebelo (1993) and Lin (1994b), for example, show that spending categories that promote human or physical capital accumulation are positively associated with growth, while other spending items have negative or neutral effects. Finally, the single equation findings on the government-size/GDP-growth link could be invalid when this relationship runs through indirect channels, i.e. private investment.

These empirical shortcomings have a direct bearing on the second question. Since capital accumulation is the engine of output growth, any crowding-out effects of private investment by public spending impinge upon production expansion and welfare prospects. The bulk of the
empirical literature finds a significantly negative effect of public consumption on growth while the effects of public investment are found to be positive although less robust (Barro, 1991; Grier and Tullock, 1989; Easterly and Rebelo, 1993). To what extent can these results be traced to a crowding out of private investment? Aschauer (1989b) finds that the direct crowding-out effect of public investment is outweighed by a direct crowding-in effect associated with the role of public capital as a productive input and its complementarity\(^{(1)}\) with private capital (see Aschauer, 1989a). The evidence gathered in Erenburg (1993), who estimates a simple macromodel with rational expectations, and in Erenburg and Wohar (1995), reinforces this conclusion, while the results in Bairam and Ward (1993) support the crowding-out hypothesis. As to the impact of government consumption, Aschauer (1989b) concludes that its crowding-out effect on private investment carries only a marginal explanatory power, a result that could be interpreted as an indication that public consumption is a close substitute for private consumption. However, recent evidence gathered by Karras (1994) forcefully suggests that private and government consumption are best described as complementary (or unrelated) goods\(^{(2)}\), a feature that reinforces the crowding-out effect of private investment.

The rest of the paper is organized as follows. Section II outlines the theoretical arguments behind the crowding-out hypothesis. For expositional purposes, we use a simple overlapping-generations model in which public and private capital are complements, whereas public and private consumption are independent. Section III evaluates the impact on private investment and private productivity of public spending. The empirical results obtained with a panel of 14 OECD countries are presented and briefly discussed. Finally, Section IV draws the main conclusions.

\(^{(1)}\) Public and private capital are "complementary" when the marginal productivity of the private capital increases as the quantity of public capital increases.

\(^{(2)}\) If public consumption increases the marginal utility of private consumption, both are said to be "complementary", and viceversa.
2. PRIVATE INVESTMENT AND PUBLIC EXPENDITURE

The equilibrium approach developed in Aschauer (1988) and Aschauer and Greenwood (1985), among others, assumes a competitive economy populated by rational, identical, infinitely lived individuals. In this context, the general equilibrium relationship between public spending and private investment may be expressed in the following two equations:

\[i = i(f_k, i^g, c^g), \quad i_1 > 0, \quad i_2 < 0, \quad i_3 < 0 \] \hspace{1cm} (1)

\[f_k = f_k(k, k^g), \quad f_{k1} < 0, \quad f_{k2} > 0 \] \hspace{1cm} (2)

where \(i \) is private spending, \(f_k \) is the marginal product of capital, \(i^g \) and \(c^g \) are public investment and public consumption, respectively, \(k \) is private capital and \(k^g \) is public capital. Along neoclassical lines, changes in investment—which are described by the partial derivatives of the above functions—are the result of intertemporal smoothing of consumption by private agents.

Aschauer's discussion of the crowding-out issue is heuristic, due to the complexity of his analytic framework. Nonetheless, his qualitative conclusions carry over in much simpler neoclassical models. Suppose that our economy is populated by overlapping generations of equal size. Each household lives for two periods. Households earn labour income only in the first period. Labour supply is fixed. Consumption of a representative household when young in time \(t \) is:

\[c^1_t = w_t - t_t - s_t, \] \hspace{1cm} (3)

whereas consumption when old at time \(t+1 \) can be written as:

\[c^2_{t+1} = s_t (1 + r_{t+1}), \] \hspace{1cm} (4)

where \(w_t \) is the wage rate, \(s_t \) is savings, \(r_{t+1} \) is the interest rate in the second period and \(t_t \) is a tax levied on the young. The government uses tax revenues to finance public consumption of a public good nature—which
enters household's utility function and public investment—which is a productive input in private production.

Suppose that the utility function of a representative agent is:

$$ U = \delta \ln c_t^1 + (1-\delta) \ln c_{gt} + \frac{1}{1+\rho} \left[\delta \ln c_{t+1}^2 + (1-\delta) \ln c_{gt+1} \right] $$ \hspace{1cm} (5)

where c_t is public consumption, δ represents relative preference for private consumption and ρ is the rate of time preference. Maximization of (5) subject to (3) and (4) yields the savings function:

$$ s_t = \sigma (w_t - t), \quad \sigma = \frac{1}{2+\rho}. $$ \hspace{1cm} (6)

For simplicity, assume that both private and public capital fully depreciate in every period. The production function in per worker terms is:

$$ y_t = A i_t^{\alpha \beta}, \quad \alpha + \beta < 1, $$ \hspace{1cm} (7)

where i_t is private capital (and private investment) and i_g is public capital (and public investment). Competition in factor markets implies:

$$ 1 + r_t = 1 + \frac{\sigma i_t^{\alpha-1} \beta}{A i_t^{\alpha \beta}} = \frac{y_t}{i_t} $$ \hspace{1cm} (8)

$$ w_t = (1-\alpha) A i_t^{\alpha \beta} = (1-\alpha) y_t. $$ \hspace{1cm} (9)

