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Abstract

This paper investigates whether the existence of knowledge spillovers, differences in the 

capacity of fi rms to assimilate them and disparities in some human resource management 

practices are related with the decision to innovate of Spanish fi rms. In order to do this, we 

employ data from the “Central de Balances” database, which covers both manufacturing and 

services fi rms during the period 2003-2007, and use an estimator proposed by Wooldridge 

(2005) for dynamic random effects discrete choice models. The empirical exercise provides 

evidence on the positive link between spillovers and the innovative behaviour of companies, 

not just for the knowledge generated in the same industry, but also for that generated in 

the same region or by the public sector. Moreover, this link is stronger for those fi rms with 

a higher capacity to absorb those spillovers. This ability not only works through fi rms’ R&D 

capabilities, but also through such factors as the quality of the labour force, the share of 

temporary employment and the amount of resources spent in training. In addition to these 

factors, we fi nd that innovation performance exhibits a high degree of inertia. Further, some 

other observed fi rm characteristics, such as size, sales growth, export behaviour, sector 

capital intensity or fi nancial structure variables, are also found to be relevant determinants 

of the likelihood of innovation.

Keywords: innovation, R&D, spillovers, absorptive capacity, skilled labour, temporary 

employment, dynamic RE probit model.

JEL classifi cation: O32, C23, C25, J6, J24, L00.
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1 Introduction 

There is a widespread consensus that globalisation and the increasing importance of the 

Information and Communication Technologies (ICT) have substantially changed the economic 

landscape across the world. This profound transformation, along with the incorporation of 

emerging market economies to international trade, has undermined the competitiveness 

of European countries in the global stage. In response to this situation, the European Council 

launched the Lisbon Agenda in 2000 with the strategic objective of transforming 

Europe into the most competitive and dynamic economy of the world by 2010. In order 

to achieve such an ambitious target, reforms were proposed in five different policy areas, 

most importantly, in the development of the new knowledge economy, where the role of R&D 

investment was deemed as crucial, a dimension in which some countries, Spain among them, 

have been lagging behind.1 

Given this challenging starting point, Spain has made a substantial effort to catch up 

with the rest of Europe in terms of innovation and technology progress, increasing public 

funding for civilian R&D activities by 25% on average every year between 2004 and 2008. 

The result is that the gap in public R&D spending between Spain and its European peers was 

closed in 2008. The gap in private R&D spending continues to be, however, very large: 0.6% 

of GDP in Spain against 1.2% in EU15 and 1.9% in the US. Moreover, according to a very 

recent European Commission publication,2 only 21 Spanish companies are included in the 

ranking of the top 1000 R&D European firms, and their combined R&D spending amounts 

barely to 1% of the total private R&D spending within the EU.3 These figures compare poorly 

with the 247 British firms in the ranking, which represent together about 15% of total private 

R&D in the EU, 209 German ones, which account for more than one-third of R&D, or the 70 

Swedish firms accounting for 5% of total EU R&D. 

This paper shows that the Spanish innovation system could be paying a double 

toll for this deficit in terms of private sector R&D spending: on the one hand, the lack 

of independent R&D effort affects directly the capacity of private firms to innovate; on the 

other hand, it diminishes their capability to benefit from spillovers generated by 

knowledge produced elsewhere, that is, it is affecting firms’ absorptive capacity [Cohen and 

Levinthal (1989) and Geroski (1995)]. The role of independent R&D effort to enhance the 

capacity to absorb and incorporate knowledge generated elsewhere into the production 

process of a firm —whether generated by other firms in the same sector of activity or in the 

same region, or by the public sector—, has already been well documented [see, for example, 

Jaffe (1986)]. We find that, in the case of Spain, the marginal benefit of knowledge spillovers 

on a firm’s probability of innovation increases six-fold when the firm carries out its own R&D 

activity, as compared to a firm with no R&D spending. That is, the observed private R&D 

underinvestment could be undermining the innovative capabilities of Spain more than 

previously believed, as well as decreasing the return on public R&D investment. 

The second contribution of the paper is more general, although it has important 

implications for the particular case of Spain. We show that a firm’s absorptive capacity is 

                                                                          

1. According to the OECD, in 1999 only 0.9% of GDP was devoted to R&D in Spain, vis-à-vis 1.9% in the EU15 

and 2.6% in the US. 

2. The 2009 EU Industrial R&D Investment Scoreboard. 

3. Furthermore, 40% of that was due to the R&D spending of only one firm, telecommunications company Telefónica. 
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strongly related with its human capital, which we understand in a broad sense here. 

More concretely, we find that the skill composition of the workforce and the provision of 

on-the-job training increase the probability of being innovative not directly, but because they 

raise the capacity of a firm to benefit from technology spillovers stemming from a third party. 

The use of fixed-term contracts, on the other hand, seems to be directly related with the 

innovation performance of a firm, as it has been proven elsewhere possibly due to the low 

motivation and training possibilities of employees on temporary contracts.4 

The idea that human capital might enhance a firm’s ability to absorb external 

knowledge is not new. Cohen and Levinthal (1990 and 1994), for instance, argue convincingly 

that the absorptive capacity of a firm is the by-product of three factors: its R&D activities, 

its production experience and, lastly, its personnel technical training. Hall and Mairesse (2006) 

claim that the technical training of the employees or other human resource management 

decisions are important for innovation because a firm’s knowledge is embedded in the human 

capital of its employees. Hence, the capacity of the company to understand and incorporate 

knowledge produced elsewhere will depend not only on its spending on R&D, but also on 

the expertise and know-how of its personnel. Bartel and Lichtenberg (1987) confirm this 

view finding that highly educated workers have a comparative advantage with respect to 

the adjustment and implementation of new technologies. Vinding (2006) finds as well that 

updating the skills of the employees is crucial for innovation in technology-advanced sectors. 

There is some empirical evidence that supports the importance of human capital as 

a determinant of the absorptive capacity of spillovers at the country level. Coe, Helpman 

and Hoffmaister (1997), Engelbretcht (1997), Frantzen (2000) and Griffith et al. (2004), for 

example, relate a country’s TFP growth with its exposure to international technology spillovers 

and its capacity to benefit from them, proxied by own R&D and the qualification of the labour 

force.5 At a firm level, however, the role played by the quality of the labour force to shape the 

absorptive capacity is much less documented. Vinding (2006) and Ramijn and Albalejo (2002) 

are two of the few papers exploring this issue. They find that firms with more qualified 

personnel, as well as with up-to-date technical skills, are more innovative and argue that 

this is the result of the role of human capital as enhancer of a firm’s absorptive capacity of 

external knowledge. However, they fail to include an interaction term between the firm’s 

human capital and the spillover pool in the regression in order to quantify the amplifying effect 

of the variable.6 

This paper is an attempt to quantify the enhancing effect of absorptive capacity on 

the innovation performance of Spanish firms. Absorptive capacity will be determined 

by the firm´s own independent R&D effort but also by human capital variables, such as the 

qualification of the workforce, the provision of on-the-job training or the use of temporary 

contracts. In order to do so, we estimate a dynamic random effects probit model —which 

allows to control for unobserved heterogeneity, for endogeneity and to handle the initial 

conditions problem— and use a new database resulting from the combination of detailed 

firm-level information for a sample of Spanish firms compiled by the Bank of Spain and a 

survey on firms’ innovative activities managed by the Spanish National Statistic Institute. 

                                                                          

4. See for example the work of Michie and Sheehan (1999 and 2003). 

5. All four papers find that countries further from the technology frontier catch up faster the more educated their labour 

force. The reason is that they are able to benefit to a greater extent from technology spillovers stemming from the more 

advanced countries. 

6. As proposed by Cohen and Levinthal (1989) in their seminal paper. 
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We also study the role played by spillovers generated by different types of 

knowledge capital. Hence, we proxy the stock of external knowledge —in other words, the 

spillover pool— by the R&D capital stock of firms operating in the same sector of activity or 

region, giving therefore some information as on whether sector or regional spillovers are more 

important, and the R&D capital stock generated by the public sector. We find that they are all 

relevant for the decision to innovate. 

Given the fact that Spanish firms are not only lagging behind R&D spending, but also 

in most of those human resource practices studied here,7 these results have important 

policy implications. In order to change the Spanish productive system from one based on 

low productivity activities, such as construction and tourism, to one based on knowledge 

and innovation it will not be enough to devote large quantities of public resources to R&D; 

policy-makers would have to make sure as well that Spanish firms are able to benefit from 

that effort. 

The next section reviews briefly the literature on spillovers and absorptive capacity 

of firms. Section 3 describes the database used in the paper. Section 4 explains in detail 

the empirical methodology and variables included in the analysis and section 5 presents the 

econometric results. Finally, section 6 concludes. 

 

                                                                          

7. According to the OECD Main Science and Technology Indicators and Eurostat, the temporary rate in Spain triples that 

in other European countries and the percentage of firms which provide on-the-job training is about 15pp below that in 

EU25 and almost half of that in the UK. Further, the percentage of skilled workers (persons with at least secondary 

education) is 10pp lower than in France and the UK (44% against 65% and 69%, respectively), and almost half of that 

in Germany. 
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2 Literature review 

This paper explores the determinants of the innovation performance of firms and, therefore, 

it takes some elements of the methodological framework from the seminal paper of 

Crépon et al. (1998). However, the main focus of the paper is on the role played by spillovers 

and their interaction with the absorptive capacity of a firm. The impact of knowledge 

spillovers has remained the primary focus of research in economic growth since the work 

of Romer (1990) and Aghion and Howitt (1992) on endogenous growth models. In this type of 

models, the main input of the aggregate knowledge production function, assumed to have 

constant returns to scale (CRS), is research and development. Hence, more R&D leads to an 

increasing economic growth rate. The CRS assumption has been extensively confirmed 

at the aggregate level [see Griliches (1990) and Jaffe and Trajtenberg (2002)]. However, 

micropanel evidence persistently shows diminishing returns to scale [see Hall et al. (1986) 

and Blundell et al. (2002)]. Griliches (1979) reconciles both observations, the existence of 

CRS in the knowledge production function at the aggregate level and DRS at the firm- 

or industry-level, by means of the existence of knowledge spillovers: one firm’s R&D efforts 

may contribute positively to another firm’s innovation performance. 

The existence of knowledge spillovers, estimated to be quite large by, for example, 

Jaffe (1986),8 is very relevant for the discussion on the need, or the lack thereof, of 

public intervention to foster innovative activities. Common wisdom is that knowledge 

is a public good, that is, it is non-rival and non-excludable. Hence, a firm investing in 

knowledge has no means to appropriate the returns from that investment, which would 

discourage research activities. Moreover, as pointed out by Mansfield et al. (1981), the cost of 

imitating research done by other firms is much lower than the cost of generating original 

research.9 The result of this difference between the private and social R&D return is an 

underinvestment in knowledge generation. In this context, public intervention would be 

justified to, among other things, increase appropriability –through the patent system. 

However, too much appropriability reduces spillovers and, according to Spence (1984), could 

result in an incorrect pricing of R&D results. The reason is that full appropriability would deter 

one firm from building on the research done by other firms. Hence, there would be an 

overinvestment in overlapping R&D activities. The result would be that innovation is achieved 

at a too high cost. 

However, according to Geroski (1995), the existence of a dilemma between the 

negative incentive effect of spillovers and their positive impact on other firms’ innovation 

outcomes is not such if one takes into account the fact that, in order to benefit from 

spillovers, firms have to undertake their own R&D. That is, if one takes into account the 

double face of R&D, in Cohen and Levinthal (1989) wording, both as a direct innovation 

determinant and as an indirect promoter of one firms’ capacity to absorb, understand and 

include into its own production process research done by another party, spillovers do not 

have necessarily to result in less private R&D [see Bernstein and Nadiri (1989)]. 

The role of independent R&D as the driver of the ability of a firm to acquire and make 

use of the R&D activities of others, that is, to take full advantage of knowledge spillovers, has 

                                                                          

8. Jaffe (1986) estimates that if all firms increased R&D spending by 10%, total patents would increase by 20% with 

more than half the increase coming from a pure spillover effect. 

9. He estimates that on average imitation costs are about 65% of the original innovation costs. 
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been most convincingly pushed forward by Cohen and Levinthal (1989) and Geroski (1995) 

in a microeconomic context. At an aggregate level, Griffith et al. (2003 and 2004) propose 

and test a theoretical model of technological transfer which encompasses endogenous 

growth and the dual role of R&D, to produce innovation and to assimilate others’ discoveries. 

One of the main implications of their model is that the social rate of return of R&D will be 

underestimated unless its role to promote absorptive capacity is taken into account. 

