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Abstract 

Recent treatments of the issue of a zero floor on nominal interest rates have been subject to 

some important methodological limitations. These include the assumption of perfect 

foresight or the introduction of the zero lower bound as an initial condition or a constraint on 

the variance of the interest rate, rather than an occasionally binding non-negativity constraint. 

This paper addresses these issues offering a global solution to a standard dynamic 

stochastic sticky price model with an explicit occasionally binding non-negativity constraint 

on the nominal interest rate. It turns out that the dynamics and sometimes the unconditional 

means of the nominal rate, inflation and the output gap are strongly affected by uncertainty in 

the presence of the zero lower bound. Commitment to the optimal rule reduces 

unconditional welfare losses to around one-tenth of those achievable under discretionary 

policy, while constant price level targeting delivers losses which are only 60% larger than 

under the optimal rule. Even though the unconditional performance of simple instrument 

rules is almost unaffected by the presence of the zero lower bound, conditional on a strong 

deflationary shock simple instrument rules perform substantially worse than the optimal 

policy. 

 

 



1 Introduction

An economy is said to be in a "liquidity trap" when the monetary authority

cannot achieve a lower nominal interest rate in order to stimulate output. Such

a situation can arise when the nominal interest rate has reached its zero lower

bound (ZLB), below which nobody would be willing to lend, if money can be

stored at no cost for a nominally riskless zero rate of return.

The possibility of a liquidity trap was �rst suggested by Keynes (1936) with

reference to the Great Depression of the 1930s. At that time he compared

the e¤ectiveness of monetary policy in such a situation with trying to "push

on a string". After WWII and especially during the high in�ation period of

the 1970s interest in the topic receded, and the liquidity trap was relegated to a

hypothetical textbook example. As Krugman (1998) noticed, of the few modern

papers that dealt with it most concluded that "the liquidity trap can�t happen,

it didn�t happen, and it won�t happen again".

With the bene�t of hindsight, however, it did happen, and to no less than

Japan. Figure 1 illustrates this, showing the evolution of output, in�ation, and

the short-term nominal interest rate following the collapse of the Japanese real

estate bubble of the late 1980s. The �gure exhibits a persistent downward trend

in all three variables, and in particular the emergence of de�ation since 1998

coupled with a zero nominal interest rate since 1999.

Motivated by the recent experience of Japan, the aim of the present paper

is to contribute a quantitative analysis of the ZLB issue in a standard sticky

price model under alternative monetary policy regimes. One the one hand,

the paper characterizes optimal monetary policy in the case of discretion and

commitment.1 And on the other hand, it studies the performance of several

simple monetary policy rules, modi�ed to comply with the zero �oor, relative

to the optimal policy. The analysis is carried out within a stochastic general

equilibrium model with monopolistic competition and Calvo (1983) staggered

price setting, under a standard calibration to the postwar US economy.

The main �ndings are as follows: the optimal discretionary policy with zero

1The part of the paper on optimal policy is similar to Adam and Billi (2006) and Adam
and Billi (2007) and the main �ndings here are largely consistent with these authors. The
added value is to quantify and compare the performance of optimal policy to that of a number
of suboptimal rules in the same stochastic sticky price setup.
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�oor involves a de�ationary bias, which may be signi�cant for certain parameter

values and which implies that any quantitative analyses of discretionary biases

of monetary policy that ignore the zero lower bound may be misleading. In ad-

dition, optimal discretionary policy implies much more aggressive cutting of the

interest rate when the risk of de�ation is high, compared to the corresponding

policy without zero �oor. Such a policy helps mitigate the depressing e¤ect of

private sector expectations on current output and prices when the probability

of falling into a liquidity trap is high.2

In contrast, optimal commitment policy involves less preemptive lowering of

the interest rate in anticipation of a liquidity trap, but it entails a promise for

sustained monetary policy easing following an exit from a trap. This type of

commitment enables the central bank to achieve higher expected in�ation and

lower real rates in periods when the zero �oor on nominal rates is binding.3 As

a result, under the baseline calibration, the expected welfare loss under commit-

ment is only around one-tenth of the loss under optimal discretionary policy.

This implies that the cost of discretion may be much higher than normally

considered when abstracting from the zero lower bound issue.

The average welfare losses under simple instrument rules are 8 to 20 times

bigger than under the optimal rule. However, the bulk of these losses stem from

the intrinsic suboptimality of simple instrument rules, and not from the zero

�oor per se. This is related to the fact that under these rules the zero �oor is

hit very rarely - less than 1% of the time - compared to optimal policy, which

visits the liquidity trap one-third of the time. On the other hand, conditional on

a large de�ationary shock, the relative performance of simple instrument rules

deteriorates substantially vis-a-vis the optimal policy.

Issues of de�ation and the liquidity trap have received considerable atten-

tion recently, especially after the experience of Japan.4 In an in�uential article

2An early version of this paper comparing the performance of optimal discretionary policy
with three simple Taylor rules was circulated in 2004; optimal commitment policy and more
simple rules were added in a version circulated in 2005. Optimal discretionary policy was
studied independently by Adam and Billi (2004b), and optimal commitment policy was studied
by Adam and Billi (2004a).