Capital available for production in $t+1$ equals savings of the young in t. This gives the momentary equilibrium condition:

$$ i_{t+1} = \sigma (1-\alpha) A i_t^{\alpha \beta} - \sigma t_t. $$ \hspace{1cm} (10)

This equation, together with the government budget constraint: define the equilibrium of the economy.
A permanent tax-financed increase in public consumption reduces both first-period private consumption and savings, and thus investment in the next period. In the long-run, after dropping time subscripts, we obtain:

\[
\frac{di}{dc_g} = -\frac{\sigma}{1-\sigma(1-\alpha)A_i^{\alpha-1}i_g} < 0,
\]

provided that the economy is not too far away from the golden rule (note that when r=0, by equation 8 the denominator in 12 reduces to 1-\sigma(1-\alpha)). As this crowding-out effect generated by public consumption is associated with the effect of taxes upon savings, a tax-financed increase in public investment must also produce a direct crowding-out effect of private investment. However, public investment may have an additional effect: private investment is crowded-in whenever public capital raises the productivity of private capital. In fact, if the initial level of public capital were well below its optimal (i.e. output-maximizing) level, the crowding-in effect would outweigh the negative influence of taxes upon savings. More generally, the steady-state effect of an increase in public investment upon private capital accumulation is:

\[
\frac{di}{di_g} = -\frac{\sigma[1-\beta(1-\alpha)A_i^{\beta-1}i_g]}{1-\sigma(1-\alpha)A_i^{\alpha-1}i_g} \geq 0
\]

In the more elaborate Aschauer model this ambiguity emerges as well. The differences are just a matter of detail. When public and private capital are equally productive, an increase in public investment crowds out an equivalent amount of private investment, with no effects upon wealth and consumption. However, an additional crowding-out effect would arise if public investment were more productive: as lifetime wealth increases so does consumption today. These two short-run effects could be compensated by the crowding-in effect which operates through an increase in private capital productivity. As to the consequences of an increase in public consumption, Aschauer admits the possibility that its effect could be nil. If public consumption is a perfect substitute for
private consumption or the marginal propensity to consume out of wealth remains constant over time for every agent, private investment changes would not be needed to smooth out consumption. None of these assumptions are made in our simple expositional model\(^{(3)}\).

3. DATA, METHODOLOGY AND EMPIRICAL RESULTS

The empirical analysis is carried out using the annual time-series-cross-section data from Summers and Heston (1991). Only the fourteen OECD countries with available data on infrastructure capital were included for the period 1979-88\(^{(4)}\), which resulted in an unbalanced panel data set. Data definitions are given in the Appendix.

Our analysis of the crowding-out hypothesis is based on the estimation of the following pair of equations:

\[
\begin{align*}
 i_{jt} &= a_{1jt} + a_{2jt} f_{kjt} + a_{3jt} i_{gjt} + a_{4jt} c_{gjt} + e_{1jt} \\
 \ln f_{kjt} &= b_{1jt} + b_{2jt} \ln k_{jt} + b_{3jt} \ln k_{gjt} + e_{2jt}
\end{align*}
\]

\[(14)\]

\[(15)\]

where subscripts \(t\) refer to time and \(j\) to country, \(i\) and \(i_g\) are, respectively, private and public investment in relation to private productive capital stock (private and public investment rates), \(c_g\) is public consumption, in relation to private productive capital stock, \(f_k\) is

\[^{(3)}\] These models are not directly comparable. Note that we are assuming that public and private consumption are neither complementary nor substitutes. On the other hand, with income accruing only in the first period and a fixed propensity to save, crowding out obtains even if the marginal propensity to consume remains constant. In such case, which implies \(r = \rho\), private investment is crowded-out by \([1-\alpha(1-\rho)]^{-1}\) units per unit of additional government consumption spending.

\[^{(4)}\] The countries and the periods are the following ones: Australia (1979-87), Austria (1979-87), Belgium (1979-87), Canada (1979-88), Denmark (1979-88), Federal Republic of Germany (1979-88), Finland (1979-87), France (1979-88), Ireland (1979-87), Norway (1980-86), Spain (1979-86), Sweden (1979-87), United Kingdom (1979-87) and United States (1980-87).
marginal private capital productivity (which is proxied by the ratio of gross operating surplus to private productive capital stock), \(k \) is the stock of private productive capital and \(k_g \) is infrastructure capital, so that no residential investment is involved\(^{(5)}\). We would expect \(a_2 \) to be positive, and both \(a_1 \) and \(a_4 \) to be non-positive under the crowding-out hypothesis. On the other hand, given the standard assumption of decreasing marginal productivity, \(b_2 \) is expected to be negative, and \(b_3 \) positive if infrastructures and private productive capital are complements.