Jaffe (1986) estimates quantitatively a patent/profit equation at the firm level where the 

explanatory variables are the size of the spillover pool and its interaction with the firm’s own 

R&D effort finding a large direct effect of spillovers. He also finds that, given a certain 

spillover pool, firms with more R&D spending benefit more from it. Also at a firm level, Levin 

et al. (1987) survey a sample of US firms to explore how firms do actually protect their 

inventions and learn about others innovations. On average, independent R&D was ranked 

as the most effective means of learning about rival technology.10 

However, R&D spending is by no means the only determinant of a firm’s absorptive 

capacity. On a theoretical level, Acemoglu (2007) argues that, due to the complementarities 

between technology and workforce skills, if the job turnover rate increases —for instance, due 

to a high prevalence of temporary employment—, then the firm does not invest in new 

technology or on-the-job training for workers, because the additional return on training or on 

R&D would benefit a worker who will probably soon leave the firm and benefit a rival company 

with its knowledge. Further, if workers do not expect firms to invest in new technology or 

in training, then their wages may not be high enough for them to invest in human capital 

accumulation. Empirically, at a country level, Guellec and van Pottelsberghe (2004) use a 

panel of 16 countries to estimate their respective TFP growth elasticity to business, public 

sector and foreign stocks of R&D and explore the role of a country’s absorptive capacity 

to explain observed differences. They find that both countries’ independent R&D and 

education levels can explain most of the estimated differences. Using a similar framework, 

but data for both developed and developing countries, Bosch et al. (2005) find that the 

gap in the elasticity of patent counts to R&D found between these two groups of countries 

can be fully explained by differences in patenting protection legislation and education, which 

enters as a determinant of a country’s absorptive capacity. Along these same lines, Eaton 

and Kortum (1996) fit OECD data to a growth model of technology diffusion to find that a 

country´s level of education significantly facilitates its ability to adopt foreign technology. 

Other aspects weakly related to a firm’s human capital, such as flexible work 

practices or human resource management techniques, have also been found to significantly 

affect firms’ innovation performance. Grabowski (1968) was the first to claim that temporary 

hiring and firing of researchers might be particularly costly in innovating firms. The first reason 

is that the supply of researchers is relatively inelastic, which increases the adjustment 

cost of the workforce in innovative firms. The second reason is that, if fired, employees can 

transfer part of the firm’s knowledge to a competitor. Much more recently, Michie and 

Sheehan (1999 and 2003) have estimated using a sample of UK firms that several human 

resource practices, the extensive use of fixed-term contracts among them, have an important 

direct impact on the innovative capacity of firms. One of the possible reasons for this 

result is provided in Albert et al. (2005), who find that workers on temporary contracts 

have a lower probability of receiving on-the-job training, because firms are less interested in 

investing in specific human capital due to higher turnover rates. Also, temporary employees 

may be intrinsically less “effective” (or less qualified) and could suffer from lack of motivation 

                                                                          

10. In the context of productivity analysis, Harhoff (2000) and Beneito (2001) inter alia find evidence in favour of spillover 

effects rising with R&D to sales ratios, which would be in line with the absorptive capacity hypothesis. 
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as they have low chances to become permanent employees [Dolado and Stucchi (2008)]. 

In the context of an innovative firm this could bear an important cost in terms of firm’s 

performance. 

However, as far as we can see there is no paper that explores whether this type 

of human resource practices have as well an impact on firms’ absorptive capacity. That is, 

whether their actual impact on innovation is underestimated due to the omission of one of the 

channels of transmission, as it happens in the case of independent R&D. 
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3 The database 

In this paper we use firm-level information from the “Central de Balances” (CB) of the Bank 

of Spain. Since 1983, the CB has been compiling and publishing aggregate information of 

collaborating firms’ balance sheets in order to follow the economic situation of the private 

non-financial Spanish sector. The information is provided on voluntary grounds every year by 

a substantial number of established companies, about 9000 non-financial firms in 2007.11 

Collaborating firms fill a questionnaire with detailed accounting information, as well as some 

other additional information —of great interest for our study— such as employment, skilled 

composition of the workforce, type of contracts, training spending or, since 1991, R&D 

expenditures. The information for the current and the previous period is provided every year 

to improve the quality of the data and reduce missing points. Moreover, about 75% of firms 

are re-contacted to clarify some datum or fill in gaps, and more than 200 basic quality 

controls are run on a routine basis. Hence, the quality of the data is outstanding. 

On the negative side, the selection of firms does not intend to be representative 

of the population, but rather depends on their voluntary cooperation with the Bank. 

This implies that some sectors are better represented than others. Particularly, as one can 

see in Table 1, the energy sector is very well covered, with a value-added coverage 

rate of over 70%. Industry and market services —especially trade, post, transport and 

telecommunications—, are quite well covered: collaborating firms account for about 30% 

of value added and about 20% of total employment in industry, and 20% and about 23%, 

respectively, in the market service sector. On the other hand, agriculture, mineral extraction 

and construction (grouped under “other”) have a less than 10% coverage rate, both in 

terms of value added and employment.12 Another important source of bias is the 

larger-than-average size of collaborating firms. In the industry sector, for example, about 

50% of firms in the sample had less than 250 employees, against more than 95% in the 

population. Lastly, the geographical location of firms is assigned according to the fiscal 

address of headquarters. Hence, the coverage rate in Madrid, the Basque Country and 

Catalonia is larger than that in other regions, amounting to 60%, 23% and 20%, respectively. 

For the current study we use three different samples of firms (Table 2). The first one, 

labeled the “extended” sample, is an unbalanced panel for about 2,500 firms during the 

period 1991-2007. The only requirement for a firm to be in this sample is to remain, at least, 

four consecutive years in it. The second sample is labeled the “restricted” sample. It is a 

balanced panel of almost 800 firms spanning from 2002 to 2007; hence, each firm has 6 

years of information. Lastly, the third sample is labeled “CB-PITEC” and results from merging 

the CB dataset with the PITEC database. PITEC (Panel de Innovación Tecnológica) is a panel 

of firms managed by the National Statistics Institute, the Spanish Foundation for Science and 

Technology and COTEC containing detailed information about innovation outputs and inputs, 

as well as other related information, for the period 2003 to 2007.13 The panel includes more 

than 70% of all Spanish firms with 200 employees or more (one-third of those large firms 

perform innovative activities) and a sample of firms with less than 200 employees with a 

substantial bias in favor of firms performing innovative activities. Using the firms’ fiscal 

                                                                          

11. Self-employed are not included. In 2007, about 50% of collaborating firms were Corporations and 45% Limited 

Liability Companies. The rest were mainly cooperatives. 

12. Firms are classified into the different economic sectors according to their main activity. 

13. For more information on PITEC and access to aggregate data, refer to the webpage http://sise.fecyt.es. 
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identification number, we were able to incorporate some relevant information —more on this 

below— provided by PITEC to about 500 firms of our dataset during the period 2003-2007. 

Table 2 shows the percentage of innovating firms in each of the samples, as well as 

other characteristics, such as the sector and size distribution.14 The restricted sample retains 

30% of firms from the extended sample, with the same share of innovative firms (25%). 

In addition, the restricted sample is similar to the extended one in terms of the sector 

distribution as well as in other relevant characteristics, such as the export share or the portion 

of firms quoted in a stock market. On the other hand, it increases somewhat the bias towards 

larger firms. As regards the CB-PITEC sample, it loses one year and 40% of firms with 

respect to the restricted sample. Besides, it has 10 percentage points more innovators, but a 

similar sector distribution, which is a bit biased towards industrial firms. The size bias 

worsens, as well as the bias towards exporting firms. All in all, these samples are deemed 

to be reasonably similar. 

Table 3 shows the detailed sector distribution and percentage of firms with positive 

R&D spending in 25 sectors of activities in all the 3 samples. Finally, Table 4 shows the 

regional distribution of observations across the 3 samples. Overall, the sector and regional 

distribution of firms is reasonably similar across samples, while there are more differences 

in the share of firms with positive R&D spending both across industries and across regions. 

                                                                          

14. Note that during the period of analysis some firms moved across sectors, regions, sizes, etc. More concretely, 

referring to the extended sample of 2,565 firms, about 7% of them changed at least once of sector of activity (2% more 

than once), 0.6% changed of region and 25% varied of size at least once (defined broadly as SMEs or large firms). We 

decided to keep those firms in the sample and assign to each of them every year their corresponding sector, size, etc. 

Lastly, about 20% of the firms in the extended sample have gone through at least one change in ownership, due to 

mergers or divisions. We have marked those firms and kept them in the sample only if we could follow them after 

the change. 



BANCO DE ESPAÑA 17 DOCUMENTO DE TRABAJO N.º 1015

4 Empirical strategy 

4.1 Methodology 

We model the decision to innovate as a dynamic discrete choice panel data model. The 

dynamic framework would be justified by the existence of sunk costs15 [Sutton (1991)], 

the hypothesis of “success breeds success” [Mansfield (1968)] and the hypothesis that 

innovation involves dynamic increasing returns [Nelson and Winter (1982)].16 Although 

the purpose of our paper is not to study the presence of persistence per se in the 

decision to innovate, it is interesting to note that the latter hypothesis states that dynamic 

increasing returns in the form of learning-by-doing enhance the knowledge stocks and, 

therefore, the probability of future innovations. Since a firm’s absorptive capacity is likewise 

a function of the stock of knowledge, learning in one period will allow for a more efficient 

accumulation of external knowledge in subsequent periods [Cohen and Levinthal (1989)]. 

Hence, the cumulative nature of knowledge should also induce state dependence in 

innovation behaviour. Therefore, in order to test for the relevance of a firm’s absorptive 

capacity in the decision to innovate, one has to account for the state dependence, so that 

the estimated coefficient does not reflect such persistence. 

The econometric specification is written as: 

 

(1) 

where t=1,…,T and i=1,…,N. Also, 1(…) is the usual indicator function and it is assumed that 

the time-variant error term uit/ yi0, yi1,…, yit-1, xi iid N(0,1) and that uit  i where xi =(xi1,…, xiT). 

Equation (1) models the decision of firm i to innovate as a function of its past 

innovative behaviour (yit-1), some observable determinants (xit), unobserved firm-specific 

heterogeneity ( i) and other time-variant unobserved components uncorrelated with xit.17 

For estimation purposes we will have to tackle three important theoretical 

and practical problems: First, the treatment of the unobserved heterogeneity i, secondly, 

the handling of the initial condition yi0, and thirdly, the possibility that some of the regressors in 

xit are not strictly exogenous. As regards the first two problems, we follow Wooldridge (2005) 

in our estimation strategy. Therefore, we employ a correlated random effects framework 

à la Chamberlain (1980) whereby we model the distribution of the unobserved effect 

conditional on the initial value and any explanatory variables in order to partial it out from the 

likelihood function. A priori, a fixed effects estimator would seem to be preferable, since it 

does not make any assumptions about the distribution of i. However, we are interested 

                                                                          

15. Máñez et al. (2009) use a panel for Spanish manufacturing firms to show that prior R&D experience matters in the 

current decision to invest in R&D, which is consistent with the existence of sunk costs. This study has some variables 

in common with ours, such as an index of labour quality, which has a expected positive and statistically significant 

coefficient. 

16. See Máñez-Castillejo et al. (2004) and Peters (2005), and the references cited therein, for a thorough revision of all 

this literature. 

17. We will relax this assumption below. The list of potential endogenous variables contains human capital variables, 

such as the share of skilled workers, financial variables (equity share, debt-assets ratio, share of banking debt) or market 

concentration variables. 

)0'(1 11 itiititit uxyy
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in the magnitudes of the partial effects, which depend not only on the covariates xit but also 

on the distribution of the unobserved heterogeneity —more on this below. The correlated 

random effects framework allows us to avoid the uneasy RE assumption of independence 

between xit and i, but at the same time allowing for some correlation. Further, following 

Wooldridge (2005), you can conveniently specify a distribution of i that suits you well from a 

computational perspective. 

Concerning the second problem, you have to decide how to treat the initial 

condition, since the joint density of (yi1,…, yiT) given (yi0, xi, i) is 

 

(2) 

which depends on yi0 when t=1. Wooldridge (2005) suggests to model the distribution of i 

conditional on yi0 and xi, which allows to integrate out i and leads to the joint density 

of (yi1,…, yiT) given (yi0, xi). Then, MLE conditional on (yi0, xi) can be used, which can be 

computationally simple. In order to follow this strategy, we assume that the firm-specific 

heterogeneity depends on the initial condition and the strictly exogenous variables in the 

following way: 

 

(3) 

where it is further assumed that ai iid N(0, 2
a) and that ai  (yi0, xi0), and thus: 

 

(4) 

Hence, the probability of being an innovator is given by: 

 

(5) 

which yields a likelihood function that has the same structure as in the standard RE panel 

data probit model. 

