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Abstract

This paper proposes a vector autoregressive model with structural shocks (SVAR) that
are identified using sign restrictions and whose distribution is subject to time-varying
skewness. It also presents an efficient Bayesian algorithm to estimate the model. The
model allows for the joint tracking of asymmetric risks to macroeconomic variables
included in the SVAR. It also provides a narrative about the structural reasons for the
changes over time in those risks. Using euro area data, our estimation suggests that there
has been a significant variation in the skewness of demand, supply and monetary policy
shocks between 1999 and 2019. This variation lies behind a significant proportion of the
joint dynamics of real GDP growth and inflation in the euro area over this period, and
also generates important asymmetric tail risks in these macroeconomic variables. Finally,
compared to the literature on growth- and inflation-at-risk, we found that financial stress
indicators do not suffice to explain all the macroeconomic tail risks.

Keywords: Bayesian SVAR, skewness, growth-at-risk, inflation-at-risk.

JEL classification: C11, C32, C51, E31, E32.



Resumen

Este trabajo propone un modelo vectorial autorregresivo con perturbaciones estructurales
(SVAR), identificadas mediante restricciones de signo, cuya funcion de distribucion
se caracteriza por una asimetria que varia a lo largo del tiempo. Se propone ademas
un algoritmo bayesiano eficiente para su estimacion. Este modelo tiene la ventaja de
permitir el seguimiento de forma conjunta de los posibles riesgos asimétricos en torno a
las principales variables macroeconémicas, incluidas en el SVAR. Ademas, provee una
narrativa acerca de las razones estructurales que subyacen a la evolucion en el tiempo
de dichos riesgos. La estimacion del modelo con datos para el area del euro encuentra
que las perturbaciones de demanda, oferta y politica monetaria han exhibido una
asimetria significativa y variante en el tiempo entre 1999 y 2019. Esta asimetria explica
una proporcion significativa de la dindamica conjunta del PIB real y la inflacion en el area
del euro en ese periodo, y ha generado importantes riesgos asimétricos de cola en estas
variables macroeconémicas. Finalmente, relacionado con la literatura sobre los riesgos
del crecimiento (growth-at-risk) y la inflacion, encontramos que los indicadores de estrés
financiero no son suficientes para explicar todos los riesgos de cola macroeconémicos.

Palabras clave: SVAR bayesiano, asimetria, riesgos del crecimiento, riesgos de la inflacion.

Codigos JEL: C11, C32, C51, E31, E32.



1 Introduction

In recent years, a new strand of the economic literature has emerged, trying to
understand the conditional distribution of GDP growth (GDP-at-risk), possibly
as a function of other financial and economic indicators. Starting with the sem-
inal paper of Adrian, Boyarchenko, and Giannone (2019), several authors have
explored empirically how different quantiles of the GDP growth distribution have
evolved over time, with the findings consistently showing that upside risks are
generally stable, but downside risks vary together with deteriorating financial con-
ditions. For example, in the case of the euro area, Figueres and Jarocinski (2020)
also conclude that financial indicators such as the CISS in Hollo, Kremer, and Lo
Duca (2012) can explain the time varying downside risks to GDP growth. More
recently, Lopez-Salido and Loria (2020) have additionally explored asymmetric
predictive distributions of inflation, and also find that financial indicators are im-
portant to explain downside risks to it, both in the United States and in the euro
area.

In order to explore those issues, most of the literature has focused on one-
equation quantile regression models of GDP growth or inflation on several po-
tential explanatory variables. Afterwards, a skewed distribution is used to fit the
forecasts produced for each GDP growth quantile. This methodology, however,
abstracts from identifying potential structural sources of downside risks to GDP
growth, and from exploring risks on the joint conditional distributions between
GDP growth and other variables such as inflation. As an exception to the latter,
Chavleishvili and Manganelli (2019) extend the quantile regression methodology
to VAR models, with Cholesky identification. Caldara, Cascaldi-Garcia, Cuba-
Borda, and Loria (2020) also explore growth-at-risk in a multivariate model, in
which they introduce a markov switching VAR model and show that can replicate
results in Adrian, Boyarchenko, and Giannone (2019).

In this paper, we contribute to the literature by using a multivariate model that
can account for possibly time varying skewness in the joint distribution of different
macroeconomic variables, as well as for a structural identification of the drivers of
that skewness. This approach allows to directly estimate joint asymmetric distri-
butions, and to account for the time dependence of those distributions, rather than
relying on a two-step procedure. Specifically, we extend a standard Structural VAR
(SVAR) model so that the structural shocks, identified using sign restrictions, fol-
low a skewed distribution rather than a normal one. We allow for the parameter
that determines the skewness of the distribution to be time varying and possibly to
depend on other economic factors. We then develop a Gibbs-sampler that allows
to estimate efficiently the skewed SVAR model. Finally, we estimate a medium-
scale monthly skewed SVAR model of the euro area economy in which we identify
skewed demand, supply and monetary policy shocks.

Our findings suggest that demand shocks in the euro area have experienced a
significant variation in their skewness, mainly in periods of financial distress, such
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as during the financial crisis of 2008. We find that an indicator of financial stress in
the region (CISS) can actually predict the time variation in the skewness of demand
shocks. However, we also find that there is variation in the skewness of supply
shocks and monetary policy shocks that impact both GDP and inflation and which
cannot be fully explained by financial conditions. Our estimated model indicates
that the transmission of financial factors to the negative tails in the distribution
of real GDP and inflation, as found in the literature, occurs mainly via a demand
channel. But we also find that downside risks in the conditional distribution of
GDP growth and inflation go beyond financial factors: richer models such as the
one proposed in this paper are of the utmost importance to understand them.

Our estimations also highlight a possible source of macroeconomic policy er-
ror: disregarding time variation in the skewness of the shocks distributions can
significantly underestimate the macroeconomic impact of structural shocks. In
fact, we find that the euro area GDP response to a one standard deviation demand
shock can be 10 times larger (twice as large for monetary policy or supply shocks)
when the shock distribution is as skewed as during the Great Recession than at
times when the estimated shock distribution is more symmetric.

Closely related to our paper is also the recent paper from Delle Monache,
De Polis, and Petrella (2021) who consider a univariate model of GDP growth
with time varying skewness. However, they abstract from joint risks with other
variables as well as from structural identification of the drivers of the conditional
skewness in the distribution of real GDP growth. With respect to structural iden-
tification, Loria, Matthes, and Zhang (2019) use quantile regressions as in Adrian,
Boyarchenko, and Giannone (2019) to recover the quantiles of the conditional dis-
tribution of real GDP growth and explore how other shocks identified in the lit-
erature might impact those quantiles. Adrian, Duarte, Liang, and Zabczyk (2020)
introduce a small New Keynesian model in which the demand shock distribution
is subject to endogenous risk vulnerabilities and generates time varying skewness.
Ruge-Murcia (2017) also extends a small DSGE model to incorporate (constant)
skewness in productivity and aggregate inflation shocks. Fernandez-Villaverde,
Hurtado, and Nuno (2019) also show that a heterogeneous agent model with finan-
cial frictions can generate endogenous asymmetric risks. However, the method-
ologies in those papers are difficult to implement, especially in larger models with
several shocks. The methodology in our paper, while still relying on time series
methods, is easy to implement, to estimate and also to scale up to a larger amount
of variables, while still providing insights about structural developments. Finally,
we should also mention that our methodology, while still providing time vary-
ing tail risks, avoids problems with quantile regressions as documented in Cher-
nozhukov, Ferndndez-Val, and Galichon (2010).