The econometric analysis of the crowding-out issue requires the use of techniques well suited to deal with country heterogeneity. Let us first refer to the most restrictive version of (14) and (15). Assume that \(a_{m\ell t} = a_m \) and \(b_{n\ell t} = b_n \), \(\forall \ell, \forall t \); that is, the response of private investment and private capital productivity to the right-hand side variables does not change over time nor across countries. The results of such a restrictive model are presented in column (1) of Table 1. In columns (2) to (6) we relax these restrictions so as to take into account the heterogeneity of the data. In column (2) we report the results of letting \(a_1 \) and \(b_1 \) change across countries while taking the remaining coefficients to be the same across countries. The estimates correspond to a fixed effects model with country dummies, and are therefore a within estimate. The dummy coefficients are not reported. In order to choose between the most restrictive model and the within estimates, an \(F \) test is carried out, whose results are reported in the lines headed by \(F^{(6)} \). In column (3) we

\[^{(5)}\] Unfortunately, our data do not allow private and public infrastructure to be separated out. It may be argued that both types of infrastructure should have roughly the same effects on productivity. In any case, this fact has to be borne in mind when interpreting the results.

\[^{(6)}\] This test is formulated as:

\[
\frac{SSRR - SSRU/(ku - kr)}{SSRU/(T - ku)} \sim F_{(ku - kr), (T - ku)}
\]

where \(U \) and \(R \) stand for the unrestricted and the restricted model, respectively, \(SSR \) is the sum of squared residuals, \(k \) is the number of estimated coefficients and \(T \) is the total number of observations.
Table 1. Crowding-Out Effect (1979-1988)

<table>
<thead>
<tr>
<th></th>
<th>Restricted (eq (1))</th>
<th>Fixed effects (eq (2))</th>
<th>Random effects (eq (3))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)(a)</td>
</tr>
<tr>
<td>(f_{L1t})</td>
<td>0.38</td>
<td>0.38</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>(11.53)**</td>
<td>(4.03)**</td>
<td>(6.57)**</td>
</tr>
<tr>
<td>(f_{L2t})</td>
<td>-0.71</td>
<td>-0.31</td>
<td>-0.16</td>
</tr>
<tr>
<td></td>
<td>(2.46)**</td>
<td>(0.75)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>(C_{G1t})</td>
<td>-0.16</td>
<td>-0.54</td>
<td>-1.94**</td>
</tr>
<tr>
<td></td>
<td>(2.54)**</td>
<td>(1.55)</td>
<td>(4.12)</td>
</tr>
<tr>
<td>(\ln(k/l)_{f1t})</td>
<td>-0.83</td>
<td>-0.49</td>
<td>-0.69</td>
</tr>
<tr>
<td></td>
<td>(16.70)**</td>
<td>(3.96)**</td>
<td>(2.95)**</td>
</tr>
<tr>
<td>(\ln(k/l)_{G1t})</td>
<td>0.24**</td>
<td>0.72</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>(10.88)**</td>
<td>(4.72)**</td>
<td>(1.74)**</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.036</td>
<td>0.023</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)(a)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.139</td>
<td>0.045</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)(a)</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>13.69"[13,109]</td>
<td>14.50"[13,110]</td>
<td>14.81"[13,110]</td>
</tr>
<tr>
<td></td>
<td>81.76"[13,110]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(t \times j)</td>
<td>126</td>
<td>126</td>
<td>112</td>
</tr>
</tbody>
</table>

- \(\sigma \) is the standard error of the regression; \(F \) is a \(F \) test of the fixed effects model versus the most restricted one; \(\chi^2 \) is a Hausman test of the fixed versus the random effects model.
- ** Significant contrast at a 5% level; * significant contrast at a 10% level. In square brackets, degrees of freedom for the \(F \) and the Hausman tests.
- (a): OLS estimates in first differences.
report the estimates of the model in first differences. Such an approach not only takes into account fixed effects, which drop out when the model is specified in first differences, but may be regarded as a way of dealing with non-stationarity when this problem is present. Column (4) reports the results obtained from a random effects model. The main difference with the within estimator is that the country specific effects are now treated as random and uncorrelated with the regressors. A Hausman test is constructed to check for this restriction, with the results shown in the row labeled χ^2 in table 1\(^{(7)}\).

As far as the first equation is concerned, the signs of the coefficients are the expected ones under the different estimated models. The F test does not allow to accept the restricted model to be accepted when the alternative includes country-fixed effects and, on the other hand, the random effects model cannot be rejected when the alternative is the country-fixed effects model. Therefore, the results in columns (1) and (2) can be disregarded as far as the first equation is concerned. The evidence in column (3) implies a negative impact of both public consumption and investment on private investment, although only the public consumption coefficient is statistically significant. When the results in column (4) are analyzed, it appears that the impact of public investment on private investment is negative, but not statistically significant. The same result applies to public consumption.

\(^{(7)}\) The Hausman test is formulated as:

$$H = (\hat{\beta}_w - \hat{\beta}_{\text{GLS}})' (\hat{V}_w - \hat{V}_{\text{GLS}})^{-1} (\hat{\beta}_w - \hat{\beta}_{\text{GLS}})$$

where $\hat{\beta}_w$ is the vector of the k within-group estimates, $\hat{\beta}_{\text{GLS}}$ is the corresponding generalized least squares estimate of the random effects model, and \hat{V}_w and \hat{V}_{GLS} are their respective estimated variance-covariance matrices. Under the null hypothesis of no correlation (the random effects model), it is the case that:

$$\text{plim} (\beta_w - \beta_{\text{GLS}}) = 0$$

$N \to \infty$

and H is distributed as a χ^2 with k degrees of freedom (excluding intercepts).
The lack of significance of both public sector investment and government consumption in the investment equation (equation 14) under the random effects model might arise from collinearity between these two variables. If this were the case, dropping one variable would increase the statistical significance of the other. Columns (5) and (6) report the results of the estimation of equation (14) under a random effects model, when a_2 or a_3 are restricted to zero. It should be noted that the Hausman test does not reject the null hypothesis of non-correlation between the country effects and the observable variables, i.e. the random effects model is not rejected by the data. While the value of the coefficient of marginal private capital productivity is quite stable across specifications, the estimated coefficients for public investment and public consumption do not show such robustness. In fact, the new estimates seem to indicate that public investment has a marginally significant direct impact on private investment while public consumption also has a negative but small impact. Therefore, both public consumption and public investment, appear to crowd out private investment, although the statistical significance of these results is rather weak. Note finally that, under the specification in first differences (column 3) - a valid reference in the presence of non-stationarity in the data - only consumption spending has a significantly negative effect on private investment. All in all, our evidence does not uncover any significant crowding-out effects associated with public investment when productivity is held constant, while results on the negative effects of public consumption on private investment are mixed.

With regard to the productivity equation (equation 15), it is also the case that the signs obtained under the four specifications are the expected ones. The constant returns to scale restriction was imposed after a preliminary test of its validity\(^{(8)}\). While the F test rejects the restricted specification in column (1) in favour of the fixed effects model, the Hausman test rejects the null hypothesis of absence of correlation between the country effects and the regressors. Thus, the within estimates in column (2) appear to be the most appropriate on statistical

\(^{(8)}\) When a test of this restriction was carried out, the result was that under the country fixed effects model it cannot be rejected.
grounds. The negative effect of private capital reflects the decreasing marginal productivity. The results strongly suggest a positive effect of infrastructures on private productivity, so that it may be argued that public investment accumulated in the past appears to enhance productivity. The estimates in column (3), with the model in first differences, lead to the same conclusions, although the infrastructure variable becomes less significant. Therefore, the results suggest that there is an indirect crowding-in effect through the positive impact of public infrastructures on private productivity.

Besides the possibility of the series not being stationary, so that the results in levels could be a reflection of a spurious relationship, endogeneity may be present: it would arise from the relationship between private investment and private capital, a case in which OLS would provide inefficient estimates. The first limitation has already been tackled through the estimation of both equations in first differences (column 3 in Table 1). In order to deal with the endogeneity issue we can use instrumental variable techniques. The estimates of this latter specification (provided in Table A1 of the Appendix) produce very similar qualitative results. Public consumption appears to have a significantly negative impact on private investment. On the other hand, the role of public investment is clarified: its coefficient keeps the expected negative sign but does not appear to be significant, both when public consumption and investment are jointly taken into account, as well as in the case where public consumption is not included in the regression. Thus evidence in favour of a direct crowding out associated with public investment is weak. With regard to the second equation, infrastructure has a positive impact on productivity, in line with the results reached when no simultaneity considerations were involved\(^{(9)}\).

\(^{(9)}\) As a means of testing the specification of the productivity equation, a direct estimation of a production function is discussed in the Appendix. It provides additional evidence on the technology of the countries under study, and on the productive role of infrastructures. The results presented in Table A2 of the Appendix show again that there is a crowding-in effect of public investment through its positive impact on private sector productivity. Such a result reinforces those obtained through the estimation of a productivity function with productivity proxied by the ratio of gross operating surplus to private productive capital.
This paper has investigated the relationship between private investment and public spending. The paper has aimed to test the presence of private investment crowding out by current expenditure (public consumption) and capital expenditure (public investment), with an unbalanced panel data set for 14 industrialized countries for the period 1979 to 1987.

The empirical results presented in the paper lend support to the existence of a crowding-in effect of private investment by public investment, through the positive impact of infrastructure on private investment productivity. Moreover, there is little or no evidence of direct crowding out of private investment by public investment when productivity is held constant, while there is some evidence of crowding out by public consumption.

Given the data limitations, we need to be cautious about applying these results to particular instances. It is quite possible that specific types of government consumption may help GDP growth, and the opposite might be true for some public investment projects. On the other hand, the analysis presented in the paper does not deny that particular ways of funding public spending may exert their own influence upon investment.

All in all, our findings stress the need to distinguish carefully between current and capital expenditure when evaluating the impact of fiscal policy on private investment and output growth. From a policy view, the implications of the evidence are of foremost importance when it comes to fiscal consolidation. Public deficit reductions that rely mainly on public investment cuts could severely impinge upon private investment and growth prospects.
A. DATA SOURCES AND DEFINITIONS

The source of the variables is the Summers and Heston (1991) database PWT5. The periods and countries have been chosen by a data availability criteria, so that all the countries with data on public and private infrastructure have been included. Although we are interested in having a public capital variable, the Summers and Heston database does not provide a separation between public and private infrastructure. It may be argued that public and private infrastructure should have roughly the same effects on productivity. To the extent that public investment increases the stock of infrastructure capital, the crowding-out issue can be discussed along the lines suggested by the theoretical literature.