It has to be noted, though, that Wooldridge (2005) suggested using either the time 

averages18 of xit or the whole vector xi=(xi1,…, xiT) in order to model the distribution of 

the individual heterogeneity, as put forward by Chamberlain (1980). However, given that this 

estimator requires a balanced panel, which limits the number of observations, and that we are 

potentially dealing with some endogenous covariates, we opted to include the initial value of 

the explanatory variables xi0 instead. This way, we reduce the number of explanatory variables 

and, at the same time, avoid estimation biases, since if some variables in xit are not strictly 
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exogenous, then some of the elements in txit or in xi would be correlated with the error 

term uit. Moreover, much of the information contained in either txit or in xi is embedded in xi0 

since there exists a relatively high degree of persistence in most of these variables. 

As regards the third problem, endogeneity is tackled in two ways: playing with the 

lags between the decision to innovate and the outcomes of that decision, and using control 

function methods à la Rivers-Vuong and Blundell-Smith, as in Papke and Wooldridge (2008). 

Firstly, and in line with most of the empirical literature on innovation, we will estimate our 

empirical specifications including all covariates lagged one period. The rationale for this is the 

following: at the beginning of time t, when managers gather to decide whether to undertake 

innovative activities or not, their information set contains the explanatory variables up to t-1. 

Some of these variables are exogenous to their decision to innovate, such as the sector 

capital intensity or the stock of public knowledge available in a particular region, while others 

are not. The latter —indeed, most of the variables in our study— can be regarded as 

predetermined, since they reflect choices made in the past and are not affected by future 

decisions about innovation. For instance, the growth rate of real sales would reflect the 

innovative effort made in the recent past in order to improve the quality of a firm’s products, 

but, a priori, there are no particular reasons to expect that current sales reflect the expected 

decision to innovate in, say, three years time. 

However, there are some regressors that may be potentially endogenous to the 

decision to innovate. Some of them have already been identified, such as financial variables 

(equity share, debt-assets ratio, share of banking debt) or market concentration variables, 

while others have received less attention in the literature on innovation, such as the share of 

skilled-labour or of temporary workers. As regards market structure variables, in our short 

sample (2003-2007), market conditions are unlikely to change much in response to firms’ 

innovative activities, so endogeneity would not be an issue. Moreover, since the focus of 

this paper is not on financial issues, we will not pay a particular attention to the endogeneity 

of the financial ratios. Hence, we will try to deal carefully with the simultaneity of human capital 

variables. 

There are several reasons to expect the share of qualified personnel to be related to 

technological factors. Indeed, according to the theories that emphasize the role of skill-biased 

technological change, the share of skilled-labour would be determined by the technological 

content of the productive process and, hence, endogenous to the decision to innovate. 

Additionally, this share in period t would reflect innovative choices made in periods t,t-1,t-2,… 

but, also, it would be reasonable to expect it to depend on technological choices expected 

in t+1,t+2,…,t+k. Similar arguments can be made for the portion of fixed-term employees or 

for training expenditures. 

As a consequence, we will deal with endogeneity as in Papke and Wooldridge 

(2008), who present an attractive framework to estimate nonlinear panel data models where 

endogeneity might be an issue in the spirit of Rivers and Vuong (1988). In order to do this, 

let us express our structural model as: 

(6) 

where the vector wit contains the potentially endogenous variables, that can be correlated 

with uit, and the exogenous variables are zit=(z1it, z2it), where we need some time-varying, 
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strictly exogenous variables z2it to be excluded from (6). We also model the unobserved 

heterogeneity as in (3): 

 (7) 

where ai/zi N(0, 2
a). Equation (7) can be plugged into (6) to arrive to a similar expression 

as (5). Next, we have to assume a linear reduced form for the endogenous variables, wit:19 

(8) 

where, if necessary, we can allow the coefficients in (8) to depend on t. The addition of yi0 and 

zi0 follows from the Chamberlain (1980)’s correlated RE device, as in equation (3). The nature 

of endogeneity of wit is through the correlation between uit  and vit, the reduced form error. 

If it is further assumed that uit = vit+eit, where eit/(zi, vit) N(0, 2
e), then it can be shown that 

the structural model has the following form: 

(9) 

where the subscript “e” denotes division by (1+ 2
e)1/2. This equation is the basis for 

estimation. Papke and Wooldridge (2008) propose a simple two-step estimation procedure 

for the scaled coefficients which consists of 1) estimating the reduced form for wit and 

obtaining the residuals v̂ it for all (i,t) pairs, and 2) estimating the probit of yit on yit-1, wit, z1it, yi0, 

z1i0, v̂ it to estimate the scaled coefficients. They also suggest using two-step pooled 

methods, because they are very computationally attractive. To be more specific, we will use a 

pooled probit for the first stage and a pooled probit QMLE for the second stage. Moreover, 

due to the two-step nature of the procedure, the standard errors in the second stage have 

to be adjusted for the first stage estimation. We will use bootstrap methods in our empirical 

exercise. Further, it has to be noted that a test of endogeneity of wit is easily obtained as an 

asymptotic t statistic on v̂ it. 

4.2 Variables 

4.2.1. DEPENDENT VARIABLE 

We will define an innovative company as a firm that exhibits positive R&D expenditures 

in a given year.20 This choice is determined by the fact that this is the only available 

proxy for innovation we have at our disposal in the Central de Balances database. It implies 

that we analyze the role of absorptive capacity variables from the point of view of innovation 

inputs, which might be different than that for the behaviour of innovation outputs. 

Given the tight link found in the literature between inputs and outputs in the innovation 

process [see Crépon et al. (1998)], we believe that this distinction is not so relevant. 

This notwithstanding, as we are aware that this choice may be somehow problematic, we will 

use two additional proxies for innovative activities —more on this below— which result from 

                                                                          

19. In this exposition, we assume, for simplicity, that we have a single endogenous explanatory variable. 

20. See Table 5 for a description of all the variables used in the estimation exercise. 
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matching our database with the PITEC database. The first alternative dependent variable is 

an indicator variable that takes the value of one when a firm has positive innovation 

expenditures in the corresponding year —which are a broader measure that encompasses 

R&D outlays—. The second one, which is more outcome-oriented, is a dummy variable 

that equals one whenever a company declares to be involved in an innovative project that 

has not been finalized yet or has been abandoned as of date t. 

As it can be seen in Table 6, which shows transition probabilities for our main dependent 

variables, the innovation behaviour is highly persistent at the firm level, both in the larger 

(unbalanced) sample and in the constrained (balanced) sample. In both samples about 89% 

of innovating firms in one period continued to be innovative in the subsequent period, 

while 11% ceased to be innovators. Similarly, around 97% of non-innovative firms maintained 

this status in the following period, while just 3% of them became innovative firms. In other 

words, the likelihood of being innovative in period t+1 was nearly 87 percentage points higher 

for innovators than for non-innovators. Finally, the transition probabilities for (positive) 

innovation expenditures are quite similar than those for R&D expenditures. 

4.2.2 SPILLOVERS AND THE ABSORPTIVE CAPACITY OF A FIRM 

As we have emphasized in the second section, the literature on R&D has stressed the role of 

knowledge spillovers in the decision to invest [Griliches (1992)]. Spillovers may be understood 

as knowledge borrowed by research teams in one firm from the ideas generated by other 

firms in either the same industry or in a different sector, even across regions or countries. 

In this vein, and with the purpose of analyzing the relevance of different types of spillovers, 

we have built several measures of spillovers using aggregate data at both the sector and 

regional level. We have computed the stock of business R&D capital —using the perpetual 

inventory method— for each of the different industries at the national level and for each 

region irrespective of the industry,21 so that we can study whether it is more relevant the stock 

of knowledge capital at a regional level or at an industry level. Moreover, we have also 

calculated the stock of public R&D capital by region22 —there was no sector disaggregation 

for this variable—. Further, another way to take into account these spillovers is that suggested 

by Máñez-Castillejo et al. (2004). Region-specific spillovers are captured by the fraction of 

firms that perform R&D activities in the same region, irrespectively of the corresponding 

two-digit industry. Industry-specific spillovers are the fraction of firms that perform R&D 

activities in the same industry, be they in the same region or not. 

However, we have argued in Section 2 that, in order to take advantage of these spillovers, 

firms have to develop their own research skills. Thus, in line with some of the literature, such 

as Griffith et al. (2003 and 2004), Jaffe (1986) or Guellec and Van Pottelsberghe (2004), we 

proxy a firm’s absorptive capacity in our baseline specification with its R&D intensity, 

measured as R&D spending over total sales.23 However, following the seminal paper of 

Cohen and Levinthal (1989) we have also tried a specification where the absorptive capacity 

depends on the firm’s R&D capital stock, rather than the flow. Additionally, we will also 

study the role of some human capital variables in the decision to innovate, both their 

direct impact and indirect one, which we will link to absorptive capacity. More concretely, 

                                                                          

21. See Table 5 for a description and Table 7 for some summary statistics. 

22. This includes R&D spending of both high education institutions and public administration. 

23. There might be some objections to the use of lagged R&D intensity as a regressor, since the dependent variable is 

also a function of R&D expenditures. Note, however, that we already take into account the role of state dependence, 

i.e., we include the lagged dependent variable and the initial condition in the regressions. Thus, the impact of R&D 

intensity goes beyond capturing state dependence, and we link that impact to firms’ absorptive capacity. 
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we consider the skill composition of a firm’s labour force and provision of on-the-job training 

(measured as the share of managers, professionals and technicians in total employment 

and real training expenditures per employee respectively), and some measures of job 

instability —the share of temporary employees—. 

 4.2.3 OTHER CONTROLS 

The empirical literature traditionally distinguishes several groups of variables that 

determine the decision to innovate, besides those related to the existence of spillovers and 

firms’ absorptive capacity. The incentive to invest in R&D depends on the economic 

and technological opportunities faced by the firm, on appropriability conditions, on market 

characteristics, on the business cycle and other macroeconomic factors and, finally, on other 

unclassified determinants. As regards the economic opportunities [Schmookler (1962)], 

these are determined by factors such as the expected future demand, the size and growth 

of the market and the willingness of society to pay for new or improved products. To proxy 

for these things we consider the growth rate of firms’ sales, in order to account for firm- and 

sector-specific demand shocks,24 and time dummies, to capture macro-level changes, such 

as the business cycle. 

Another group of variables influencing the decision to innovate relates to 

technological opportunities. The usual way to proxy for this, which we follow, is to employ 

two-digit industry dummies. Also, it has been argued that technological opportunities 

decrease with the life cycle of the firm’s product [Cohen, Levin and Mowery (1987)], since 

newly born firms are typically very innovative [Huergo and Jaumandreu (2002)]. There should 

be, then, an inverse relationship between age and the propensity to innovate at the industry 

level. In order to control for this, we include the variable age measured as the difference 

between the current year and the year of foundation reported by the firm. 

Appropriability conditions are also a main determinant of the decision to undertake 

innovative activities. The literature has found two opposing effects of low levels of 

appropriability on R&D investment. On the one hand, there is the traditional disincentive effect 

because of the difficulties to appropriate the benefits of a firm’s own investments 

[Schumpeter (1942) and Arrow (1962)]. On the other hand, when appropriability is low, 

spillovers among firms are higher and, in order to profit from them, firms may need to 

invest in R&D with the purpose of developing sufficient absorptive capacity [Cohen and 

Levinthal (1989)]. To control for appropriability conditions we introduce the total number of 

patents granted in the same region where the firm operates, which is a variable that is 

calculated using data for the whole economy disaggregated by region from the National 

Statistics Institute.25 

Market characteristics, such as the degree of market concentration and competition, 

have an important role in the decision to innovate. The degree of market power has 

traditionally been highlighted as a crucial determinant of innovation [Schumpeter (1942) and 

Arrow (1962)], since it allows firms to prevent imitation and, thus, appropriate returns from 

innovation. Moreover, increased monopolistic power means higher price-to-cost margins, 

which enhances the financing of innovative activities via higher profits. Additionally, as far 

                                                                          

24. We also included the growth rate of industry sales, but it turned out to be non significant, so it was removed. 

25. We would have liked to build an industry-level measure, such as the one used by Beneito (2003), which is the ratio 

between the total number of patents granted and the total number of firms that assert to have achieved innovations in 

the firm’s industrial sector. However, we cannot build the same proxy, since we do not have the number of patents 

granted to the firms in our database. 
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back as Scherer (1967) it was established the potential existence of an inverted U-shaped 

relationship between competition and innovation. On the one hand, innovation should decline 

with competition, as more competition reduces the monopoly rents that reward successful 

innovators. On the other hand, firms have to innovate in order to stay in business owing 

to competitive pressures, particularly in industries with a higher degree of neck-and-neckness 

[see Aghion et al. (2005)]. Therefore, the incentives to innovate increase with moderate 

amounts of competition, where the escape-competition effect predominates, and then 

fall due to the excess competition and the Schumpeterian effect of reduced appropriability 

of profits. In order to account for this, several indicators of market power were computed: 

two measures of concentration, the concentration ratio of the three largest firms in the 

relevant market and the market share of the 10% largest firms, a proxy for the price-to-cost 

margin26 and the Herfindahl index —which is computed for the employment share using data 

from the DIRCE, which is a database that registers basic information about the population 

of all firms—, and finally, the (in-sample) market share of each firm. Although Artés (2008) 

shows the importance for innovation of using several indicators of competition in his study of 

the Spanish manufacturing sector, we will see that none of these variables turned out to be 

significant in our regressions. Another important issue regarding market power is the threat 

posed by potential competition from entrants. Barriers to entry can both weaken or favour 

the incentives for innovation. The Schumpeterian view expects a positive effect from barriers 

to entry, while others argue that they reduce the stimulus to introduce new products. 