This paper is structured as follows. We first present the skewed SVAR model
and estimation strategy. Then, we report an empirical application using monthly
euro area data up to the outburst of the COVID-19 pandemic and we finally pro-
vide some conclusions.
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2 A SVAR model with skewed shocks

Structural Vector Autoregressive (SVAR) models have become popular in the liter-
ature due to their flexibility as well as their forecasting properties. SVAR models
have recently been augmented along several dimensions that make them more
realistic and useful for policy analysis. Among other things, new methods to
identify structural shocks have been explored, as well as deviations from non-
Gaussian disturbances that allow either for fat tails in the distribution of the shocks
or time varying heteroskedasticity. For example, Arias, Rubio-Ramirez, and Wag-
goner (2018), Baumeister and Hamilton (2015) and Korobilis (2020) have explored
different ways to identify structural shocks in VAR models, and Cogley and Sar-
gent (2005) and Primiceri (2005) are earlier examples on how to introduce and es-
timate models with stochastic volatility.

SVAR models with fat tails (e.g. t-distributed errors) and stochastic volatility
models have been extensively used to account for changes in the variance of dif-
ferent macroeconomic variables, which is important in order to consider episodes
such as the Great Moderation (McConnell and Perez-Quiros (2000)), or large reces-
sions and outliers such as the Great Financial Crisis, which might bias parameter
estimates if the covariance matrix of the SVAR model is assumed to be constant.
However, in those models, changes in the variance of the disturbances of the model
are mean preserving and increase both negative and positive risks symmetrically.
Arguably, in a recessionary period like the Great Financial Crisis, negative risks
would have increased more than positive ones, as the literature on growth-at-risk
suggests. These facts would not be captured by that class of models.

However, the literature has not yet explored SVAR models in which the struc-
tural shocks follow a time varying asymmetric distribution. This paper aims at fill-
ing this gap. We introduce a SVAR model in which we assume that the structural
shocks follow a multivariate skewed distribution. Moreover, the parameter that
drives the skewness of the distribution is allowed to change over time, similar to
models that incorporate stochastic volatility. The main difference is that with time
varying skewness, the change in the distribution of the shocks is no longer sym-
metric and their mean also changes over time. This has important consequences
for the transmission of the shocks (such as in the analysis of impulse response
functions) and, therefore for forecasting, as the model could produce asymmet-
ric predictive distributions. Finally, we also consider how to identify structural
shocks using sign restrictions in the context of the SVAR with asymmetric shocks.
Sign restrictions are a powerful tool used in the macroeconometrics literature to
identify orthogonal disturbances in time series that have a meaningful economic
interpretation. Using sign restrictions, we can provide a structural narrative on the
causes of increasing tail risks in the different macroeconomic variables that may be
included in a skewed SVAR model.

In our approach, we follow Gorodnichenko (2005) and Korobilis (2020) who
consider a factor representation of an s-lag M-variable SVAR model. The latter
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also introduces an algorithm to impose sign restrictions in the model in order to
identify the factors and provide them with a structural narrative. In the factor
representation of the SVAR, the structural shocks are treated as latent variables
that need to be estimated. To do so, the literature mostly assumes that they follow
a standard normal distribution. Nonetheless, this representation of a SVAR model
also proves to be the most tractable one for our purposes, in which we deviate from
the previous literature by assuming that the latent factors follow a multivariate
skewed normal distribution. Thus, the model that we propose can be written as
follows,

Yyt = C+Brys—1 + ... + Bsyi—s + Ger + 174 (1)
Ep v MSN(O, IP, At)
e~ N(0,%)

where y; is a M x 1 vector of endogenous variables in the model and #; is a
M x 1 vector of i.i.d. measurement errors, with diagonal covariance matrix 2. In
our case, we consider P identified structural shocks, so thate;isa P x 1,P < M
vector of unobserved latent factors that represent those shocks.

Following Arellano-Valle, Bolfarine, and Lachos (2007), we assume that the
P structural shocks, ¢, follow a multivariate skewed normal (MSN) distribution,
where the diagonal matrix At contains the parameters that determine the skewness
of the distribution. In Arellano-Valle, Bolfarine, and Lachos (2007), those param-
eters are constant. As our aim is to account for time variation in the skewness of
macroeconomic shocks, in order to obtain distributions that change over time, we
allow each element in the diagonal of A; to be time varying.

Finally, G is a M x P loading matrix that determines the structural identifica-
tion of the skewed factors or shocks. As it is well known from the factor model
literature (Anderson and Rubin (1956)), not all the elements of G can be estimated
without imposing further restrictions. If the top P x P block of G is a lower tri-
angular matrix, this is tantamount to assume a Cholesky identification scheme.
This identification scheme has been extensively used in the factor model literature
(see, for example, Bai and Wang (2015)). However, Korobilis (2020) deviates from
that assumption and imposes sign restrictions on each element of G in order to
achieve identification. This approach works as long as there is a sufficient amount
of variables to recover the P shocks.!

Had the shocks, ¢, followed a standard symmetric Gaussian distribution,
the model would be relatively straightforward to estimate, and the latent factors

!The approach in Korobilis (2020) is a novel methodology that allows a fast estimation of VAR
models under sign restrictions, and deviates from other approaches that first look for the covariance
matrix of the shocks, and then rotate it until the desired sign restrictions are satisfied, such as in
the case of Arias, Rubio-Ramirez, and Waggoner (2018). Given that we deviate from Gaussian
disturbances, and we have time varying skewness, the latter approach is impractical, and thus, we
impose directly the restrictions on each element in G.
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could have been recovered using a linear filter (as in Carter and Kohn (1994) or
Durbin and Koopman (2002)), or integrated likelihood methods as in Chan and
Jeliazkov (2009). However, under the MSN distribution, the model is linear but
non-Gaussian, and therefore those methodologies cannot be used to estimate them.
Introducing time variation in the parameter that determines the skewness of the
distribution also introduces a non-linearity in the model. Hence, we need to find
a representation of the model that allows recovering both the shocks and the time
varying process for the parameters that determine the skewness of the distribution
in an efficient way. 2

Following Proposition 1 in Arellano-Valle, Bolfarine, and Lachos (2007), a
shock that follows a skewed normal distribution can be represented as the sum
of an ii.d. normally distributed shock (¢;) and the product of the skewness pa-
rameters A and a new auxiliary random variable 7;, where 7; is always positive. In
our case, considering that we introduce time variation in the skewness parameter,
we can then write,

er = Ae|Tot| + & = Aeti + &4, 2)

where To ~ N(0,Ip) and ¢ ~ N(0,Ip). Therefore 7; = |Tp|is a P x 1 vector
whose entries are the absolute value of a normal distribution. For a general normal
distribution, its absolute value follows a so-called Folded normal distribution (see
for example Leone, Nelson, and Nottingham (1961)). However, when the mean of
the normal distribution is 0, the folded distribution collapses to a truncated normal
distribution which is truncated from below at zero. This result is important for
the estimation procedure that we will develop later, as 7; is an additional latent
variable that will need to be recovered from the data. Under this representation, it
becomes more clear that if A¢ takes value 0, then ¢; = ¢; is a vector of pure i.i.d.
normal shocks, as there is no skewness in the distribution. Instead, when A; takes
negative (positive) values, the ¢; shocks will be negatively (positively) skewed.