Variable definitions:

a) Private investment:

\[i = \frac{I \cdot RGDPW \cdot IPRI}{(K_{dur} \cdot Kapw)} \]

b) Public investment

\[i_g = \frac{I \cdot RGDPW \cdot (1 - IPRI)}{(K_{dur} \cdot Kapw)} \]

c) Capital productivity

\[f_k = \frac{(1 - \alpha) \cdot RGDPW}{(K_{dur} \cdot Kapw)} \]

d) Public consumption

\[c_g = \frac{G \cdot RDGPW}{(K_{dur} \cdot Kapw)} \]

e) Private productive capital per capita

\[k = \frac{(K_{dur} + Knres) \cdot Kapw}{(K_{dur} + Knres) \cdot Kapw} \]
f) Public and private infrastructure per capita

\[k_\omega = K\text{other} \cdot Kapw \]

g) Production per worker

\[\frac{y}{I} = RGDPW \]

where all the variables are expressed at constant international prices and:

\[I: \quad \text{Total investment over GDP (1985 int. prices).} \]
\[RGDPW: \quad \text{Real GDP per worker (1985 int. prices).} \]
\[IPRI: \quad \text{Gross domestic private investment share in total investment.} \]
\[Kdur: \quad \text{Producer durables (\% of Kapw).} \]
\[Kapw: \quad \text{Capital stock per worker (1985 int. prices).} \]
\[K\text{other}: \quad \text{Other construction (\% of Kapw).} \]
\[Knres: \quad \text{Nonresidential construction (\% of Kapw).} \]
\[G: \quad \text{Public consumption share in GDP.} \]
\[\alpha: \quad \text{Share of wages participation in GDP, calculated as the ratio of compensation of employees over GDP in every year of the sample (OECD data).} \]
TABLE A1. CROWDING-OUT EFFECTS

INSTRUMENTAL VARIABLE ESTIMATION

(1979–88)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{kt})</td>
<td>0.80</td>
<td>0.74</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>(4.92)**</td>
<td>(4.68)**</td>
<td>(5.00)**</td>
</tr>
<tr>
<td>(i_{gt})</td>
<td>-0.07</td>
<td>-0.62</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td>(1.36)</td>
<td></td>
</tr>
<tr>
<td>(c_{gt})</td>
<td>-1.02</td>
<td>-</td>
<td>-1.05</td>
</tr>
<tr>
<td></td>
<td>(2.28)**</td>
<td></td>
<td>(2.66)**</td>
</tr>
<tr>
<td>(\ln(k/l)_{jt})</td>
<td>-0.56\</td>
<td>(4.06)**</td>
<td></td>
</tr>
<tr>
<td>(\ln(k_g/l)_{jt})</td>
<td>1.07</td>
<td>(6.29)**</td>
<td></td>
</tr>
<tr>
<td>(\sigma)</td>
<td>eq (1)</td>
<td>0.024</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>eq (2)</td>
<td>0.041</td>
<td></td>
</tr>
<tr>
<td>t x j</td>
<td>112</td>
<td>112</td>
<td>112</td>
</tr>
</tbody>
</table>

\(\sigma \): standard error of the regression

The instruments used are \(f_{kt-1}, c_{gt-1} \) and \(i_{gt} \) in equation (1) and \(\ln(k/l)_{t-1} \) and \(\ln(k_g/l) \), in equation (2). Country dummies were included in both equations as instruments.
C. PRODUCTION FUNCTION EQUATION

The estimated equation is given by

\[\ln \left(\frac{y}{l} \right) = a + (1 - \alpha - \beta) \ln \left(\frac{k}{l} \right) + \beta \ln \left(\frac{k^*}{l} \right) \]

where

\[y = a l^\alpha k^\beta k^*^{1-\alpha - \beta} \]

so that again the restriction of constant returns to scale has been imposed\(^{(10)}\). The results are presented in table A2. The inclusion of a time trend, \(t \), aiming at capturing technological change, results in the estimates shown in columns (2), (4), and (6). The random effects model seems to be the one that fits better the data. The positive and statistically significant sign of the infrastructure variable seems to be present in all models, except under column (4). However, in that case, the trend variable is not statistically significant either, so that the specification seems to be rejected by the data.

The fact that the random effects model cannot be rejected statistically may be a reflection of the fact that the technological heterogeneity among the different countries is not directly related to the different initial states of the technology. In fact, it could be identical for all countries, and the individual effects could be related to other aspects of the economic environment.

Looking at columns (5) and (6) it may be concluded that, although the output elasticity with respect to infrastructure is smaller than the elasticity with respect to private capital, the results imply again that there is crowding in of public investment, through its positive impact on private productivity. This result reinforces those presented in Table 1.

\(^{(10)}\) The tests of the hypothesis of constant returns to scale are not completely satisfactory, even when the within estimator is considered. However, given the specification of the productivity function it seems more reasonable to have constant returns to scale.
TABLE A2. PRODUCTION FUNCTION WITH INFRASTRUCTURE CAPITAL

<table>
<thead>
<tr>
<th></th>
<th>Restricted (1)</th>
<th>Restricted (2)</th>
<th>Fixed effects model (3)</th>
<th>Fixed effects model (4)</th>
<th>Random effects model (5)</th>
<th>Random effects model (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln \left(\frac{k}{l} \right)_t)</td>
<td>0.19</td>
<td>0.17</td>
<td>0.53</td>
<td>0.48</td>
<td>0.49</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>(3.60)**</td>
<td>(3.23)**</td>
<td>(6.45)**</td>
<td>(4.47)**</td>
<td>(7.45)**</td>
<td>(4.34)**</td>
</tr>
<tr>
<td>(\ln \left(\frac{k_g}{l} \right)_t)</td>
<td>0.19</td>
<td>0.19</td>
<td>0.21</td>
<td>0.16</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(5.94)**</td>
<td>(5.94)**</td>
<td>(2.09)**</td>
<td>(1.27)</td>
<td>(2.95)**</td>
<td>(2.08)**</td>
</tr>
<tr>
<td>(t)</td>
<td>0.009</td>
<td></td>
<td>0.002</td>
<td></td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.77)**</td>
<td></td>
<td>(1.27)</td>
<td></td>
<td>(1.87)**</td>
<td></td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.149</td>
<td>0.148</td>
<td>0.030</td>
<td>0.030</td>
<td>0.033</td>
<td>0.032</td>
</tr>
<tr>
<td>(F)</td>
<td>218.11**[13,118]</td>
<td>211.72**[13,117]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t \times j)</td>
<td>126</td>
<td>126</td>
<td>126</td>
<td>126</td>
<td>126</td>
<td>126</td>
</tr>
</tbody>
</table>