Barriers to entry can be proxied by the average capital intensity of the industry [Kraft (1989)]. 

In our case, we calculate the (in-sample) industry average of plant and equipment assets 

per worker. 

It is a commonly held view that innovation activities are difficult to finance in a 

competitive market setting with capital from sources external to the firm. In other words, there 

exists a gap between the rate of return required by the entrepreneur investing his own funds 

and that required by external investors [Arrow (1962)]. Therefore, unless the innovative firm is 

already profitable, some innovations will fail to materialize only because of too high a cost of 

external capital. Hall (2002) provides an excellent review of both the theoretical and empirical 

literature on internal finance and R&D, so we are not going to survey these questions in 

depth. She highlights some features of this type of investment27 that imply that debt or equity 

finance will be relatively more expensive for R&D than for ordinary investment, which suggests 

an important role for retained earnings —cash flow— in the decision to innovate, as has been 

shown by the pioneer works of Hall (1992) and Himmelberg and Petersen (1994). 

Hence, we are going to introduce some measures of financial constraints in our 

empirical exercise. The first is the ratio of equity to liabilities, as a measure of the relevance 

of cash flows and retained earnings on the decision to innovate. The second is the share of 

short-term liabilities to total liabilities, as a measure of financial vulnerability, since these 

liabilities must be refinanced each year out of current cash flows and R&D projects 

usually lack a regular stream of cash flows. And the third one is the share of bank loans on 

                                                                          

26. Computed as (gross operating surplus – financial expenditures)/sales. 

27. First of all, R&D investment –the main innovative activity– has a high degree of uncertainty associated with its output, 

which tends to be greatest at the beginning of the research project. Research programs usually have small probabilities 

of great success in the future, so that the asymmetric information problem is enhanced. Investors have more difficulty 

distinguishing good projects from bad and, thus, charge a higher risk premium for financing. Moreover, the information 

asymmetry cannot be reduced through greater transparency, because firms are reluctant to reveal their innovative ideas 

for fear of being imitated. Second, the knowledge asset created by R&D investment is intangible, partly embedded in 

human capital and usually very firm-specific, whereas creditors prefer to use tangible assets as collateral for their loans. 

Third, R&D programs are characterized by an uncertain and unstable stream of cash flows, which undermines debt 

financing, since servicing this debt requires a stable source of cash flows. 
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total liabilities. This latter variable is crucial in the Spanish case, since it has a bank-dominated 

financial system. 

Indeed, a number of recent papers have stressed the role played by bank finance in 

fostering or hampering innovation. The development of financial intermediaries may help 

reduce the cost of acquiring information and allow a better assessment, selection and 

monitoring of R&D projects. Another channel that is particularly relevant in the Spanish 

economy is through bank competition and the expansion in the supply of credit that it brings. 

The period under study, 2003-2007, has witnessed a substantial increase in bank credit in 

a context of lax financial conditions which has flowed to most sectors of activity, although 

particularly so to the housing sector, which may have crowded-out credit flows to 

other sectors, for instance, the research sector. However, other authors argue that 

relationship-based bank financing discourages new technologies because bank officers 

are unable to evaluate them. Overall, the empirical literature tends to find a positive effect of 

bank financing on innovation, although there are some exceptions.28 

Finally, a number of firm characteristics have also been stressed by the literature 

as important determinants of the propensity to innovate. Firm’s size:29 innovations are so 

expensive that only large firms can support them, due to the existence of fixed (sunk) costs 

or economies of scale that allow to spread the cost of R&D between more units of output 

(this is what Cohen and Klepper call “cost spreading” and applies not only to firm’s size but to 

the size of the market as well). In addition, large firms can undertake more innovation projects 

of the same magnitude than small firms so that they can pool the risks and reduce aggregate 

risk [Kraft (1989)]. Firm size is measured by the (log) number of employees, as in most of the 

literature. 

Further, the degree of international competition is measured by the penetration of 

imports in the industry where the firm operates, while the degree of internationalization is 

proxied by a dummy variable that takes the value of one when the firm reports positive export 

earnings. Indeed, firms operating in international markets are exposed to different competitive 

settings which, among other things, could be the source of new ideas leading to innovation 

[see Cassiman and Martínez-Ros (2005) for the Spanish case). Moreover, some authors 

have stressed that foreign owned firms are less likely to engage in innovative activities. 

One potential reason is the fact that R&D activities play a crucial role in the long term 

strategy of a company and managers wish to keep direct control over such activities, 

thus R&D activities are usually located close to the companies’ headquarters [Bishop and 

Wiseman (1999)]. We control for this factor with a dummy variable that equals one when a 

foreign company has a positive share in a firm’s equity. Additionally, we account for the fact 

that the company may receive funding from the public sector in the form of subsidies to fixed 

capital. This is justified by the fact that, to the extent that fixed capital and knowledge capital 

are complementary inputs in the productive process, then subsidizing physical assets could 

have a positive impact on the accumulation of knowledge capital. 

                                                                          

28. Benfratello et al. (2008), Herrera and Minetti (2007) and Huynh and Rotondi (2007), using similar data for the Italian 

economy, find evidence in favour of a positive effect of bank financing, in particular, for innovative activities of firms in 

high-tech sectors, that depend more on external finance and that have a lengthy credit relationship. Additionally, some of 

the results suggest that relationship-based lending has a benefit on innovation not by fostering R&D, but by channelling 

funds for the introduction of new technologies. On the contrary, Atanassov et al. (2007), using a large panel of US 

companies, find that firms relying more on arms’ length financing (equity and debt) have a larger number of patents. 

29. For a thorough study on the relationship of size and R&D see Cohen and Klepper (1996). 
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Table 7 reports the descriptive statistics for the variables used in the estimation 

exercise. It turned out that for almost all variables the variation across firms (between 

variation) is higher than the variation within firms over time. Further, 25% of the observations 

correspond to innovative firms. 
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5 Econometric results 

5.1.  Main results 

Table 8 reports the estimation results for the dynamic RE probit model using a balanced 

panel for the period 2003-2007. In addition, we compare our results with the static 

pooled and RE models, as well as with a dynamic RE model which only controls for the 

initial condition. Moreover, the static models are estimated for the whole sample (1991-2007) 

in order to check whether the results are very sensitive to the estimation period —which they 

are not, see below. 

The first result that is worth remarking is the fact that the lagged dependent variable 

is a relevant determinant of the decision to innovate. Even after accounting for individual 

unobserved heterogeneity, past innovative experience is highly significant, thus confirming the 

existence of true state dependence. The results further show that the initial condition is also 

highly significant, which, in our estimation framework, implies that there is a substantial 

correlation between firms’ “pre-sample” innovation status and firm-specific heterogeneity. 

Moreover, the statistical significance of several variables tends to weaken, or even disappear, 

when we go from the static to the dynamic specifications —see export status, share of skilled 

labour, the equity ratio and the share of banking liabilities—. There are two interpretations to 

this result. The first one would point to the fact that some of these variables, which are 

themselves highly persistent, might be picking up the impact of the lagged dependent 

variable in the static regressions. The second explanation is related to the way we model the 

unobserved heterogeneity. Given the short time span considered in the estimation exercise 

and the somewhat high persistence of some of these variables, including the covariates in t=0 

might be detracting statistical significance from those variables. 

It is also worth remarking that the results provide evidence that firm-specific 

heterogeneity is a key factor for innovation persistence. The importance of this variable in 

explaining the variance of the likelihood of innovation can be gauged from the statistic , 

which measures the share of the variance of the dependent variable explained by unobserved 

heterogeneity.30 In the static models, that share amounts to over 80% of the variation in the 

dependent variable, while in the dynamic models there is a marked reduction to between 

12% and 18%. Moreover, it has to be highlighted that the Wald test on the joint significance 

of the explanatory variables in t=0, which were included to account for the correlated RE 

framework, fails to reject that they are not statistically significant (see the Wald-Heterogeneity 

line under the final column). Additionally, the LR test on the null hypothesis that =0 also 

failed to be rejected, which is somehow counterintuitive. The results of these two tests are 

features that hold for all the estimates that we are going to present; therefore we opted to 

consider the specification where we model firm-specific heterogeneity as: 

 

(10) 

                                                                          

30. In other words, = a
2/(1+ a

2). 
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as our baseline specification (fifth column in Table 8), in contrast to equation (3).31 The results 

are quite similar in this case than when we model i as in (3), except for a slight decrease 

in the statistical significant of some variables. These estimates are available upon request. 

However, the most important finding is that in addition to past innovation experience, 

the existence of spillovers coming from the stock of “sector” knowledge generated by other 

firms and the firm’s capacity to assimilate that knowledge, as measured by the R&D intensity, 

are related to the decision to innovate. The stock of knowledge generated in the same 

sector of activity of a firm (k priv-sec) has a positive impact on its probability to innovate; 

however, this effect is enhanced when we account for the firm’s absorptive capacity, proxied 

by the ratio of R&D expenditure over sales (k priv-sec*R&D intensity). Indeed, if we compute 

the average partial effect32 for these two variables (more on this below, in section 5.2), then 

we have a coefficient of 0.023 for the stock of knowledge capital and of 0.113 for its 

interaction with the R&D intensity. In other words, the marginal impact of knowledge spillovers 

on the probability of innovation would increase six-fold, from 0.023 to 0.136, for a firm that 

raises its R&D-to-sales ratio from 0% to 1%, which is substantial. 

 Moreover, the coefficients of human capital variables, such as the share of skilled 

workers and the share of temporary workers, are also significant. That is, firms with a higher 

share of skilled workers have a larger probability of doing R&D activities, while those which 

have a greater portion of temporary workers tend to have a lower propensity to innovate. 

On the other hand, the coefficient for training expenditures is less precisely estimated, 

although overall tends to be positive, and statistically significant for the whole sample in 

static models. All in all, these results highlight the important role of spillovers, the absorptive 

capacity and human capital variables in the dynamics of firms’ innovation behaviour. 

There are some additional firm characteristics that are found as well to be relevant 

in explaining the innovation decision. As regards financial factors, firms that have a larger 

share of short term liabilities are less likely to invest in R&D, since they are more likely 

to be financially constrained. Moreover, the presence of bank financing seems to be beneficial 

for innovation, thus confirming the hypothesis that commercial banking ameliorates the 

monitoring problem of capital markets. In other words, financial intermediaries help reduce 

the cost of acquiring information and allows a better assessment, selection and monitoring 

of R&D projects. Finally, firms with a higher share of equity, i.e. with more internal resources, 

are more likely to engage in R&D activities, as expected. 

Furthermore, the proxy for appropriability conditions —the number of patents per 

region— has a negative and statistically significant coefficient, which suggests that the larger 

the appropriability, the lower the incentives to innovate, since firms cannot easily profit from 

spillovers. Besides, firms that received public funding for capital expenditures (capital grants) 

in the previous period exhibit a higher propensity to innovate in the subsequent period than 

firms without such financial support. Likewise, we find that exporting firms tend to have a 

higher probability of being innovative, as expected. Shocks to firms’ demand, as proxied 

by the growth rate of sales, and firm size have a positive impact on innovation, as found in 

previous papers. 