Moreover, it should be emphasized to understand some of the results in this
paper that, whenever A # 0, the expectation of ¢; # 0, as 1; is always positive and
its mean is given by,

where ¢(.) is the p.d.f. of a standard normal distribution and ®(.) represents
its cumulative density function. Thus, the conditional expectation of the distur-
bances for a given value of the skewness parameter is,

20f course, the model could be estimated also using non-linear filters, such as a particle filter.
However, particle filters are difficult to implement in larger models, especially when there is also a
significant amount of parameters to be estimated, which is usually the case in SVAR models
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E(eila) = | 2diag(A) @

This implies that, whenever there is a change in A¢, the mean of the distur-
bances of the model will also change, and thus, shocks to the skewness of their

distribution will also have an impact on the first moment of the variables in the
SVAR model.

Note that the conditional variance also depends on the skewness matrix, and
has a closed form solution as follows,

V(et|A¢) = TIp + (1 - %) A )

where the variance of the distribution of the shocks increases with the square
of the skewness matrix. Thus, in situations with higher asymmetric risks, the
volatility in the model, and consequently, of the forecasts that can be produced
with it, will increase.

Further, in our model not only we allow the skewness process to vary over
time, we also explore whether some exogenous explanatory variables z;, e.g. in-
dicators of financial stress, can explain the evolution of skewness over time. This
would help understand whether skewness can be predicted. In particular, we as-
sume an autoregressive process for each of the diagonal elements in A¢, A; 4, of the
following form,

Aip = Qidir—1 + fizt + wiviy. (6)
Stacking all A;, we can write,

Ay = @A 1+ Fz + Quy, (7)

where z; is a N x 1 vector of exogenous explanatory variables and v; ~
N(0, Ip) captures exogenous movements in the variation of the skewness parame-
ters.

We can then re-write the VAR model in equation 1 as follows,

yt = C+Biy;—1 + ... + Bsyi—s + GAyr + GGt + 11, (8)
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with three latent states to be estimated, 7, {; and each diagonal element in A.
Given that A¢ is a diagonal matrix and 7; a vector, we can write again the SVAR
model as

yt = C+Biy;—1 + ... + Bsyr—s + GTiAr + GCr + 174, 9)

with Ty = diag(tiy, ..., Tpt). The latter representation, together with equation
7,1s still a non-linear model, as there are two states that appear multiplicatively (7
and A;). However, conditional on 7, the model is linear and the latent states A; and
¢+ can be recovered using any linear filter. This result is key to develop an efficient
Gibbs sampling algorithm to estimate models of the form 7-9.

Finally, for the purposes of estimation, the model can be written as,

yt = X+ GTeAr + GGt + 14 (10)

where X¢ = (Im ® [1,y}_1, ... yi_]) and B = vec([C, By, ..., Bs]').

2.1 Bayesian estimation of the Skewed SVAR model

We develop now a Bayesian inference procedure to estimate the model in equa-
tions 7-9. While the model is still non-linear, it can be effectively estimated using
a Gibbs sampler that iterates sequentially over a sequence of conditional distribu-
tions whose posterior is known and tractable. Our Gibbs sampler borrows from
Korobilis (2020) in order to recover the posterior distributions of the parameters
that determine the sign restrictions in G, and also from Arellano-Valle, Bolfarine,
and Lachos (2007) who develop a Bayesian algorithm for linear models that incor-
porate constant skewness. As a summary, our Gibbs sampler algorithm iterates
over the following steps,

Step 1: Draw X from p(Z|B,G, ®,F, Q, 1, A, &t
Step 2: Draw B from p(B|E, G, ®,F, Q, 1, A, &t)
Step 3: Draw G from p(G|%, B, ®,F, Q, 1, At, &¢)
Step 4: Draw A; and ¢; from p(A¢|%, B, G, ®,F, Q, 1)
Step 5: Draw Q from p(Q|Z, B, G, ®,F, 1, Ay, Gt)
Step 6: Draw @, F from p(®,F|X, B, G, T, At, &t)

Step 7: Draw 7 from p(%|X, B, G, ®,F, Q, A, &t
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Except for the last distribution, the other steps are relatively standard and the
posterior distributions of those parameters and latent states can be derived under
common prior distributions used in the literature. Nonetheless we provide below
a short summary of each step for a better comprehension of the full algorithm.

First, note that conditional on the latent states (1;, A; and ¢;), the model be-
comes a standard SVAR model, with an exogenous term given by the skewed fac-
tors GTiA; 4+ GC;. Moreover, X is a diagonal matrix, and thus, we can treat each
equation in the SVAR as independent for estimation purposes.

We assume independent priors for X,  and G and consider first an inverse-
gamma prior distribution over each parameter (7,%1, m = 1,..., M in the diagonal of
L,

02 ~ I1G(0p, o). (11)

Then, the posterior distribution also follows an inverse-gamma distribution
with parameters

(70:(00+T—1)/2

T
2= (Zo + Z]ﬁq,t) /2
1

t=

where
7t = yr — (Xe + GTiAr + GE&y).

With a now given draw of I, we consider a normal prior for B, B ~ N(Bo, Vp).
Under this prior, the posterior distribution also has a convenient form, and is given
by a normal distribution N(j, V) with parameters,

Vp= (V5 '+ X(Ir @z X))~
B=Vs(Vy'Bo+X(Ir®E 1))

where in this case, 7y = y; — (GTiAs + G&y).

Then, with a draw of Z and p in hand, we can draw each element in the matrix
G. For this step, we closely follow Korobilis (2020). Since we identify our struc-
tural shocks using sign restrictions, we introduce a truncated normal distribution
prior on each element of G. The truncation interval is set according to each sign
restriction. For example, for a positive restriction, the truncation is set over the in-
terval (0,00). As Gelfand, Smith, and Lee (1992) shows, and then Korobilis (2020),
under a truncated normal prior for those parameters, the posterior distribution is
also a truncated normal distribution where the mean and variance are those that
would be obtained if the distribution of the parameters was not truncated. Define
wy = TiAs 4 ;. Then, we can write the model as,
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yt = Xef + Gw; + 1 (12)
Y = Xtﬁ -+ Wt’)’ -+ Nt (13)

where W; = Iy ® w; and v = vec(G). Under the truncated normal distribution
prior for each element of v ~ N(7, V), then the posterior is a truncated normal
distribution with parameters,

V=V, '+ WIroz HW)™!
F=Vo(Vy "o+ W(Ir @ 271) (y — XB))

and the truncation interval is the same one as in the prior distribution.

Then, conditional on the previous draws, as well as on a draw of 7;, we can
now effectively sample from the posterior distribution of A; and ¢, which we sam-
ple jointly. Conditional on 7;, the model is linear, and the latent states can be sam-
pled using a linear simulation smoother. For our purposes, we use the algorithm
in Durbin and Koopman (2002).

Given a draw of those latent states, each element in equation 7 is a linear re-
gression model, and therefore, the posterior distribution of 3, ®, and F is also
standard under normal-inverse gamma priors.