** Significant at a 5% level; * significant at a 10% level. In square brackets, degrees of freedom for the \(F \) and the Hausman tests.**
REFERENCES

WORKING PAPERS (1)

8607 José Viñals: La política fiscal y la restricción exterior. (Publicada una edición en inglés con el mismo número.)

8608 José Viñals and John Cuddington: Fiscal policy and the current account: what do capital controls do?

8609 Gonzalo Gil: Política agrícola de la Comunidad Económica Europea y montantes compensatorios monetarios.

8610 José Viñals: ¿Hacia una menor flexibilidad de los tipos de cambio en el Sistema Monetario Internacional?

8701 Agustín Maravall: The use of ARIMA models in unobserved components estimation: an application to Spanish monetary control.

8702 Agustín Maravall: Descomposición de series temporales, con una aplicación a la oferta monetaria en España: comentarios y contestación.

8706 Ignacio Mauleón: La demanda de dinero reconsiderada.

8707 Agustín Maravall: Two papers on ARIMA signal extraction.

8708 Juan José Camio y José Rodríguez de Pablo: El consumo de alimentos no elaborados en España: Análisis de la información de MERCASA.

8710 Rafael Repullo: Los efectos económicos de los coeficientes bancarios: un análisis teórico.

8901 M. de los Llanos Matea Rosa: Funciones de transferencia simultáneas del índice de precios al consumo de bienes elaborados no energéticos.

8902 Juan J. Dolado: Cointegración: una panorámica.

8903 E. Morales, A. Espasa and M. L. Rojo: Univariate methods for the analysis of the industrial sector in Spain. (The Spanish original of this publication has the same number.)

9003 Samuel Bentolila and Juan J. Dolado: Estimating euler equations with integrated series.

9004 Samuel Bentolila and Juan J. Dolado: Univariate methodology for short-term economic analysis.

9006 Juan J. Dolado, John W. Galbraith and Aníndya Banerjee: Estimating euler equations with integrated series.

9007 Manuel González-Churruca y Javier Jareño: Un análisis econométrico de los gastos por turismo en la economía española.

9008 Manuel González-Churruca y Javier Jareño: Un análisis econométrico de los gastos por turismo en la economía española.
Juan J. Dolado and José Viñals: Macroeconomic policy, external targets and constraints: the case of Spain.

Anindya Banerjee, Juan J. Dolado and John W. Galbraith: Recursive and sequential tests for unit roots and structural breaks in long annual GNP series.

Pedro Martínez Méndez: Nuevos datos sobre la evolución de la peseta entre 1900 y 1936. Información complementaria.

Juan Ayuso: The effects of the peseta joining the ERM on the volatility of Spanish financial variables. (The Spanish original of this publication has the same number.)

Juan J. Dolado and José Luis Escrivá: The demand for money in Spain: Broad definitions of liquidity. (The Spanish original of this publication has the same number.)

Soledad Núñez: Los mercados derivados de la deuda pública en España: marco institucional y funcionamiento.

Isabel Argimón and José M. Roldán: Saving, investment and international mobility in EC countries. (The Spanish original of this publication has the same number.)

José Luis Escrivá and Román Santos: A study of the change in the instrumental variable of the monetary control outline in Spain. (The Spanish original of this publication has the same number.)

Carlos Chulia: El crédito interempresarial. Una manifestación de la desintermediación financiera.

Ignacio Hernando y Javier Valles: Inversión y restricciones financieras: evidencia en las empresas manufactureras españolas.

Miguel Sebastián: Un análisis estructural de las exportaciones e importaciones españolas: evaluación del período 1989-91 y perspectivas a medio plazo.

Pedro Martínez Méndez: Intereses y resultados en pesetas constantes.

Ana R. de Lamo y Juan J. Dolado: Un modelo del mercado de trabajo y la restricción de oferta en la economía española.

Javier Jareño y Juan Carlos Deltrieu: La circulación fiduciaria en España: distorsiones en su evolución.

Juan Ayuso, Juan J. Dolado y Simón Sosvilla-Rivero: Eficiencia en el mercado a plazo de la peseta.

José M. González-Páramo, José M. Roldán and Miguel Sebastián: Issues on Fiscal Policy in Spain.

Pedro Martínez Méndez: Tipos de interés, impuestos e inflación.

Víctor García-Vaquero: Los fondos de inversión en España.

César Alonso and Samuel Bentolila: The relationship between investment and Tobin’s Q in Spanish industrial firms. (The Spanish original of this publication has the same number.)

Cristina Mazón: Márgenes de beneficio, eficiencia y poder de mercado en las empresas españolas.