                                                                          

31. An additional advantage is that we conserve on degrees of freedom as we avoid overparameterization. 

32. Notice that in order to compute the average partial effect one has to multiply the scale factor (see the “scale factor 

for APE” at the bottom of the table) by the estimated coefficient. This also allows comparing the results from the different 

methods of estimation, which are not directly comparable due to different normalizations. 
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However, and contrary to most literature, we do not find any significant impact of 

market structure variables on the decision to innovate. This result would be consistent with 

the idea that, in general, changes in the market structure of an industry take time to 

materialize and, since we are working with a five-year sample, it is difficult to capture their 

effect on firms’ decisions. This might also be due to the fact that we have used bad proxies 

to account for market structure factors. Yet, besides using the firm’s market share, the 

degree of import penetration and the measure of concentration based on the market share 

of the 10% largest firms, we have checked for the robustness of our results including the 

price-to-cost markup and two other measures of concentration, one based on the market 

share of the 3 largest firms and another one based on the Herfindahl index. This last variable 

has been built using data on employment from the DIRCE, which is closer to the “desired” 

population. These variables turned out to be non significant either and did not alter the main 

thrust of our results. 

Another sensitivity analysis that we implement is to compare our baseline results with 

those coming from estimating our model for the whole sample, in order to check the stability 

of our results, both across time and across firms, since we are working with a sub-sample. 

Since the dynamic methods require balanced panels, we only estimate static pooled and RE 

probits (see columns 2 and 4 in Table 8).33 Now, we have 2,500 firms and 16,590 

observations. Overall, there are not many significant differences in the estimation results, 

which underpins the robustness of our empirical exercise. We would highlight, however, 

that, in the whole sample training expenditures turn out to be a statistically significant driver 

of innovation —as we already mentioned above—, while the degree of import penetration 

negatively affects the decision to invest in R&D. 

Given our focus on human capital variables as catalysts of innovative activities within 

firms, we present in Table 9 the results of an exercise that accounts for the role of those 

variables as enhancers of firms’ absorptive capacity. In other words, we try to disentangle 

whether the impact of human capital variables comes from their ability to improve firms’ 

absorptive capacity or from other factors. In order to do this, we replace the interaction 

between “k priv-sec” and “R&D intensity” with the interaction between “k priv-sec” and a 

human capital variable, one at a time.34 In the second column it can be seen that, on the one 

hand, skilled workers tend to improve firms’ capability to absorb spillovers and, thus, 

encourage innovation, but on the other, skilled labour per se tends to diminish the probability 

of innovation. This last result, though counterintuitive at first, could be rationalized as in 

Kraft (1989). He argues that this kind of workers is mostly employed to fulfil administrative 

tasks (e.g. accounting, marketing, finance, etc). Hence, a high percentage of skilled-workers 

can indicate that a firm has a bureaucratic structure, which impedes innovative activity. 

In fact this is what he finds in his empirical exercise.35 In short, we provide some evidence 

that the positive sign attached to this variable in the baseline equations may be due to the 

fact that it is accounting for an enhanced absorptive capacity rather than better qualifications 

of the workforce. 

                                                                          

33. We have to do away with the stock of private sector knowledge capital and its interaction with R&D intensity 

because we cannot compute these variables for the whole sample due to lack of data. 
34. We run a regression including the interaction of “k priv-sec” with all human capital variables at once and the results 

were similar. This is available upon request. 

35. Additionally, Romijn and Albalejo (2002) find that the share of technicians in a firm’s labour force decreases its 

probability of innovation while the percentage of engineers increases it. They argue that this result reflects the fact that 

only specialized knowledge and experience in science and engineering, rather than practical intermediate-level skills, 

are important for innovation. In our exercise we are not able to distinguish between engineers and technicians, which 

could explain the lack of robustness of the coefficient of skilled labour. 
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The amount of resources devoted to training is also positively and statistically 

significantly related to the decision to innovate through its impact on the firm’s absorptive 

capacity, while the parameter for this variable alone would be positive but non-significant. 

On the contrary, the share of fixed-term employment does not seem to hamper the 

absorption of external spillovers and, thus, innovative activities, since the coefficient is 

negative, but statistically insignificant. Its impact on these activities would come from other 

channels, such as less motivation or less acquisition of specific human capital, as suggested 

by Albert et al. (2004) for the Spanish case. The rest of the results are, overall, quite similar 

qualitatively, although quantitatively the coefficients are less precisely estimated. 

5.2 Magnitude of the effects  

In this section we provide some estimates of the increase in the probability of undertaking 

innovative activities that can be expected from a change in the main variables in our study. 

We believe that this computation is interesting so as to illustrate the orders of magnitude we 

are talking about, even though there are some doubts about the endogeneity of some 

relevant variables (see next section), which would hamper the reliability of the estimated partial 

effects. In order to do this, we firstly compute the partial effects of these variables. Given that 

they depend on firm-specific heterogeneity, we can compute the partial effects at the average 

(PEA), which are the partial effects for the average individual in the sample. However, this has 

the drawback that usually the average value is not representative of a large share of the firms. 

Therefore, it is preferable to estimate the average partial effect (APE), which is the average of 

all individual partial effects across time in the sample.36 

Table 10 contains the results of these estimates for our baseline regression 

(fifth column, Table 8). The first column shows the average value of the variables taken into 

consideration, while in the second column we provide the assumed change in the concerned 

variable, which will be, for simplicity, 10%, and in the third column we include the APE for our 

baseline specification. The final column calculates the estimated change in the probability of 

innovation for each variable. The first effect that we consider is the direct effect of undertaking 

innovative activities on the subsequent probability of being an innovator. This can be regarded 

as a sort of intertemporal effect that arises as a consequence of the strong state dependence 

of this type of activities. The partial effects, thus, provide the change in innovative status 

between t and t+1, from non-innovator to innovator. In other words, it computes 

P(yit=1/ yit-1=1,xi, i)-P(yit=1/ yit-1=0,xi, i) averaged out across firms and time. As we can 

see in the table, controlling for differences in observed and unobserved characteristics, 

the propensity to innovate in period t is approximately 47 percentage points higher for 

innovators than for non-innovators in period t-1. This contrasts with the transition probabilities 

calculated in Section 4.1, which showed that the change in the propensity to innovate 

between the two types of firms was close to 87 percentage points.37 

Moreover, we also compute the “double face” effect of R&D investment, which is 

an indirect effect related to its role as enhancer of absorptive capacity. In this case, for an 

assumed 10% increase in R&D intensity, we estimate that the probability of reporting positive 

R&D investment would increase by about 1 percentage point, which represents around 4% of 

the actual frequency of conducting R&D (25% is the sample mean), which is a non-negligible 

figure. As regards the human capital variables, we may see that the one with the greatest 

direct impact is the share of temporary employment, with a partial effect of -0.069. The share 

                                                                          

36. See Annex A and Wooldridge (2002 and 2005) for a deeper analysis of these issues. 

37. Peters (2005), using a similar methodology, estimates a difference of between 23 and 36 percentage points for 

German manufacturing firms and of between 8 and 13 for services firms. 
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of skilled workers also has a relatively high impact, while training expenditures have a 

small one. The partial effects of financial variables are quite similar across them and, 

for a 10% change, they imply variations in the propensity to innovate in the order of 

between 0.2 and 0.3 percentage points, a similar impact than that from the stock of sector 

knowledge capital. 

In sum, it is clear that the main factor affecting the propensity to innovate is the 

presence of true state dependence. Nevertheless, the impact of the double role of R&D 

investment is also significant, and that from other factors, such as human capital variables 

or financial variables, is smaller, though non-negligible. 

5.3 Endogeneity 

 In this section we empirically analyze the potential endogeneity of human capital variables. 

Firstly, in order to do this, we have to find some instrumental variables that must satisfy 

two conditions: i) they must be uncorrelated with the unobservable time-varying error term uit, 

and ii) they must be sufficiently correlated with the endogenous variables that we want to 

instrument.38 This is a difficult task in our particular context, since most variables at the firm 

level that can be correlated with the human resource management variables might be 

deemed to be, at the same time, jointly determined with the decision to innovate. Hence, 

given the difficulty of exploiting firm-level variation in order to identify the parameters of 

interest, we have searched for instruments outside our sample, trying to exploit the regional 

variation39 of some interesting variables. 

The first such variable —see Table 5 for definitions and sources— is the share of 

immigrants in total population by province, which is a determinant of the potential labour 

supply of temporary workers, since they are more prone to work in any type of job. At the 

same time, since it has been documented that they have a lower educational level, this share 

would be negatively correlated with the availability of skilled labour. Moreover, given their 

lower education and their different cultural background one would expect these people to be 

somehow more eligible to receive on-the-job training, so that this variable would be positively 

correlated with training expenditures. Additionally, we have used the unemployment rate by 

province as an instrument. The larger the unemployment rate, the more willing a person is to 

accept a fixed-term contract. At the same time, one could argue that a higher unemployment 

rate could result in a depreciation of human capital, as long term unemployment begins to rise 

and this, in turn, results in a deterioration of the skills of the unemployed. Hence, this would 

affect negatively the supply of skilled labour. Another relevant determinant of this supply is the 

share of people with higher education, by province. Besides, these people are less prone to 

end up with a temporary employment and one would expect them to be more likely to receive 

on-the-job training. 

Further, we have built a dummy variable that equals one when a firm has signed 

a firm-level collective bargaining agreement. One would expect that in firms with this type of 

agreement —where the influence of trade unions on management practices is arguably 

higher— the prevalence of fixed-term contracts is lower than in the other firms, since trade 

unions tend to oppose them. Also, it is likely that trade unions in these firms tend to favour 

on-the-job training programs, so a positive correlation between this dummy and the training 

                                                                          

38. There is another requirement, the order condition, which ensures that there is at least one instrumental variable 

for each endogenous regressor in order to identify the parameter of interest. 

39. Spanish regions (Comunidades Autónomas) are divided into provinces. We use both regional and provincial 

variation. 
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expenditures would be expected. Finally, we have used as an instrument the share of women, 

between 15 and 64 years old, in the population of the province. To the extent that women 

tend to be better qualified, as measured by the number of years of formal education, they 

increase the potential supply of skilled-labour.40 

As described in section 4.1, in the first stage we have regressed the human capital 

variables on all exogenous regressors and on all instrumental variables using a pooled probit 

with a fully robust variance matrix. Then we have tested whether the latter variables are jointly 

statistically significant. Indeed, in the case of skilled labour, the robust Wald test gives a 

p-value of 0.001, although individually only the coefficients for the share of women and the 

unemployment rate are significant.41 As regards fixed-term employees, the Wald test gives a 

zero p-value to three decimal places. In this case, the share of immigrants, the unemployment 

rate and the firm-level collective agreement dummy are statistically significant. And finally, 

the equation for training expenditures obtains the worst results, with a Wald test with a 

p-value of 0.109 and the unemployment rate as the only significant IV. Overall, the strength 

of these variables as instruments might be deemed as not quite satisfactory, which provides 

an avenue for future work. 

In the second stage we have estimated equation (9) adding as a covariate the vector 

of estimated residuals from the first stage, using a pooled probit QMLE. Table 11 contains the 

results for this second stage. The first column reports the baseline regression estimated with 

a dynamic RE probit model, while the second column reports estimates using the pooled 

probit QMLE, in order to check the comparability of both estimation methods. In short, the 

estimated coefficients are quite similar and we detect that those from the QMLE are a bit 

lower. The last column shows the estimates when human capital variables are allowed to be 

endogenous. First of all, the Wald test on the joint significance of v̂ it leads to reject, with a 

zero p-value to the three decimal places, which provides evidence against the null hypothesis 

that human resource management variables are exogenous. If we look at the individual 

coefficients for these residuals, the failure of exogeneity would seem to come from training 

expenditures, the only residual statistically significant. 

As regards the rest of estimated parameters, they are quite similar, both quantitative42 

and qualitatively, although there are some remarkable differences. The coefficient on the 

skilled labour variable is lower in the endogenous case, and it also loses its statistical 

significance, while on the other hand, that for training expenditures increases fivefold and 

becomes significant. The parameter on temporary employment roughly doubles and retains 

its significance. Overall, these results show that care should be taken in using human 

resource management variables in order to explain firms’ innovation behavior, since they are 

likely to be endogenous. 

5.4 Further Robustness Analysis 

Some further sensitivity analyses are carried out in this section in order to check the 

robustness of our results and explore some additional issues. Firstly, we have built an 

expanded balanced panel which extended from 2000 to 2007, but with only over 500 firms. 

We have estimated our baseline specification again for the period 2003-2007 but, in this 

                                                                          

40. We have also tried other interesting instrumental variables, such as the share of young people by province, 

the sector volatility of real sales or per-student public expenditure on education by region, but they were not significantly 

correlated with human capital variables. 

41. Results are available upon request. 

42. Note that quantitative comparisons are facilitated by the fact that the scale factor is similar. 
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case, in order to account for unobserved heterogeneity using a correlated RE framework, 

we have used the time average of the covariates for the period 2000-2002, instead of just the 

covariates in 2002. This exercise barely affected the results; hence, they are not reported 

here, but are available upon request. 