Finally, to obtain a draw of 7;, the nonstandard distribution, we use equation
10. Then, we use the fact that 7; follows a truncated standard normal distribution
as its prior. To find the posterior distribution of 7;, define first H as a matrix that
vectorizes a diagonal matrix, H : R" — R™. Let ej,i = 1,...,n be the canonical
basis vectors of R"”, and let hj, j=1,.., n2. Then,

n
H = Z Hignti @€} - (14)
i=1

We can then rewrite equation 10 as,

vt = XgB+ (A @ G)vec(Ty) + G& + 1t (15)
v = Xef+ (A ® G)HT 4+ GEr + 171, (16)

and stack the latter equation over time to obtain,
y=Xp+ AT+ (Ir®G)i+7. (17)

Then, the posterior distribution of T can be obtained as follows. First, condi-
tional on 7, y follows a multivariate normal distribution. The latent states, T, have a
truncated normal distribution prior. We follow again the results in Gelfand, Smith,
and Lee (1992), so that the resulting posterior is a truncated normal distribution
also with T € [0,0) in which the mean and the variance are those that would be
obtained if the constraints were ignored. Thus, the posterior distribution for T will
have mean T and variance V;
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Ve = (Irm + Af(Ir @ 271 A¢) ! (18)
t=Ve(AIr @71 (y — XB — (Ir ® G)2). (19)

Since each latent state is independent of each other, a random vector T ~
TN(0,00,t, VT) can be easily simulated as in, for example, Botev (2016).

3 Tracking macroeconomic tail risks in the euro area

The above model, together with the estimation algorithm, is most suitable to un-
derstand the evolution of macroeconomic tail risks. Tracking time variation in the
skewness of the shocks helps to identify and understand downside and upside
risks to macroeconomic variables such as real GDP and inflation. For forward
looking policy makers, this is critical for the design of different policies.

This section estimates the aforementioned model for the euro area. We sub-
sequently analyse how the skewness of three different structural shocks identified
using sign restrictions (demand, supply and monetary policy) have evolved over
time as well as their contribution to the dynamics of different variables. Finally,
we also explore the estimated transmission of the different shocks when their dis-
tribution might be skewed.

3.1 Data and model specification

In order to estimate the model in the previous section for the euro area, we consider
the following data up until the COVID-19 pandemic, that is, spanning from Jan-
uary 1999 until December 2019: real GDP growth, HICP inflation, HICP inflation
excluding energy and food, short-term nominal interest rate, 10-year government
bond yields, the nominal effective exchange rate of the euro, industrial production
index, and real stock prices. While in this paper we want to focus on the role of
skewness on real GDP growth and inflation, we need a larger model to be able to
identify three structural shocks or factors (demand, supply and monetary policy).
An 8-variable VAR allows to identify three shocks using the methodology in Ko-
robilis (2020). We have selected the additional variables so that they can provide
useful information for the identification of the shocks.

First, introducing HICP inflation excluding energy and food together with the
aggregate HICP, provides information to disentangle the evolution of more supply
side driven changes in prices. The long-term rate also helps with the identification
of the impact of monetary policy as many financial decisions, such as mortgages,
are based on longer term rates rather than the short-term nominal interest rate. It
also incorporates information about financial markets, together with the real stock
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prices. The nominal effective exchange rate incorporates foreign information, and
also helps to disentangle the different shocks. The short-term nominal interest rate
has suffered in our sample from the presence of the effective lower bound. In prin-
ciple, this could be a challenge for time series models. In order to overcome this
problem, we use the shadow interest rate developed by Krippner (2013). Finally,
six lags are used for the estimation of the skewed SVAR.

We consider that changes in tail risks might change rapidly and, therefore, a
monthly model will be more suitable than a quarterly one. Moreover, we need
to estimate a significant amount of parameters and latent states and, for the euro
area, the sample size in a quarterly model might be small to properly identify all of
them. However, in our dataset, real GDP is only available at quarterly frequency.
In order to avoid this problem, we use results from the mixed-frequency modelling
literature, and we treat monthly real GDP growth in the model as an additional
latent state that needs to be estimated. Thus, we add a final step to the estimation
algorithm that we developed above in which we get a draw of monthly real GDP
growth using a Kalman filter as in Schorfheide and Song (2015). For the filter, we
link observable quarterly GDP growth to the unobserved monthly growth rates as,

GDP/ = GDP/" + GDP}" , + GDP/",, (20)
where GDP/ is the quarterly growth rate of GDP and GDP}" the monthly one.?

We identify three structural shocks, demand, supply and monetary policy
shocks, using the following sign restrictions in Table 1. They are standard restric-
tions on the impact effect of each shock on model variables in the SVAR literature,
and are also in line with the predictions of more complex estimated structural mod-

Demand | Supply | Monetary
Real GDP Growth + - _
HICP inflation + + _
HICP inflation excl. energy and food + + -
Short-term nominal interest rate + +
Long-term rate + +
Exchange rate + n I
Industrial Production + - -
Real stock prices + - B

Table 1: Sign restrictions used to identify the structural shocks

els of the euro area, such as the New Area Wide Model of Christoffel, Coenen, and
Warne (2008). In the case of the demand shock, we assume that both real and nom-
inal variables increase, and it is also associated with an increase in the variables

3Figure A.1 in the Appendix shows the posterior estimation of our estimated monthly real GDP
growth time series. The series is estimated with low uncertainty as suggested by the credible inter-
vals of the posterior distribution.
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related to monetary and financial conditions. In the case of supply side shocks,
real variables move in opposite directions to the nominal ones, capturing events
such as productivity or cost push shocks. In this case, we let both the short term
and the long term rates unrestricted, as the response of monetary policy to supply
shocks might not be clear a priori. Finally, we label our third shock as a monetary
one, in which we observe a deterioration of real and nominal variables which is
associated with an increase in nominal rates and financial conditions as well as
a drop in the stock market. Note that the three structural shocks are well iden-
tified even without imposing all of the signs on impact. However, when using
sign restrictions in SVAR models, the latent shocks are only set-identified. That is,
they are not uniquely pinned down. Adding more variables and restrictions help
to shrink the identification set, and thus to estimate the shocks more accurately.
Variation in the data not captured by the three shocks that we identified will be
absorbed by the measurement errors, #;. As we will show later, these shocks play
a very small role in our estimation.

As most of the literature on growth-at-risk has focused on the role of financial
factors in explaining macroeconomic tail risks, we investigate whether financial
stress can explain the skewness found in the distribution of the three structural
shocks. For that purpose we use the ECB’s Composite Indicator of Systemic Stress
(CISS) in the euro area financial system of Hollo, Kremer, and Lo Duca (2012), as it
is the indicator that Figueres and Jarociriski (2020) find to be the most informative
about tail risks in the euro area. The CISS is then used as an explanatory variable
in the equation that determines the law of motion of each time varying skewness
process.

3.2 The evolution of skewness in the euro area

First, we discuss the estimated evolution of the skewness of the distributions of the
three structural shocks that we identify within the model. Figure 1 presents a plot
of the posterior median and the 16th and 84th percentiles of the posterior distribu-
tion of the time varying skewness of the shocks. That is, the estimated evolution
of A; defined in equation 7. The figure suggests several interesting characteristics
of the distribution of the shocks in the euro area.

Our results suggest that there has been a significant variation in the skew-
ness process of the three different structural shocks that we identify. The skew-
ness of the demand shock, which captures exogenous shifts in consumption and
investment expenditures, is the most volatile one, displaying the largest swings,
although it is not very persistent. It also shows large negative spikes in the periods
that are associated with recessions in the euro area, especially between 2008 and
2012.

With respect to the skewness of the supply shocks, our estimation also picks
up some variation which coincides with periods in which inflation was above the
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Figure 1: Estimated time varying structural skewness (1;) in the euro area
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Note: The figure shows the posterior median (solid lines) and the 16th and 84th per-
centiles (shaded area) of the posterior distribution of the smoothed estimates of the
time varying skewness of the demand, supply and monetary policy shocks in the
SVAR model.