Fernando Restoy: Intertemporal substitution, risk aversion and short term interest rates.

Fernando Restoy: Optimal portfolio policies under time-dependent returns.

Fernando Restoy and Georg Michael Rockinger: Investment incentives in endogenously growing economies.
José M. González-Páramo, José M. Roldán y Miguel Sebastián: Cuestiones sobre política fiscal en España.

Ángel Serrat Tubert: Riesgo, especulación y cobertura en un mercado de futuros dinámico.

Soledad Núñez Ramos: Fras, futuros y opciones sobre el MIBOR.

Javier Santillán: La idoneidad y asignación del ahorro mundial.

María de los Llanos Matea: Contrastes de raíces unitarias para series mensuales. Una aplicación al IPC.

Isabel Argimón, José Manuel González-Páramo y José María Roldán: Ahorro, riqueza y tipos de interés en España.

Javier Azcárate Aguilar-Amat: La supervisión de los conglomerados financieros.

Olympia Bover: An empirical model of house prices in Spain (1976-1991). (The Spanish original of this publication has the same number.)

Jeroen J. M. Kremers, Neil R. Ericsson y Juan J. Dolado: The power of cointegration tests.

Luis Julián Álvarez, Juan Carlos Delrieu y Javier Jareño: Treatment of conflictive forecasts: Efficient use of non-sample information. (The Spanish original of this publication has the same number.)

Fernando Restoy: Interest rates and fiscal discipline in monetary unions. (The Spanish original of this publication has the same number.)

Manuel Arellano: Introducción al análisis econométrico con datos de panel.

Ángel Serrat: Diferenciales de tipos de interés ONSHORE/OFFSHORE y operaciones SWAP.

Ángel Estrada García: Una función de consumo de bienes duraderos.

Juan J. Dolado and Samuel Bentolila: Who are the insiders? Wage setting in Spanish manufacturing firms.

Emiliano González Mota: Políticas de estabilización y límites a la autonomía fiscal en un área monetaria y económica común.

Anindya Banerjee, Juan J. Dolado and Ricardo Mestre: On some simple tests for cointegration: the cost of simplicity.

Juan Ayuso and Juan Luis Vega: Weighted monetary aggregates: The Spanish case. (The Spanish original of this publication has the same number.)

Ángel Luis Gómez Jiménez: Indicadores de la política fiscal: una aplicación al caso español.

Ángel Estrada y Miguel Sebastián: Una serie de gasto en bienes de consumo duradero.

Jesús Briones, Ángel Estrada e Ignacio Hernando: Evaluación de los efectos de reformas en la imposición indirecta.

Juan Ayuso, María Pérez Jurado and Fernando Restoy: Credibility indicators of an exchange rate regime: The case of the peseta in the EMS. (The Spanish original of this publication has the same number.)

Cristina Mazón: Regularidades empíricas de las empresas industriales españolas: ¿existen correlaciones entre beneficios y participación?
Juan Dolado, Alessandra Goria and Andrea Ichino: Immigration and growth in the host country.

Fernando Restoy and G. Michael Rockinger: On stock market returns and returns on investment.

Jesús Saurina Salas: Indicadores de solvencia bancaria y contabilidad a valor de mercado.

Isabel Argimon, José Manuel González-Páramo, María Jesús Martín and José María Roldán: Productivity and infrastructure in the Spanish economy. (The Spanish original of this publication has the same number.)

Fernando Ballabriga, Miguel Sebastián and Javier Vallés: Interdependence of EC economies: A VAR approach.

Isabel Argimon y M. Jesús Martín: Serie de «stock» de infraestructuras del Estado y de las Administraciones Públicas en España.

P. Martínez Méndez: Fiscalidad, tipos de interés y tipo de cambio.

P. Martínez Méndez: Efectos sobre la política económica española de una fiscalidad distorsionada por la inflación.

Samuel Bentolilla y Juan J. Dolado: La contratación temporal y sus efectos sobre la competitividad.

Luis Julián Álvarez, Javier Jareño y Miguel Sebastián: Salarios públicos, salarios privados e inflación dual.

Ana Revenga: Credibility and inflation persistence in the European Monetary System. (The Spanish original of this publication has the same number.)

María Pérez Jurado and Juan Luis Vega: Purchasing power parity: An empirical analysis. (The Spanish original of this publication has the same number.)

Ignacio Hernando y Javier Vallés: Productividad sectorial: comportamiento cíclico en la economía española.

Juan J. Dolado, Miguel Sebastián and Javier Vallés: Cyclical patterns of the Spanish economy.

Juan Ayuso y José Luis Escrivá: La evolución del control monetario en España.

Alberto Cabrero Bravo e Isabel Sánchez García: Métodos de predicción de los agregados monetarios.

Cristina Mazón: Is profitability related to market share? An intra-industry study in Spanish manufacturing.

Esther Gordo y Pilar L’Hotellerie: La competitividad de la industria española en una perspectiva macroeconómica.

Miguel Pellicer: Functions of the Banco de España: An historical perspective.

J. Ayuso, A. G. Haldane and F. Restoy: Volatility transmission along the money market yield curve.

Gabriel Quirós: El mercado británico de deuda pública.

Juan José Dolado, José Manuel González-Páramo y José M.* Roldán: Convergencia económica entre las provincias españolas: evidencia empírica (1955-1989).