Secondly, we have run the baseline regression and regressions in Tables 12 and 13 

replacing our preferred measure of spillovers —R&D intensity— with the stock of R&D. 

The results are quite similar and are available upon request. Thirdly, we run the baseline 

regression substituting our reference measure of spillovers, so that we can check whether 

we could detect other relevant spillovers besides those coming from firms in the same sector 

of activity. In order to do this, we built two other stocks of knowledge capital using aggregate 

national statistics from INE, the National Statistics Institute: one stock of knowledge capital 

from public sector institutions43 in the same region of the firm (k pub-ca) —and no matter the 

sector— and other stock of private knowledge capital of all firms in the same region 

(k priv-ca), irrespective of their sector of activity. Table 12 shows that these two types of 

technology capital seem to generate relevant knowledge spillovers for the decision to invest in 

R&D, both alone and when interacted with the absorptive capacity variable. An additional 

implication is that not only industry spillovers matter —the traditional focus in most of the 

literature—, but those coming from the public research sector and from firms in other 

industries (in the same region) matter as well.44 

In line with Máñez-Castillejo et al. (2004), we have also computed the share of 

innovative firms in the same sector of activity across the whole country, as well as in the same 

region where the firm is located, irrespective of the industry, in order to account for 

industry-specific spillovers and region-specific spillovers. Most of the literature emphasizes 

the role of spillovers within the industry, given the technological proximity, but a number of 

papers suggest that geographical proximity generates positive externalities, market linkages 

and possibilities for cooperation that, in turn, encourage innovation activities. Again, what we 

find (Table 12, columns 4 and 5) is that technological spillovers, both at the industry or 

regional level, only matter as long as you have previous experience in R&D, or in other words, 

absorptive capacity. 

Overall, these results would be consistent with Jaffe (1986), Harhoff (2000) and 

Beneito (2001), who found positive significant effects of spillovers to the extent that this 

variable was combined with the own level of knowledge capital, which can be interpreted 

as a measure of a firm’s absorptive capacity. 

Finally, we have checked the sensitivity of our results to different measures of the 

dependent variable since, as it is well known, R&D expenditures may not be a good proxy for 

innovation. In order to do this we have merged our database with the PITEC database, which 

results in a balanced panel of around 460 firms for the period 2003-2007. PITEC is an 

interesting database because we can use total innovation expenditures instead of only R&D 

expenditures to generate the dependent variable,45 which, obviously, is a better proxy for the 

                                                                          

43. We capitalize R&D expenditures from public sector institutions and from the higher education sector, in line with 

previous literature (see Guellec and Van Pottelsberghe 2004). This makes sense since the public sector controls 

the budget —and even the research agenda— of higher education institutions in most countries. 

44. When all measures of knowledge capital are included together, then only industry spillovers are significant and the 

interaction with R&D intensity becomes non-significant. This may be due to the fact that the three measures are highly 

correlated. 

45. R&D expenditures account for around 43% of total innovation expenditures, and both variables have a correlation 

coefficient of 0.49 in this particular subsample. 
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decision to innovate. Besides, and contrary to other variables in similar databases, we have 

the data year by year, without overlapping, which would introduce artificial persistence. 

As can be seen in Table 13 (second column) the results are reasonably similar and, 

in particular, the interaction between spillovers and absorptive capacity remains highly 

significant. The rest of covariates lose a bit of significance, probably due to the fact that we 

are working with a smaller sample in both time and individuals dimensions. 

We have also used another interesting dependent variable from PITEC, Innofin, 

which is a dummy variable that equals one whenever a firm is currently involved in an 

innovative project that has not been finished yet or has just abandoned a research project. 

Again, this information is available on a yearly basis which avoids overlapping. Table 13 

(third column) shows that the main thrust of our results remains unaltered: the interaction 

between the stock of private industry knowledge capital and the firms’ R&D intensity, 

the share of skilled-labour and the portion of temporary workers are statistically significant 

with the expected signs. 
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6 Conclusions 

We have studied the role played by knowledge spillovers and firms’ absorptive capacity, as 

well as by the quality of human capital, in the decision to innovate using data on Spanish firms 

for the period 2003-2007. In order to do this, we have used the estimator proposed by 

Wooldridge (2005) for dynamic binary choice panel data models. The empirical exercise has 

provided some evidence on the positive relationship between spillovers and firms’ innovative 

behaviour, a relation which is enhanced for those firms with a higher capacity to absorb those 

spillovers. The results also confirm and highlight the role of some human resource 

management practices on the dynamics of firms’ inventive performance. 

The basic result from the analysis of spillover effects is that they are relevant not just 

for the knowledge generated in the same industry, but also for that generated in the same 

region and in different industries throughout the country. Moreover, it has been shown that 

the capacity to assimilate those spillovers may not only work through firms’ R&D capabilities 

—as traditionally envisaged—, but through such factors as the quality of the labour force, 

the share of temporary employment and the amount of resources spent in training, as well. 

Indeed, our results suggest that the effects of skilled labour and of on-the-job training work 

mainly through its impact on firm’s absorptive capacity. In addition to these factors, we have 

found that innovation performance exhibits true state dependence and that unobserved 

heterogeneity plays an important role in explaining the persistence of innovation. Further, 

some other observed firm characteristics, such as size, sales growth, export behaviour, 

sector capital intensity or financial variables (like the equity share, the percentage of 

short-term liabilities or the portion of banking loans), are also found to be related with the 

likelihood of innovation. 

From an economic policy point of view, the distinction between permanent 

innovation activities due to firm-specific factors as opposed to true state dependence has 

important implications for innovation policy, as argued by Peters (2005). If innovation 

performance shows true state dependence, policies such as government support 

programmes are supposed to have a more profound effect, because they not only affect the 

current innovation activities but are likely to induce a permanent change in favour of 

innovation. If, on the contrary, individual heterogeneity induces persistent behaviour, support 

programmes are unlikely to have long-lasting effects and economic policy should concentrate 

more on measures which have the potential to improve innovation-relevant firm-specific 

factors. 

Further, and in particular for the Spanish economy, our results would provide an 

additional argument in favour of tackling the high prevalence of temporary employment, since 

it seems to be detrimental for firms’ innovation performance. Moreover, given the fact that 

Spanish firms are not only lagging behind R&D spending, but also in the skill qualification of its 

workforce and in on-the-job training, it will not be enough to devote large quantities of public 

resources to support R&D activities; policy-makers have as well to make sure that Spanish 

corporations are able to benefit from that effort. 
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TABLES AND FIGURES 

Table 1: Central de Balances coverage rates 

 

 

Table 2: Sample description (I) 

 

 

 

Database coverage1, 2005

Value-added Employment Wages

Energy 71.3 57.5 79.1
Industry 28.5 18.1 27.4
Mkt. Services 20.4 23.7 26.3
Other 2 7.6 6.7 10.2

1 Ratio CB firms'  to National Accounts' non-financial sector aggregate
2 Includes agriculture and construction

Period average
Extended Res tricted CB-PITEC

Number of firms 2565 787 470
Number of observations 23082 4722 1340
Minimum nº of consecutive obs. per firm 4 6 5
Median nº of consecutive obs. per firm 8 6 5
Balanced? no yes yes
% innovating 24.9 25.2 35.8
Sector distribution

energy & utilities 4.3 6.1 5.1
industry 38.9 36.2 46.9

market services 38.5 39.7 31.9
other1 18.3 18 16.1

Size distribution
SMEs2 53.6 47.7 27.5
Large 46.4 52.3 72.6

% exporting 57.8 58.6 71.1
% stock market 7 7.1 9.7

1Includes extraction, agriculture, fishing and construction
2250 or less employees

Sample
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 (II) 

sector Observations % of total % R&D>0 Observations % of total % R&D>0 Observations % of total % R&D>0

Agriculture and forestry 288 1.25 19.44 33 0.70 27.27 1 0.04 100.00
Fishing 4 0.02 0.00 0 0.00 0.00 0 0.00 0.00
Extraction of fuels 165 0.71 37.58 30 0.64 36.67 10 0.43 50.00
Extraction of other minerals 46 0.20 21.74 0 0.00 0.00 0 0.00 0.00
Manufacture of food products, beverages and tobacco 1793 7.77 25.21 311 6.59 26.69 174 7.40 35.06
Manufacture of coke and refined petroleum products 142 0.62 72.54 36 0.76 80.56 20 0.85 65.00
Manufacture of chemicals and chemical products 1759 7.62 59.86 341 7.22 62.46 222 9.45 68.47
Manufacture of other minerals 795 3.44 30.82 127 2.69 27.56 96 4.09 25.00
Manufacture of basic metals 1147 4.97 37.05 268 5.68 37.69 185 7.87 39.46
Manufacture of machinery and equipment 821 3.56 57.25 138 2.92 70.29 83 3.53 83.13
Manufacture of electrical equipment 875 3.79 59.77 135 2.86 57.78 90 3.83 64.44
Manufacture of transport equipment 1052 4.56 43.16 210 4.45 48.57 140 5.96 58.57
Manufacture of textiles 747 3.24 20.62 122 2.58 29.51 85 3.62 34.12
Manufacture of articles of fur, leather and footwear 129 0.56 20.16 36 0.76 22.22 20 0.85 30.00
Manufacture of wood and of products of wood and cork 214 0.93 23.83 36 0.76 50.00 25 1.06 60.00
Manufacture of paper and paper products 698 3.02 15.62 176 3.73 19.32 85 3.62 20.00
Manufacture of rubber 383 1.66 33.68 66 1.40 31.82 45 1.91 37.78
Other manufactures 361 1.56 27.70 54 1.14 16.67 25 1.06 28.00
Energy, gas and water 533 2.31 45.40 162 3.43 37.65 65 2.77 69.23
Water collection, treatment and supply 461 2.00 10.20 128 2.71 10.94 55 2.34 16.36
Construction 1624 7.04 12.13 275 5.82 9.82 90 3.83 21.11
Trade 3813 16.52 7.76 850 18.00 10.94 374 15.91 16.04
Transport and communications 1780 7.71 9.44 437 9.25 10.53 175 7.45 19.43
Hotels and restaurants 646 2.80 1.08 168 3.56 0.00 60 2.55 0.00
Real state and other professional services 2806 12.16 13.15 583 12.35 11.49 225 9.57 20.00

Total 23082 100 24.90 4722 100 25.20 2350 100 35.80

Extended Restricted CB-PITEC 
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 (III) 

Observations % of total % with R&D>0 Observations % of total % with R&D>0 Observations % of total % with R&D>0

Andalucia 1444 6.26 12.26 216 4.57 8.80 70 2.98 14.29
Aragon 639 2.77 26.13 144 3.05 35.42 90 3.83 45.56
Asturias 535 2.32 19.07 108 2.29 10.19 55 2.34 16.36
Baleares 387 1.68 6.72 92 1.95 2.17 20 0.85 0.00
Canarias 560 2.43 6.43 102 2.16 0.98 15 0.64 0.00
Cantabria 274 1.19 26.64 66 1.40 27.27 30 1.28 50.00
Castilla La Mancha 329 1.43 19.15 84 1.78 23.81 35 1.49 48.57
Castilla y Leon 679 2.94 33.28 182 3.85 35.71 78 3.32 48.72
Cataluña 5674 24.58 29.56 1330 28.17 26.02 697 29.66 35.87
Com. Valenciana 1905 8.25 20.68 306 6.48 25.49 135 5.74 34.07
Extremadura 34 0.15 64.71 6 0.13 100.00 5 0.21 100.00
Galicia 826 3.58 15.98 138 2.92 18.12 55 2.34 29.09
La Rioja 67 0.29 19.40 14 0.30 0.00 7 0.30 0.00
Madrid 7193 31.16 25.34 1358 28.76 26.36 723 30.77 34.44
Murcia 401 1.74 9.98 102 2.16 13.73 55 2.34 21.82
Navarra 442 1.91 31.00 98 2.08 34.69 62 2.64 46.77
País Vasco 1656 7.17 38.65 364 7.71 39.56 218 9.28 47.71
Ceuta y Melilla 37 0.16 0.00 12 0.25 0.00 0 0.00 0.00

Total 23082 100 24.9 4722 100 25.2 2350 100 35.8

detcirtseRdetcirtseRdednetxE



BANCO DE ESPAÑA 40 DOCUMENTO DE TRABAJO N.º 1015

Table 5 

 

 

 

VARIABLE DEFINITION

Variable  Definition
Alternative endogenous variables

Innovation =1 if a firm i has positive R&D expenditures in year t. These expenditure include those outlays 

incurred to discover new knowledge and to develop that knowledge into a design for a new product 

or a new productive process.