ECB target, in 2008, and also in the period of low inflation between 2014 and 2016.
These episodes may also contribute to asymmetries in GDP growth which might
not be related to financial conditions, rather to rapidly rising or declining oil prices.
This is an interesting result, as most of the literature has emphasized the role of
financial conditions in shaping the possibly asymmetric time varying distribution
of real GDP. Our estimation suggests that other factors determining tail risks in
GDP and possibly other variables should not be ignored.

A strong positive skewness is found for monetary policy shocks starting in
2008. If we consider that the monetary policy shocks identified capture shifts in
monetary policy that go beyond what a systematic policy rule might dictate, this
implies that the ECB, during this period, was setting the short-term nominal in-
terest rate above what a historical monetary policy rule would imply, one of the
reasons being that at the moment the short-term nominal interest rate was con-
strained by its effective lower bound.* Of course, this implies contractionary mon-
etary policy that in this case will also generate negative tail risks in both real GDP
and inflation. Except for that moment, the skewness of the monetary policy shocks
is rather stable and close to zero, suggesting that the shocks are closer to a normal
distribution. Still, some downward bias of monetary policy shocks can be found in
the later period of mostly expansionary monetary policy. Given that we are using
a shadow short term nominal interest rate measure, it also captures the impact of
the different asset purchase programs from the ECB.

“Note that, even if we are using a shadow rate in our estimation that incorporates information
about unconventional monetary policy, it does not go into negative territory until 2011, suggest-
ing that the size of the monetary stimulus at the onset of the financial crisis might not have been
sufficient

BANCO DE ESPANA 19 DOCUMENTO DE TRABAJO N.° 2208



To understand the dynamics of the estimated time varying skewness pro-
cesses, A, figure 2 shows the posterior distribution of their autoregressive com-
ponents as well as the impact of the financial indicator (CISS). Our estimation sug-
gests that changes in the skewness of the distribution of demand shocks is the least
persistent, while in the case of monetary policy shocks they are highly persistent.

The second row of figure 2 shows that financial stress certainly explains the
negative skewness found in the demand shock driving downwards GDP growth
and inflation during some periods of time, in line with other results found in the
growth-at-risk literature. Less significantly, financial conditions can also explain
some small positive skweness in monetary policy shocks, pushing upwards inter-
est rates and downwards GDP and inflation. However, financial stress has zero im-
pact on supply shocks skewness. Thus, our model indicates that the transmission
of financial factors to the tails of the real GDP growth and inflation distributions,
as found in the literature, occurs mainly via a demand channel.

Figure 2: Parameters in the evolution of skewness
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Note: The figure shows the prior and posterior distributions of the parameters that
determine the time varying skewness process (A;). The first row shows the autoregres-
sive coefficient of the A; process, and the second one the impact of the CISS indicator
of financial stress on it, as estimated in equation 7.

3.3 The macroeconomic impact of time varying skewness

The previous section provided a descriptive analysis of the estimated evolution of
time varying skewness in the euro area. However, it is important to understand
how that evolution has impacted the dynamics of different macroeconomic vari-
ables, and to what extent that impact might be sizeable.
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3.3.1 Historical shock decomposition

To understand the impact of time variation in the skewness of the three shocks, we
tirst focus on a historical shock decomposition of real GDP growth and inflation in
the euro area. Note that in our model, each shock has an effect on macroeconomic
variables via two terms, one of them related to the variation in skewness. The total
effect of the identified structural shocks is given by,

S¢ = GTi\; + GE.. (21)

It order to compute the posterior distribution of the contribution of each struc-
tural shock, we proceed as follows. First, we obtain a draw from the joint posterior
distribution of the parameters B, G and the latent states ;, A, {; that we obtained
in our estimation. Then, for each of the draws, we recover the estimated measure-
ment error, #;. Finally, for each structural shock we compute a counterfactual time
series, such that for p = 1, ..., P, we set GP as a loading matrix that is equal to G,
except that the p — th row is set to 0. Then, we define the counterfactual as,

y{ =C+ Bly{—l + ...+ Bsy{_s + Gth)\t + GpCt + Nt, (22)

and the contribution of the structural shock p is given by y; — y{ .

Figure 3 shows the estimated median of the posterior distribution of the con-
tribution of each structural shock to the historical evolution of real GDP growth
and HICP inflation in the euro area.’ The figure offers several insights on the nar-
rative about the structural determinants of the euro area economy. First, demand
shocks have a higher weight on the dynamics of real GDP growth than on infla-
tion. This goes in line with the literature that shows that the structural slope of
the Phillips curve might be small, and therefore, the transmission of real activity
to prices is more muted than expected. Second, supply shocks are an important
determinant of HICP inflation. This is also not surprising given the dynamics of
especially energy prices in the euro area. The contribution of supply shocks goes
actually in line with them. For example, 2008 was a period of abnormally high
HICP inflation, mostly due to oil prices being close to their historical maximum
value (close to 140 USD per barrel). This translates into higher costs and there-
fore adverse supply shocks that our model captures properly. On the other hand,
between 2013 and 2016, energy prices declined rapidly, and stayed at low val-
ues, which implied a period of low inflation.® Our model captures this as positive

SFigure 3 also shows that the impact of the measurement errors 7;, represented by the blank
spaces, is minimal in our model. These errors can be thought of as the divergence between the
data and the contributions of the structural shocks. The fact that the measurement errors are small
implies therefore that our three identified structural shocks are indeed a good explanation for the
euro area macroeconomic dynamics.

®Ciccarelli and Osbat (2017) provide a thorough explanation of the causes of low inflation in this
period. They also find that low inflation in this period can be related to global factors which include
lower energy prices.
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supply shocks that pushed down inflation, but helped to keep positive real GDP
growth rates.

Our estimation also provides a structural narrative to the two major recessions
in the euro area until 2019. The first recession, in 2008, which is characterised by a
sharp decline in real GDP growth and inflation, is explained by demand shocks,”
and there is some role for a delayed response of the supply shocks that hit the
economy at the beginning of the recession. However, there is a major role for
monetary policy shocks. This goes also in line with the estimated time varying
skewness process of monetary policy. As we discussed above, this period was
characterised for policy rates which were significantly above what a historical rule
might have determined, due to the effective lower bound constraint, and therefore,
the monetary policy stance was contractionary.

The subsequent recovery in real GDP growth and inflation after 2010 is then
explained by smaller negative demand shocks, positive supply developments, but
mostly by more accommodating monetary policy, which also continues even dur-
ing the recession of 2011Q3-2013Q1, according to the dating of the euro area busi-
ness cycle dating committee®. This reflects also the change in the ECB’s monetary
policy conduct. That is, the ECB implemented different non-standard monetary
policies that might be captured by the shadow rate measure in the model, and
translate into a positive impact of monetary policy shocks. The 2011-2013 reces-
sion is however mostly explained by supply-side structural shocks. Compared to
the 2008 recession, this one is distinguished by higher HICP inflation rates. Thus,
this implies a slower adjustment of prices and wages which, together with higher
energy prices that were again close to their maximum in 2008, dragged down real
GDP growth. Note also that the results go in line with the narrative that arises in
more complicated estimated structural models, such as Coenen, Karadi, Schmidt,
and Warne (2018), in which productivity shocks have a large role explaining the
2011-2013 recession.

The decomposition also reveals that the three shocks that we have identified
can explain most of the variation in the data. Thus, even if we have more variables
than shocks in the model, there is a very marginal role for the measurement errors
which would capture other factors that we have not identified in the model.