Ángel Estrada e Ignacio Hernando: La inversión en España: un análisis desde el lado de la oferta.

Ángel Estrada García, M.* Teresa Sastre de Miguel y Juan Luis Vega Croissier: El mecanismo de transmisión de los tipos de interés: el caso español.

Olympia Bover y Ángel Estrada: Durable consumption and house purchases Evidence from Spanish panel data.

José Viñals: Building a Monetary Union in Europe: Is it worthwhile, where do we stand, and where are we going? (The Spanish original of this publication has the same number.)

Carlos Chuliá: Los sistemas financieros nacionales y el espacio financiero europeo.

José Luis Escrivá and Andrew G. Haldane: The interest rate transmission mechanism: Sectoral estimates for Spain. (The Spanish original of this publication has the same number.)

M.* de los Llanos Matea y Ana Valentina Reggi: Métodos para la extracción de señales y para la trimestralización. Una aplicación: Trimestralización del deflactor del consumo privado nacional.

José Antonio Cuenca: Variables para el estudio del sector monetario. Agregados monetarios y crediticios, y tipos de interés sintéticos.

Ángel Estrada y David López-Salido: La relación entre el consumo y la renta en España: un modelo empírico con datos agregados.

José M. González Minguez: Una aplicación de los indicadores de discrecionalidad de la política fiscal a los países de la UE.

Juan Ayuso, María Pérez Jurado and Fernando Restoy: Is exchange rate risk higher in the E.R.M. after the widening of fluctuation bands? (The Spanish original of this publication has the same number.)

Simon Milner and David Metcalf: Spanish pay setting institutions and performance outcomes.

Javier Santillán: El SME, los mercados de divisas y la transición hacia la Unión Monetaria.

Juan Luis Vega: Is the ALP long-run demand function stable? (The Spanish original of this publication has the same number.)

Gabriel Quirós: El mercado italiano de deuda pública.

Isabel Argimón, José Manuel González-Páramo y José María Roldán: Inversión privada, gasto público y efecto expulsión: evidencia para el caso español.

Charles Goodhart and José Viñals: Strategy and tactics of monetary policy: Examples from Europe and the Antipodes.

Carmen Melcón: Estrategias de política monetaria basadas en el seguimiento directo de objetivos de inflación. Las experiencias de Nueva Zelanda, Canadá, Reino Unido y Suecia.

Olympia Bover and Manuel Arellano: Female labour force participation in the 1980s: the case of Spain.

Juan María Peñalosa: The Spanish catching-up process: General determinants and contribution of the manufacturing industry.

Susana Núñez: Perspectivas de los sistemas de pagos: una reflexión crítica.

José Viñals: ¿Es posible la convergencia en España? En busca del tiempo perdido.
Jorge Blázquez y Miguel Sebastián: Capital público y restricción presupuestaria gubernamental.

Ana Buisán: Principales determinantes de los ingresos por turismo.

Ana Buisán y Esther Gordo: La protección nominal como factor determinante de las importaciones de bienes.

Ricardo Mestre: A macroeconomic evaluation of the Spanish monetary policy transmission mechanism.

Fernando Restoy and Ana Revenga: Optimal exchange rate flexibility in an economy with intersectoral rigidities and nontraded goods.

Ángel Estrada and Javier Vallés: Investment and financial costs. Spanish evidence with panel data. (The Spanish original of this publication has the same number.)

Francisco Alonso: La modelización de la volatilidad del mercado bursátil español.

Francisco Alonso y Fernando Restoy: La remuneración de la volatilidad en el mercado español de renta variable.

Fernando C. Ballabriga, Miguel Sebastián y Javier Vallés: España en Europa: asimetrías reales y nominales.

Juan Carlos Casado, Juan Alberto Campoy y Carlos Chuliá: La regulación financiera española desde la adhesión a la Unión Europea.

Juan Luis Díaz del Hoyo y A. Javier Prado Domínguez: Los FRAs como guías de las expectativas del mercado sobre tipos de interés.

José M. Sánchez Sáez y Teresa Sastre de Miguel: ¿Es el tamaño un factor explicativo de las diferencias entre entidades bancarias?

Juan Ayuso y Soledad Núñez: ¿Desestabilizan los activos derivados el mercado al contado?: La experiencia española en el mercado de deuda pública.

M. Cruz Manzano Frías y M. Teresa Sastre de Miguel: Factores relevantes en la determinación del margen de explotación de bancos y cajas de ahorros.

Fernando Restoy and Philippe Weil: Approximate equilibrium asset prices.

Gabriel Quiros: El mercado francés de deuda pública.

Ana L. Revenga and Samuel Bentolila: What affects the employment rate intensity of growth?

Ignacio Iglesias Arauzo y Jaime Esteban Velasco: Repos y operaciones simultáneas: estudio de la normativa.

Ignacio Fuentes: Las instituciones bancarias españolas y el mercado único.

Ignacio Hernando: Política monetaria y estructura financiera de las empresas.

Luis Julián Álvarez y Miguel Sebastián: La inflación latente en España: una perspectiva macroeconómica.

Soledad Núñez Ramos: Estimación de la estructura temporal de los tipos de interés en España: elección entre métodos alternativos.

Isabel Argimón, José M. González-Páramo y José M. Roldán Alegre: Does public spending crowd out private investment? Evidence from a panel of 14 OECD countries.

(1) Previously published Working Papers are listed in the Banco de España publications catalogue.