Inno_exp =1 if a firm i has positive innovation expenditures in year t. These include R&D spending, acquisiton 

of external knowledge, machines and equipment, training, market introduction, design and other 

preparations for product and/or process innovations. Data from PITEC

Innofin =1 if firm i has an innovative project that has been abandoned or has not been finalized yet as of 

date t. Data from PITEC

Explanatory variables

Size Number of employees of firm i in year t-1, in logs

Age Age of firm i in year t-1 compue as the difference between the current year and the year of 

foundation, in logs

Sales growth Growth rate of real sales of firm i in year t-1, deflated with a value-added deflator

Sectoral K-intensity Per-industry average of fixed-physical assets per worker in year t-1, deflated with value-added 

deflator, in logs

Foreign ownership =1 if a foreing firm has a share in firm i's equity in year t-1 

Export =1 if firm i reports positive sales in foreing markets in year t-1

Subsidies to K =1 if firm i reports receiving positive subsidies to fixed-physical assets from either the Spanish public 

sector or the EU in year t-1

Patents-ca Number of patents in the same region than firm i in year t-1, computed with data from INE for the 

whole economy

Kpriv-sec Aggregate stock of knowledge capital for the private business sector at a sectoral level in year t-1, in 

logs, computed with data from INE for the whole economy

Kpub-ca Aggregate stock of knowledge capital for the public sector at a regional level in year t-1, in logs, 

computed with data from INE for the whole economy

Kpriv-ca Aggregate stock of knowledge capital for the private business sector at a regional level in year t-1, in 

logs, computed with data from INE for the whole economy

Kpriv-sec*R&D intensity Product of (log) Kpriv-sec and the ratio of R&D expenditures over sales of firm i, lagged one year; the 

same holds for Kpub-ca and Kpriv-ca

%Innovfirm-sec Percentage of innovative firms (R&D>0) in the same industry than firm i in year t-1

%Innovfirm-ca Percentage of innovative firms (R&D>0) in the same region than firm i in year t-1

%Skilled-labour Percentage of managers, professionals and technicians in total employment in firm i in year t-1

%Fixed-term labour Percentage of employees on a temporary contract in firm i in year t-1

Training spending Real training expenditures per employee in firm i in year t-1, deflated with value-added deflator

Equity/Liabilities Ratio of equity to the sum of equity and liabilities of firm i in year t-1

%Short-term liabilities Ratio of short-term liabilities to total liabilities for firm i in year t-1

%Banking liabilities Ratio of bank loans to total liabilities for firm i in year t-1

Concentration Market share of the first decile of firms with larger sales by year and industry, lagged one year 

Market share Market share of firm i's sales in year t-1

Import penetration Share of imports in total sales by industry in year t-1

Instrumental variables

%Women Share of women aged 15-64 in total population, by province. Source: INE (National Statistics 

Office), "Padrón Municipal" (municipal census) 

Unemployment rate Unemployment rate by province. Source: INE, Labour Force Survey (EPA)

%Higher educ. Share of people with terciary and upper-level vocational training education by region. Source: INE, 

Labour Force Survey (EPA)

%Immigrants Share of immigrants on total population, by region. Source: INE, Municipal Census

Firm-level coll. barg. Dummy variable that equals 1 if a firm has a firm-level collective agreement. Source: Statistics on 

Collective Agreements, Minsitry of Labour and Immigration
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Table 6 

 

  

Transition probabilities

Innovation status in t: Innovation = 0 Innovation = 1 Total Innovation = 0 Innovation = 1 Total

Innovation = 0 97.1 2.9 100 95.8 4.2 100

Innovation = 1 10.5 89.5 100 10.9 89.1 100

Total 74.9 25.1 100 74.3 25.7 100

Innovation status in t+1:

Balanced panel

(2002-2007)

Unbalanced panel

(1991-2007)

Transition probabilities for innovation expenditures (PITEC)

Innovation status in t: Innovation = 0 Innovation = 1 Total

Innovation = 0 86.2 13.8 100

Innovation = 1 6.2 93.8 100

Total 34 66 100

(2003-2007)

Innovation status in t+1:

Balanced panel
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Table 7 

Descriptive statistics for relevant variables

Variable Unit Mean Min Max

Overall Between Within

Innovation 1/0 0.251 0.434 0.398 0.173 0 1

Size logs 5.84 1.44 1.43 0.160 2.20 9.31

Age years 35.58 28.03 28.01 1.41 1 217

Sales growth y-o-y %ch. 3.34 23.57 9.93 21.37 -262.53 297.22

Sectoral K-intensity logs 4.58 1.65 1.59 0.45 -0.59 9.06

Foreign ownership 1/0 0.202 0.402 0.386 0.114 0 1

Export 1/0 0.588 0.492 0.477 0.124 0 1

Subsidies to K 1/0 0.272 0.445 0.352 0.273 0 1

Patents-ca nº pat. 440.87 256.42 254.31 35.73 0 752

Kpriv-sec logs 13.56 1.58 1.55 0.307 10.00 16.67

Kpub-ca logs 14.41 1.09 1.08 0.159 7.25 15.57

Kpriv-ca logs 14.64 1.47 1.46 0.173 4.14 15.90

Kpriv-sec*R&D intensity logs 0.060 0.198 0.186 0.068 0 1.47

Kpriv-sec*%Skilled-L logs 3.22 3.27 3.18 0.770 0.003 15.61

Kpriv-sec*%Temp-L logs 2.34 2.91 2.82 0.726 0 16.01

Kpriv-sec*Training-exp logs 1.86 4.24 3.65 2.14 0 68.00

%Innovfirm-sec % 25.11 19.60 19.07 4.60 0 83.33

%Innovfirm-ca % 25.11 9.47 9.11 2.61 0 100

%Skilled-labour % 23.28 22.35 21.74 5.25 0.02 93.65

%Fixed-term labour % 17.19 20.85 20.13 5.48 0 96.01

Training spending logs 0.135 0.308 0.264 0.159 0 5.70

Equity/Liabilities % 67.51 26.32 24.34 10.06 6.87 100

%Short-term liabilities % 56.85 35.97 31.87 17.44 0 100

%Banking liabilities % 59.65 42.11 38.35 17.85 0 100

Concentration % 61.45 12.22 11.79 36.47 34.05 83.75

Market share % 1.77 3.54 3.46 0.76 0.01 18.60

Import penetration % 22.71 23.25 22.61 5.46 0 74.71

Std. Dev.

Estimation sample (2003-2007)
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Table 8 

Baseline regression: comparing static pooled, static RE and dynamic RE probit models

Pooled Pooled Static RE Static RE Dynamic RE Dynamic RE 

(1991-2007) (1991-2007) only y(i,0) y(i,0) and x(i,0)

Innovation(t-1) --- --- --- --- 2.197*** 2.261***

0.187 0.211

Innovation(t=0) --- --- --- --- 0.996*** 0.887***

0.311 0.350

Size 0.211*** 0.281*** 0.533*** 0.648*** 0.133** 0.334

0.048 0.029 0.108 0.049 0.054 0.237

Age -0.053 0.003 0.010 0.060 -0.050 0.311

0.059 0.032 0.124 0.057 0.048 0.348

Sales growth 0.269* 0.169*** 0.317 0.134 0.410** 0.430**

0.151 0.048 0.253 0.084 0.199 0.205

Sectoral K-intensity -0.034 -0.021 -0.043 0.044 -0.071* 0.084

0.045 0.022 0.080 0.034 0.044 0.084

Foreign ownership -0.148 -0.133** -0.301 -0.119 -0.008 -0.258

0.125 0.065 0.217 0.091 0.118 0.238

Export (yes/no) 0.669*** 0.554*** 1.001*** 0.754*** 0.252* 0.119

0.136 0.071 0.255 0.091 0.137 0.269

Subsidies to K (yes/no) 0.263*** 0.293*** 0.185 0.156** 0.172* 0.182

0.090 0.051 0.142 0.063 0.105 0.120

Patents per region -0.0004** --- -0.0007* --- -0.0005** -0.002*

0.0002 0.0004 0.0002 0.001

Kpriv-sec 0.209** --- 0.324* --- 0.271** 0.104

0.104 0.182 0.128 0.160

Kpriv-sec * R&D intensity 8.891*** --- 8.168*** --- 1.309*** 1.128**

1.568 0.767 0.401 0.502

%Skilled-labour 0.842*** 1.020*** 1.654*** 1.030*** 0.475* -0.113

0.273 0.141 0.517 0.204 0.270 0.574

%Fixed-term labour -0.640** -0.397*** -1.149** -0.893*** -0.804** -1.211**

0.325 0.133 0.590 0.185 0.346 0.610

Training spending -0.089*** 0.143* -0.081 0.180*** 0.051 0.046

0.032 0.087 0.053 0.055 0.037 0.047

Equity/Liabilities 0.182 0.280*** 0.801** 0.483*** 0.372* 0.656*

0.192 0.095 0.361 0.128 0.205 0.347

%Short term liabilities -0.168 -0.141** -0.445** -0.091 -0.326** -0.458**

0.124 0.069 0.226 0.080 0.142 0.196

%Banking liabilities 0.360*** 0.174*** 0.592*** 0.269*** 0.223* 0.403**

0.116 0.064 0.209 0.075 0.127 0.184

Concentration -2.466 -2.952 -0.305 -3.761 5.238 8.010

5.048 2.073 10.221 2.882 9.301 9.423

Concentration^2 2.408 2.670 1.688 3.940 -3.111 -6.062

4.253 1.802 8.509 2.529 7.711 7.815

Market share 2.901* -1.211 2.272 -2.641 1.554 -3.495

1.697 1.212 3.486 1.655 1.802 4.341

Import penetration -0.289 -0.742** -0.987 -1.357*** -0.484 -0.328

0.591 0.295 1.096 0.443 0.904 0.992

--- --- 2.118 2.303 0.464 0.367

0.159 0.078 0.185 0.241

--- --- 0.818 0.841 0.177 0.119

0.022 0.009 0.116 0.137

LR (p-value) --- --- 0.000 0.000 0.070 0.202

Scale factor for APE 0.181 0.244 0.091 0.105 0.086 0.084

Wald-heterogeneity (p-value) --- --- --- --- --- 0.640

Firms 742 2511 769 2512 769 740

Observations 3550 16590 3682 16592 3682 3603
***, ** and * denote stat ist ical signif icance at a 1%, 5% and 10% level, respectively. Standard errors in pooled probit  adjusted for clustering on f irms. 

Time and industry dummies are included in each regression, but  not  reported. LR  is a Likelihood-rat io test for =0.

The scale factor allows to obtain the APE of each variable by mult iplying this factor by the est imated coef f icient .

Wald-heterogeneity is a Wald test on the joint signif icance of x(i,0), the explanatory variables in t=0.
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Table 9 

 

Impact of human capital variables on absorptive capacity

Dynamic RE probit model

Baseline Skilled-labour Temporary Training 

(R&D invest.) employment expenditures

Innovation(t-1) 2.197*** 2.351*** 2.370*** 2.353***

0.187 0.176 0.176 0.178

Innovation(t=0) 0.996*** 1.106*** 1.059*** 1.031***

0.311 0.332 0.328 0.327

Size 0.133** 0.135** 0.141*** 0.141***

0.054 0.055 0.055 0.054

Age -0.050 -0.051 -0.045 -0.046

0.048 0.059 0.058 0.057

Sales growth 0.410** 0.415** 0.401** 0.388*

0.199 0.199 0.198 0.199

Sectoral K-intensity -0.071* -0.085* -0.083* -0.074*

0.044 0.045 0.044 0.044

Foreign ownership -0.008 0.004 0.003 -0.002

0.118 0.119 0.118 0.116

Export (yes/no) 0.252* 0.234* 0.236* 0.221*

0.137 0.139 0.138 0.136

Subsidies to K (yes/no) 0.172* 0.150 0.162 0.174*

0.105 0.107 0.105 0.105

Patents per region -0.0005** -0.0005** -0.0005** -0.0005**

0.0002 0.0002 0.0002 0.0002

Kpriv-sec 0.271** 0.194 0.308** 0.276**

0.128 0.135 0.136 0.129

Kpriv-sec * Aborptive cap. 1.309*** 0.291** -0.132 0.031***

0.401 0.144 0.178 0.010

%Skilled-labour 0.475* -3.521* 0.551** 0.451*

0.270 2.023 0.267 0.267

%Fixed-term labour -0.804** -0.879** 0.922 -0.814**

0.346 0.357 2.441 0.347

Training spending 0.051 0.070* 0.067* 0.052

0.037 0.037 0.037 0.037

Equity/Liabilities 0.372* 0.361* 0.378* 0.357*

0.205 0.207 0.205 0.202

%Short term liabilities -0.326** -0.349** -0.353** -0.311**

0.142 0.144 0.142 0.141

%Banking liabilities 0.223* 0.221* 0.218* 0.226*

0.127 0.128 0.127 0.126

Concentration 5.238 5.383 6.796 5.757

9.301 9.438 9.371 9.431

Concentration^2 -3.111 -3.274 -4.335 -3.396

7.711 7.289 7.766 7.839

Market share 1.554 1.262 0.845 0.770

1.802 1.849 1.818 1.793

Import penetration -0.484 -0.436 -0.475 -0.539

0.904 0.909 0.908 0.903

0.464 0.501 0.482 0.454

0.185 0.186 0.188 0.194

0.177 0.200 0.188 0.171

0.116 0.119 0.119 0.121

LR (p-value) 0.070 0.053 0.064 0.086

Scale factor for APE 0.086 0.087 0.087 0.087

Firms 769 769 769 769

Observations 3682 3682 3682 3682
***, ** and * denote stat ist ical signif icance at a 1%, 5% and 10% level, respect ively. 