How much of the contribution of each structural shock is due to changes in
the skewness of their distribution or to the i.i.d. shocks? While the previous ex-
planation considers the total impact of each structural shock, we focus now on the
impact of their time varying skewness component. As we discussed in section 2,
if the structural shocks follow a skewed distribution, a change in the parameter
that determines the asymmetry also implies a change in the conditional mean of

7Note that these could be of either domestic or foreign origin, as in our model specification we
do not identify separately foreign demand shocks.

8See https://eabcn.org/dc/ chronology-euro-area-business-cycles for the full chronology of
peaks and troughs provided by the the CEPR-EABCN euro area dating committee.

BANCO DE ESPANA 22 DOCUMENTO DE TRABAJO N.° 2208



the different variables in the model. If changes in skewness have a strong impact
on the different variables in the SVAR, this implies that there are also significant
macroeconomic tail risks that vary over time.

Figure 3: Historical shock decomposition, total impact
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Note: The figure shows the median contribution of each structural shock to the dy-
namics of monthly year on year real GDP growth (top panel) and monthly year on
year HICP inflation (bottom panel). The decomposition considers the impact of both
the skewness shock, A, and the normally distributed one, ;. Both variables are ex-
pressed as annual growth percentage, in deviation from the steady state of the model.

To compute the macroeconomic impact of time varying skewness, we proceed
as in the previous exercise, but we keep the impact of the normally distributed
shock, ¢;, as originally estimated. That is, the counterfactual is defined as follows:

y/ = C+ By, + ..+ Bsy] .+ GPTA + G& + 7. (23)
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Figure 4 shows the estimated median of the posterior distribution of the con-
tribution of each skewness process on real GDP growth and HICP inflation. We
focus first on the impact of changes in the distribution of monetary policy shocks.
Until the 2008 financial crisis, the impact of changes in the skewness of monetary
policy shocks is minimal, reflecting the fact that the distribution was stable as also
suggested by figure 1. This changed in 2008. A sizeable proportion of the contri-
bution of monetary policy shocks is attributed to changes in their distribution. The
model finds that the systematic contractionary deviations from the model’s histor-
ical rule translated into a perceived change in the skewness of the shocks which,
in turn, contributed to the sharp and protracted contraction in real GDP growth,
as well as a decline in inflation. This result also suggests that the effective lower
bound at the moment had a major impact. After the crisis, and given the change
in monetary policy conduct, we see that indeed the monetary policy shocks be-
come now slightly skewed to the more expansionary area, which contributed to
the recovery of real GDP growth and partially to HICP inflation, too.

Changes in the skewness of demand shocks are also a major determinant in
the dynamics of real GDP growth, especially during the financial crisis. As in the
case of monetary policy shocks, a sequence of negative demand shocks, together
with the impact of the CISS on their skewness, implies that the model understands
that the distribution of the shocks became skewed to the left, with fatter nega-
tive tails, during the crisis. This change also had an impact on HICP inflation,
which was a long-lasting one until approximately 2013. Finally, while the impact
of changes in the skewness of the supply shocks distribution is smaller than in the
other two shocks, it cannot be disregarded. In the case of inflation, that variation
helps explain the build up of inflation before the financial crisis (again, in a period
with higher than usual energy prices) as well as part of the low inflation period
starting in 2014. Time variation in the skewness of supply shocks can also explain
some of the variation in real GDP growth, especially at the beginning of the 2008
recession (a consequence of the previous high inflation period), as well as during
the second major recession in 2012.

Therefore, we find again a structural narrative in terms of changes in skew-
ness. Several important points should be mentioned. First, tail risks can be an
important driver of the dynamics of real GDP growth, but also inflation, which
has not been analysed as extensively as real GDP growth (an exception is Lopez-
Salido and Loria (2020), who find that financial conditions can also generate down-
side risks in inflation). Second, tail risks in real GDP growth and inflation are not
only driven by financial factors. Changes in the distribution of real GDP and in-
flation arise also due to changes in the distribution of monetary policy shocks as
well as of supply side shocks (technology, mark-ups or energy prices). We find that
strong deviations from a normal distribution of the various sources of structural
macroeconomic fluctuations could indeed have strong negative effects on differ-
ent macroeconomic variables. Thus, shortcuts using financial stress indicators to
account for time varying tail risks may not be sufficient.
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Figure 4: Historical shock decomposition, skewness impact
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Note: The figure shows the median contribution of each structural shock to the dy-
namics of monthly year on year real GDP growth (top panel) and monthly year on
year HICP inflation (bottom panel). The decomposition considers the impact of only
the skewness shock. Both variables are expressed as annual growth percentage, in
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deviation from the steady state of the model.

3.3.2 Impulse response function analysis

We center now our attention on the transmission of the different shocks. To do so,
we compute impulse response functions (IRFS) to the different structural shocks.
Since our model is non-linear, the impact of the different shocks is therefore depen-
dent on their underlying skewed distribution. In order to show that the IRFS in the
model are state dependent, we show two different cases, in which we assume that
there is no skewness or that the skewness of each shock is set at the maximum

value that we recover in our estimation.’

A different comparison would be to estimate the model with and without skewness. In our
case we want to emphasize the role of the changing distributions of the different shocks within the
same estimated model and show how the IRFS change under different values of the parameters

that determine the skewness of those distributions.
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First, we compute the IRFS in the case in which the distribution of the shocks
is symmetric, so that Ay, 7; = 0. We first get a draw from the posterior distribution
of the estimated parameters in the model, and then, for each structural shock, we
set ¢ = 1 (one standard deviation) and compute the dynamics of the model as
is standard in the literature. Figure 5 shows the estimated impact of the different
shocks in this scenario, with the 90%, 68% and 50% credible intervals, which incor-
porate parameter uncertainty. We find first that a demand shock has a persistent
negative response on real GDP growth and HICP inflation, although the impact
is not sizeable when there is no skewness. Moreover, the response of inflation is
small in relative terms compared to that of real GDP. This again confirms that the
Phillips curve might be significantly flat in the euro area. Supply shocks exhibit a
less persistent behavior, although after three years the impact on real GDP growth
is still negative while inflation has already stabilised. Supply shocks capture both
technology, energy prices and possibly mark-up shocks. A larger model with more
structural shocks identified would be required to disentangle all the mechanisms.
Still, our results point out to the fact that supply side shocks in the euro area can
have long-lasting effects on real economic activity. Finally, monetary policy shocks
are the least persistent ones and their impact vanishes after one year, especially in
the case of HICP inflation.'"

Let us consider now an impulse response function analysis in the presence of
skewness. In order to compute the response in this case, we first fix the skewness
parameter for each shock to a value A. We set these values to correspond to the
largest ones in figure 1, in absolute terms. For the case of demand shocks, we set
Ad = —10, for supply shocks, AS = 1, and for the monetary policy shocks, A" = 2.
This allows us to understand the transmission of the different shocks in periods of
stress for the euro area economy. Note again that, as the model is non-Gaussian, the
responses are actually highly dependent on the value of the skewness parameter.

Note however that in this case, skewness introduces a change in the steady
state value of the SVAR model, compared to a standard SVAR. This modification
should be taken into account when calculating the impulse response functions.
The steady state value of the model with a permanent change in A; becomes, !

19Note that the distribution of the different IRFS is not fully symmetric. This is because the pos-
terior distribution of the loading matrix G is a truncated normal distribution (see figure B.1 in the
Appendix). Thus, the contemporaneous distribution of the impact of the shock might be asym-
metric. In the appendix we also show the same IRFS analysis when we consider only the response
at the mean of the posterior distribution of G. In this case, the responses become symmetric and
allow for a better comparison with the case in which we incorporate skewness in the analysis (see
figures B.2 and B.3).

Note that if we consider the evolution of A; in equation 7, the steady state value of the model
would not need to be modified, as A; would converge to 0 in the long-run. However, we want to
explore the impact of skewness in specific periods of time and consider that a permanent change in
At is more appropriate to understand the transmission mechanisms. By fixing A; and considering
the impact in the steady state, we can isolate the impact of the iid shock. If we consider a change in
A, but we consider that it is 0 in steady state, we would have the joint impact of the i.i.d. shock as
well as the skewed one.
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Figure 5: Impulse response function, no skewness
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Note: This figure shows the median (solid line) and the 90%, 68% and 50% credible in-
tervals (shaded areas) of the impulse response functions to the three structural shocks
that have been identified in the model for real GDP growth and inflation.

y* = (Iyy — By — ... — Bg) 1(C + G1), (24)

where T is the mean of a truncated standard normal distribution in the interval
(0,00), as discussed in Section 2.

Then, to compute the response in this case, in which we incorporate skewness
risks, we draw first from the posterior distribution of the parameters of the model,
and compute the response at horizon h for each structural shock as,

IR, = C+ B1IRy,_1+ ... + B1IR),_s + GTh/_\ + G¢p, — ySS, (25)

where in each simulation, T;, is a vector with a random draw from a truncated
standard normal distribution in the position of the structural shock of interest, and
¢ is a vector of zeros for i > 1, and a vector with a 1 in the position of the structural
shock when I = 1. Thus, the size of the normally distributed shock is the same as
in the previous case.
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Figure 6 shows the estimated impact of the different structural shocks in this
scenario in which we introduce skewness, again with the 90%, 68% and 50% cred-
ible intervals. Note that compared to the previous IRFS, we have now also uncer-
tainty about T,.

In terms of persistence, the responses follow the same pattern as before, as the
asymmetries in the distribution do not affect it. However, we observe first that
the median responses can be of several orders of magnitude larger than when we
consider a symmetric distribution. In the case of the demand shock, the median
impact is almost ten times as large as in the non-skewed IRFS, while in the case
of supply and monetary policy shocks, the response is twice as large. Second,
tail risks arise and can change the distribution of the IRFS significantly. In the
case of the demand shock, which tries to mimic the impact of skewness during
the financial crisis, negative tail risks are important both for real GDP growth and
HICP inflation, confirming also the results from the historical shock decomposition
that we presented before. This is also the case for the monetary policy shock. They

Figure 6: Impulse response function, with skewness
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Note: This figure shows the median (solid line) and the 90%, 68% and 50% credible in-
tervals (shaded areas) of the impulse response functions to the three structural shocks
that have been identified in the model for real GDP growth and inflation, under skew-
ness.
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can have significant pervasive effects in the risks of both distributions. In the case
of the supply side shock, the asymmetric risks are more evident in the case of HICP
inflation, although they also change real GDP growth.

Thus, we should conclude first that the structural shocks that we have identi-
tied have stronger impact when the distributions are skewed, for the same value
of {;. Second, tail risks can be important, and should not be disregarded by policy
makers.

3.3.3 The impact of asymmetric risks on the forecasting distributions

Finally, our results also have strong implications for forecasting. Predictive dis-
tributions under skewness will exhibit asymmetric risks and should be taken into
consideration when designing macroeconomic policies. To understand how asym-
metric risks might impact the forecasting distribution of real GDP and inflation
over time, we construct rolling forecasts from the estimated model at each period
of time for up to one year. It should be noted, however, that this is not an out-of-
sample prediction exercise. That is, to construct our in-sample forecasting distri-
butions, we consider the posterior distribution of the parameters estimated using
the full sample. Constructing the forecasting distribution in the skewed model is
straightforward. For a given draw of the parameters from their posterior distri-
bution, as well as the estimated starting point at each period in time, recursive
forecasts can be derived as usually done in the BVAR literature, using equations
7 and 9. Note that compared to standard forecasts in BVAR models, there are
additional sources of uncertainty stemming from drawing 7; as well as v; in the
dynamic equation that determines the time variation in the skewness parameters.

To understand the impact of skewness in the forecasting distributions, we fo-
cus on the relationship between the mean forecast and its variance for different
horizons. Adrian, Boyarchenko, and Giannone (2019) show that, in the case of
the United States, this relationship is negative. Thus, lower values of the fore-
casting mean are associated with higher realisations of volatility. Figueres and
Jarociniski (2020) show a similar association for the euro area. While they use the
results from quantile regressions to generate those results (thus allowing for diff-
ent means and volatilities in each quantile), our estimated model is also capable of
generating this interdependence between mean and volatility. As we mentioned
in section 2 a skewed distribution has an implied relationship between the mean
and the variance of the distribution. When there is no skewness, the volatility of
the distribution is constant and independent of the mean. This result translates to
our forecasting distributions.

Figure 7 shows a scatter plot of the estimated relationship between mean and
volatility in the forecasting distributions of monthly real GDP growth at each pe-
riod of time in our sample, for different forecasting horizons (1, 6 and 12 months).
The first row in the figure shows this relationship when we consider skewness in
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the three shocks that we estimate. We find indeed a negative relationship between
the conditional mean of the forecasting distribution and its volatility, measured as
its standard deviation. The relationship is however stronger the longer the fore-
casting horizon, suggesting higher asymmetric risks at the end of the forecasting
distribution. The following rows in the figure, show the breakdown for the three
different shocks. To compute the impact of each shock, we keep only skewness
risks in one of the shocks at the time, setting the parameter A; to zero for the re-
maining shocks. The chart suggests that the asymmetric risks arise mostly due to
skewness in the demand shocks, and to some extent, in the monetary one. Skew-
ness in the supply side shocks only contribute to asymmetric risks in the short run,
while in longer horizons, the standard deviation of the forecasting distribution is
mostly independent of the mean.

Figure 7: Mean and volatility of monthly real GDP growth at different forecast-
ing horizons
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Note: The figure shows the scatter plot between the mean and the standard devia-
tion of the forecasting distributions of annual real GDP growth, for each month in the
estimation sample. The first column shows the results for the one-month ahead fore-
casting distribution, the middle column the six-months ahead and the last column,
the one-year ahead distribution. The first row shows the estimated relationship when
considering skewness in all shocks, while the remaining rows only consider skewness
in one shock.
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Figure 8 also shows the mean-volatility barrier in the forecasting distributions
for monthly HICP inflation. In this case, there is a more limited correlation be-
tween the mean and the standard deviation of the forecasting distributions of in-
flation. This goes in line with other results in the literature for the euro area, such
as Figueres and Jarocifiski (2020), who find less skewness in the forecasting distri-
bution of inflation than of GDP. As with real GDP, demand and monetary shocks
seem the main drivers of the negative relationship between mean and volatility,
which in this case is only relevant in longer forecasting horizons.