Time and industry dummies are included in each regression, but not reported. LR  is a Likelihood-rat io test for =0.

The scale factor allows to obtain the APE of  each variable by mult iplying this factor by the est imated coeff icient .

Absorptive capacity variables:
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Table 10 

 

Magnitude of the effects of some relevant variables

Variables Sample avg. Assumed change APE Effect on P(y=1)
R&D investment:

- Direct effect (innova(t-1)) 0.251 P(1/1)-P(1/0) 0.473 47.3

- Indirect effect (spillover*abs. capacity) 0.060 10% 0.113 1.13

Spillovers:

- Sectoral stock of R&D capital 10% 0.023 0.23

Human capital variables:  

- %Fixed-term labour 0.172 -10% -0.069 0.69

- %Skilled-labour 0.233 10% 0.041 0.41

- Training expenditures 0.135 10% 0.004 0.04

Financial variables:

- Equity ratio 0.675 10% 0.032 0.32

- %Short-term liabilities 0.569 -10% -0.028 0.28

- %Bank financing 0.597 10% 0.019 0.19

Note: Computed using our preferred specification.
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Table 11 

Estimates allowing human capital variables to be endogenous

Baseline regression Instrumental variables

Dynamic RE Pooled QMLE Pooled QMLE

probit model probit model probit model

Innovation(t-1) 2.197*** 2.398*** 2.512***

0.187 0.121 0.139

Innovation(t=0) 0.996*** 0.601*** 0.625***

0.311 0.127 0.147

Size 0.133** 0.108*** 0.158***

0.054 0.038 0.057

Age -0.050 -0.048 -0.059

0.048 0.051 0.059

Sales growth 0.410** 0.405** 0.369*

0.199 0.173 0.216

Sectoral K-intensity -0.071* -0.070* -0.089**

0.044 0.038 0.045

Foreign ownership -0.008 -0.0003 -0.030

0.118 0.104 0.125

Export (yes/no) 0.252* 0.236** 0.260**

0.137 0.112 0.127

Subsidies to K 0.172* 0.169* 0.167

0.105 0.093 0.107

Patents per region -0.0005** -0.0004** -0.0005***

0.0002 0.0002 0.0002

Kpriv-sec 0.271** 0.244* 0.234

0.128 0.133 0.147

Kpriv-sec * R&D intensity 1.309*** 1.147*** 1.018**

0.401 0.319 0.403

%Skilled-labour 0.475* 0.414* 0.266

0.270 0.215 0.685

Residual skilled-labour 0.271

0.732

%Fixed-term labour -0.804** -0.674** -1.509**

0.346 0.274 0.757

Residual fixed-term labour 0.967

0.762

Training spending 0.051 0.043 0.217***

0.037 0.029 0.046

Residual training spending -0.247***

0.045

Equity/Liabilities 0.372* 0.312* 0.334*

0.205 0.166 0.193

%Short term liabilities -0.326** -0.286** -0.280**

0.142 0.119 0.140

%Banking liabilities 0.223* 0.189* 0.201

0.127 0.110 0.139

Concentration 5.238 4.684 5.962

9.301 7.372 8.910

Concentration^2 -3.111 -2.875 -4.118

7.711 5.842 7.000

Market share 1.554 1.402 -0.008

1.802 1.390 1.979

Import penetration -0.484 -0.435 -0.399

0.904 0.881 0.963

Wald exogeneity (p-value) 0.000

Scale factor for APE 0.086 0.086 0.084

Firms 769 769 767

Observations 3682 3682 3674
***, ** and * denote stat ist ical signif icance at a 1%, 5% and 10% level, respectively. 

Time and industry dummies are included in each regression, but not reported. 

The scale factor allows to obtain the APE of  each variable by mult iplying this factor by the est imated coeff icient .

The instrumental variables are the share of  women, the unemployment rate, the share of people with at  least  Secondary Education and 

the share of immigrants, all computed by province, and a dummy variable that equals one when a f irm has a f irm-level collect ive

bargaining agreement. The standard errors for the pooled QM LE are robust  and, for the instrumental variables case, are obtained by

bootstrapping all the f irms using 500 bootstrap replicat ions. Wald exogeneity is a Wald test for the joint  signif icance of  the coeff icient

for the residuals in the second stage regression.

Exogenous regressors
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Table 12 

 

Impact of different measures of aggregate spillovers

Dynamic RE probit model

Baseline K pub-ca K priv-ca % innovating firms % innovating firms 
(Kpriv-sec) same sector same CA

Innovation(t-1) 2.197*** 2.178*** 2.168*** 2.277*** 2.176***
0.187 0.188 0.188 0.192 0.188

Innovation(t=0) 0.996*** 0.984*** 0.981*** 0.979*** 0.943***

0.311 0.310 0.308 0.328 0.303

Size 0.133** 0.121** 0.110** 0.128** .123**

0.054 0.053 0.053 0.053 0.052

Age -0.050 -0.049 -0.041 -0.051 -0.045

0.048 0.057 0.057 0.057 0.056

Sales growth 0.410** 0.404** 0.401** 0.390** 0.392**

0.199 0.198 0.199 0.197 0.196

Sectoral K-intensity -0.071* -0.073* -0.073* -0.070* -0.066

0.044 0.044 0.044 0.043 0.043

Foreign ownership -0.008 0.004 0.004 0.027 0.010

0.118 0.116 0.117 0.115 0.115

Export (yes/no) 0.252* 0.245* 0.227* 0.244* 0.216

0.137 0.135 0.137 0.134 0.134

Subsidies to K 0.172* 0.181* 0.187* 0.172* 0.183*

0.105 0.104 0.105 0.103 0.103

Patents per region -0.0005** -0.001*** -0.002*** -0.0005** -0.0005**

0.0002 0.0004 0.0005 0.0002 0.0002

Spillover variable 0.271** 0.140* 0.230*** -0.006 0.010

0.128 0.085 0.087 0.009 0.006

Spillover var. * R&D intensity 1.309*** 1.364*** 1.342*** 0.340*** 0.741***

0.401 0.401 0.394 0.123 0.218

%Skilled-labour 0.475* 0.433 0.411 0.511** 0.472*

0.270 0.268 0.269 0.263 0.265

%Fixed-term labour -0.804** -0.789** -0.737** -0.869** -0.753**

0.346 0.340 0.341 0.342 0.339

Training spending 0.051 0.048 0.049 0.053 0.049

0.037 0.036 0.036 0.036 0.036

Equity/Liabilities 0.372* 0.383* 0.362* 0.377* 0.363*

0.205 0.203 0.203 0.201 0.201

%Short term liabilities -0.326** -0.323** -0.323** -0.321** -0.301**

0.142 0.141 0.142 0.140 0.139

%Banking liabilities 0.223* 0.238* 0.256** 0.213* 0.225*

0.127 0.127 0.128 0.125 0.124

Concentration 5.238 5.245 5.502 5.116 5.874

9.301 9.327 9.319 9.417 9.345

Concentration^2 -3.111 -3.889 -4.082 -3.898 -4.360

7.711 7.741 7.727 7.781 7.760

Market share 1.554 1.340 1.278 1.341 1.552

1.802 1.784 1.780 1.769 1.751

Import penetration -0.484 -1.077 -1.046 -1.137 -1.039

0.904 0.879 0.878 0.894 0.880

0.464 0.447 0.446 0.438 0.424

0.185 0.188 0.188 0.201 0.190

0.177 0.167 0.166 0.161 0.152

0.116 0.117 0.117 0.124 0.116

LR (p-value) 0.070 0.083 0.083 0.103 0.098

Scale factor for APE 0.086 0.086 0.086 0.087 0.086

Firms 769 769 769 769 769

Observations 3682 3682 3682 3682 3682
***, ** and * denote stat ist ical signif icance at a 1%, 5% and 10% level, respectively. 

Time and industry dummies are included in each regression, but  not  reported. LR  is a Likelihood-rat io test for =0.

The scale factor allows to obtain the APE of each variable by mult iplying this factor by the est imated coef f icient .

Spillover variables:
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Table 13 

 

Different definitions of innovation

Dynamic RE probit model

Baseline Innovation Innofin (current or
(R&D invest.>0) expenditures>0  abandoned)

Innovation(t-1) 2.197*** 1.337*** 0.915***

0.187 0.195 0.137

Innovation(t=0) 0.996*** 1.630*** 0.964***

0.311 0.357 0.179

Size 0.133** 0.160* 0.081

0.054 0.089 0.063

Age -0.050 0.079 0.027

0.048 0.098 0.068

Sales growth 0.410** 0.083 0.363

0.199 0.332 0.263

Sectoral K-intensity -0.071* -0.072 0.016

0.044 0.065 0.049

Foreign ownership -0.008 -0.198 -0.074

0.118 0.186 0.125

Export (yes/no) 0.252* 0.402** 0.366**

0.137 0.196 0.148

Subsidies to K 0.172* 0.300* 0.269**

0.105 0.159 0.109

Patents per region -0.0005** -0.0002 -0.000

0.0002 0.0003 0.000

Kpriv-sec 0.271** -0.042 0.104

0.128 0.212 0.153

Kpriv-sec * R&D intensity 1.309*** 5.645*** 0.886***

0.401 1.557 0.313

%Skilled-labour 0.475* 0.495 0.712**

0.270 0.414 0.298

%Fixed-term labour -0.804** -0.669 -0.802**

0.346 0.460 0.355

Training spending 0.051 0.008 0.042

0.037 0.049 0.037

Equity/Liabilities 0.372* 0.094 -0.055

0.205 0.301 0.224

%Short term liabilities -0.326** -0.358* -0.190

0.142 0.211 0.148

%Banking liabilities 0.223* 0.028 0.175

0.127 0.185 0.132

Concentration 5.238 -31.040** -10.257

9.301 12.745 9.391

Concentration^2 -3.111 27.703*** 9.404

7.711 10.450 7.757

Market share 1.554 5.997 6.252***

1.802 3.768 2.342

Import penetration -0.484 0.950 0.309

0.904 1.241 0.932

0.464 0.859 0.660

0.185 0.175 0.121

0.177 0.425 0.303

0.116 0.100 0.078

LR (p-value) 0.070 0.000 0.000

Scale factor for APE 0.086 0.118 0.214

Firms 769 462 462

Observations 3682 1790 1790
***, ** and * denote stat ist ical signif icance at a 1%, 5% and 10% level, respect ively. 

Time and industry dummies are included in each regression, but not reported. LR  is a Likelihood-rat io test  for =0.

The scale factor allows to obtain the APE of each variable by mult iplying this factor by the est imated coeff icient.

1/  Data for these regressions span 2004-2007

Alternative dependent variables: 1/
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ANNEX A: Computing Partial Effects 

One problem in estimating partial effects is the fact that firm-specific heterogeneity is 

unobservable. In the case of a continuous covariate case, we would like to compute: 

 

A1) 

which clearly depends on the distribution of i (or, equivalently, ai).  

Hence, the literature has proposed two alternative calculation methods to deal with 

this shortcoming. The usual way to compute the partial effects is to calculate the so called 

partial effects at the average (PEA) by assuming that the individual heterogeneity takes its 

average value, which can be calculated, in our particular setting, as: 

 
A2) 

Therefore, the estimated PEA, which would employ sample statistics for population analogs, 

would take the form: 

 
A3) 

The PEA, however, has the drawback that usually the average value is not 

representative of a large share of the firms. Alternatively, one can estimate the average partial 

effect (APE), which results from averaging the unobserved heterogeneity across firms. In other 

words, you can compute the partial effect for the average individual in your sample (the PEA) 

or the average of all individual partial effects across time in your sample (the APE). In analytical 

form, the estimated APE is: 

 

A4) 

where the subscript “a” denotes that the original parameters have been scaled by (1+ a
2)-0.5. 
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