Finally, we also explore how much skewness the model is able to generate in
the forecasting distributions. We compute the skewness of each forecasting dis-

Figure 8: Mean and volatility of monthly HICP inflation at different forecasting
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Note: The figure shows the scatter plot between the mean and the standard devia-
tion of the forecasting distributions of annual HICP inflation, for each month in the
estimation sample. The first column shows the results for the one-month ahead fore-
casting distribution, the middle column the six-months ahead and the last column,
the one-year ahead distribution. The first row shows the estimated relationship when
considering skewness in all shocks, while the remaining rows only consider skewness
in one shock.
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tribution, also for the distributions in which we incorporate skewness in one of
the shocks only. Figure 9 summarizes the results for real GDP growth. The figure
shows how the skewness of the different forecasting distributions has been evolv-
ing over time, up to a horizon of one year. First, we find that episodes with neg-
ative skewness risks are more prevalent than those with positive risks, although
these ones are not negligible. The episodes with negative skewness are associated
with recessions in the euro area, and they can be explained mostly via negative
skewness in the evolution of demand shocks, but also due to the impact of con-
tractionary monetary policy shocks at the time. However, we also find periods in
which there are positive asymmetries, like in 2009-2010. These positive asymme-
tries arise mostly from supply shocks and accomodative monetary policy shocks,
and confirm the narrative that arises in the shock decomposition discussed in the
previous subsections.

Figure 9: Evolution of skewness in the forecasting distributions, real GDP
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Note: The figure shows the evolution over time of the skewness in the forecasting
distributions of annual real GDP growth, for different forecasting horizons. Dark red
colors imply negative skewness, while blue colors signify positive skewness in the
distribution. Colors closer to green indicate that the forecasting distribution is close to
being symmetric. The first row considers skewness in all shocks, while the remaining
rows only consider skewness in one shock.

BANCO DE ESPANA 32 DOCUMENTO DE TRABAJO N.° 2208



In the appendix, we also show the evolution of skewness in the forecasting dis-
tributions of annual HICP inflation. We find that, compared to real GDP growth,
the distributions do not become as asymmetric. However, we observe that the
model captures properly downside risks to annual inflation during the Great Re-
cession, due to the negative skew in demand and monetary policy shocks, but also
risks in the period after the crisis that reflect the evolution of the skewness in the
distribution of supply shocks.

4 Conclusion

In this paper we propose a structural VAR model in which we identify structural
shocks using sign restrictions while at the same time we relax the assumption
of normality in the disturbances. We thus allow for the structural shocks in the
model to follow a skewed distribution, whose parameters might be time varying.
A skewed distribution with time varying parameters allows to track variation in
asymmetric risks to different macroeconomic variables.

We also propose a fast and efficient Gibbs sampling algorithm to estimate the
model. In our empirical application, we use euro area data to estimate a model
with demand, supply and monetary policy shocks, and we show that the distribu-
tions of the shocks have been changing over time, showing significant asymmetries
over time.

Our findings suggest that demand shocks have experienced a significant vari-
ation in their skewness, mainly in periods of financial distress, such as during the
tinancial crisis of 2008, in which the shocks become skewed to their negative area
for a significant amount of time. We find that an indicator of financial stress (CISS)
can actually predict that time variation in the skewness of the demand shocks.
However, we also find significant time variation in the skewness of supply shocks
and monetary policy shocks that impact both GDP growth and inflation, which can
not be explained by financial conditions. Thus, downside risks in the conditional
distribution of GDP growth and inflation in the euro area go beyond financial fac-
tors and richer models such as the one proposed in this paper are of the utmost
importance to understand them.

We also show that structural shocks have stronger macroeconomic impact
during the periods in which their distributions are skewed. As tail risks can be
important, models such as the skewed SVAR with time varying asymmetries pro-
posed here should be considered in order to avoid significant macroeconomic pol-
icy mistakes.

Future research plans include a cross-country comparison on the estimates of
time-varying skewness. Given that skewness arises mostly in periods of macroe-
conomic distress, it would prove useful to estimate the model for other countries

BANCO DE ESPANA 33 DOCUMENTO DE TRABAJO N.° 2208



in which there is more data available, as it is the case for the United States, for
example. Moreover, in our estimation, we have only considered financial indica-
tors as a potential explanation for the variation in skewness in order to make a
clear connection to the extant literature on growth-at-risk. Given that we find that
financial conditions cannot explain all that variation, it will be useful to explore
alternative indicators. For example, variables such as global activity or, in the case
of the supply shocks, the price of oil, might be relevant to explain variations in the
skewness of the distribution of the shocks.
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A Estimated monthly real GDP growth

In the estimation of our skewed SVAR model, we treated monthly real GDP growth
as an unobservable latent factor which we recovered using a linear filter, condi-
tional on the other parameters and states of the model. Figure A.1 shows the es-
timated time series for monthly GDP growth that we recover from our estimation
algorithm. The figure shows the median estimate, as well as the 64% credible in-
terval.

Figure A.1: Posterior distribution of monthly real GDP growth in the euro area
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B Additional figures

Figure B.1: Posterior distributions of the parameters in G, euro area estimation

Demand 6 Supply Monetary
4
4
5 2
0 0
0.6 0.4 0.2 06 04 -02 O 0.2
60 4 4
o 40
Q 2 2
T 20
- 0% 0 0
g 0 005 01 015 02 04 06 08 06 -04 02 0
g 40 .
g 6
5 4
220 4
© 2
] 2
x
(L) 0 0
& 0o 005 01 o015 02 0 0.2 0.4 . 04 -03 -02 01 0
I
© 60 200
© 60
€ 40
340 100
520 20
<
@ 9 0 0
0 001 0.2 003 004 -0.02 0 0.02 .0 0 0.005 0.01 0.015 0.02
o 100 60 150
©
= 40 100
& 50
S 20 50
c
S
0 0
001 0 001 002 003 002 0 002 004 00 0 001 002 003 0.04
150 100
40
- 100
50
B3
50 20
0 0 0
0 0.01 0.02 0.03 0 001 002 003 00 0 0.02 0.04 0.6
4 6
100
4
& g5 2
2
0 0 0
0 002 004 0.06 06 -04 -02 -1 0.8 0.6 0.4
40 150
“ 60
S 100
ke) 40
o
% 20
8 50 20
(]
0 0 0
0 0.05 0.1 0.03 -0.02 -0.01 -0.04 -0.03 -0.02 -0.01 0

Note: This figure shows the prior and posterior distributions of each element in the
matrix G, which captures the estimated impact response of the three structural shocks
in the model on the eight variables in the SVAR.
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Figure B.2: Impulse response function, no skewness. Evaluated at the posterior
mean of G, euro area case
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Note: This figure shows the median of the (solid line) and the 90%, 68% and 50%
credible intervals (shaded areas) of the impulse response functions to the three struc-
tural shocks that have been identified in the model for real GDP growth and inflation,
without skewness and when the parameters in the matrix G are set to their posterior
mean.
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Figure B.3: Impulse response function, with skewness. Evaluated at the poste-
rior mean of G, euro area case
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Note: This figure shows the median of the (solid line) and the 90%, 68% and 50%
credible intervals (shaded areas) of the impulse response functions to the three struc-
tural shocks that have been identified in the model for real GDP growth and inflation,
under skewness and when the parameters in the matrix G are set to their posterior
mean.
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Figure B.4: Evolution of skewness in the forecasting distributions, HICP
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Note: The figure shows the evolution over time of the skewness in the forecasting
distributions of annual HICP inflation, for different forecasting horizons. Dark red
colors imply negative skewness, while blue colors signify positive skewness in the
distribution. Colors closer to green indicate that the forecasting distribution is close to
being symmetric. The first row considers skewness in all shocks, while the remaining
rows only consider skewness in one shock.
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