3This basic intuition was suggested already by Krugman (1998) based on a simpler model.
4A partial list of relevant studies includes Krugman (1998), Wolman (1998), McCallum

(2000), Reifschneider and Williams (2000), Klae ing and Lopez-Perez (2003), Eggertsson
and Woodford (2003), Coenen, Orphanides and Wieland (2004), Kato and Nishiyama (2005),
Jung, Teranishi and Watanabe (2005), Adam and Billi (2006), Adam and Billi (2007).
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Krugman (1998) argued that the liquidity trap boils down to a credibility prob-

lem in which private agents expect any monetary expansion to be reverted once

the economy has recovered. As a solution he suggested that the central bank

should commit to a policy of high future in�ation over an extended horizon.

More recently, Jung, Teranishi and Watanabe (2005) have explored the e¤ect

of the zero lower bound in a standard sticky price model with Calvo price

setting under the assumption of perfect foresight. Consistent with Krugman

(1998), they conclude that optimal commitment policy entails a promise of a

zero nominal interest for some time after the economy has recovered. Eggertsson

and Woodford (2003) study optimal policy with zero lower bound in a similar

model in which the natural rate of interest is allowed to take two di¤erent values.

In particular, it is assumed to become negative initially and then to jump to its

"normal" positive level with a �xed probability in each period. These authors

also conclude that the central bank should create in�ationary expectations for

the future. Importantly, they derive a moving price level targeting rule that

delivers the optimal policy in this model.

One shortcoming of much of the modern literature on monetary policy rules

is that it largely ignores the ZLB issue or at best uses rough approximations to

address the problem. For instance Rotemberg and Woodford (1997) introduce

nominal rate targeting as an additional central bank objective, which ensures

that the resulting path of the nominal rate does not violate the zero lower bound

too often. In a similar vein, Schmitt-Grohe and Uribe (2004) exclude from their

analysis instrument rules that result in a nominal rate the average of which is

less than twice its standard deviation. In both cases therefore one might argue

that for su¢ ciently large shocks that happen with a probability as high as 5%,

the derived monetary policy rules are inconsistent with the zero lower bound.

On the other hand, of the few papers that do introduce an explicit non-

negativity constraint on nominal interest rates, most simplify the stochastics

of the model, for example by assuming perfect foresight (Jung, Teranishi and

Watanabe 2005), or a two-state low/high economy (Eggertsson and Woodford

(2003); Wolman (1998)). Even then, the zero lower bound is e¤ectively imposed

as an initial ("low") condition and not as an occasionally binding constraint.5

5Namely, the zero �oor binds for the �rst several periods but once the economy transits to
the "high" state, the ZLB never binds thereafter.

4
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While this assumption may provide a reasonable �rst-pass at a quantitative

analysis, it may be misleading to the extent that it ignores the occasionally

binding nature of the zero interest rate �oor.

Other studies (e.g. Coenen, Orphanides and Wieland (2004)) lay out a

stochastic model but knowingly apply inappropriate solution techniques which

rely on the assumption of certainty equivalence. It is well known that this

assumption is violated in the presence of a non-linear constraint such as the zero

�oor but nevertheless these researchers have imposed it for reasons of tractability

(admittedly they work with a larger model than the one studied here). Yet

forcing certainty equivalence in this case amounts to assuming that agents ignore

the risk of the economy falling into a liquidity trap when making their optimal

decisions.

The present study contributes to the above literature by solving numerically

a stochastic general equilibrium model with monopolistic competition and sticky

prices with an explicit occasionally binding zero lower bound, using an appro-

priate global solution technique that does not rely on certainty equivalence. It

extends the analysis of Jung, Teranishi and Watanabe (2005) to the stochastic

case with an AR(1) process for the natural rate of interest.

After a brief outline of the basic framework adopted in the analysis (section

2), the paper characterizes and contrasts the optimal discretionary and optimal

commitment policies (sections 3 and 4). It then analyzes the performance of

a range of simple instrument and targeting rules (sections 5 and 6) consistent

with the zero �oor.6 Sections 4 to 6 include a comparison of the conditional per-

formance of all rules in a simulated liquidity trap, while section 7 presents their

average performance, including a ranking according to unconditional expected

welfare. Section 8 studies the sensitivity of the �ndings to various parameters

of the model, as well as the implications of endogenous in�ation persistence for

the ZLB issue and the last section concludes.
6These rules include truncated Taylor-type rules reacting to contemporaneous, expected

future, or past, in�ation, output gap, or price level; with or without "interest rate smoothing";
truncated �rst-di¤erence rules; price level targeting; and strict in�ation targeting rules.
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2 Baseline Model

While in principle the zero lower bound phenomenon can be studied in a model

with �exible prices, it is with sticky prices that the liquidity trap becomes a

real problem. The basic framework adopted in this study is a stochastic general

equilibrium model with monopolistic competition and staggered price setting

a la Calvo (1983) as in Gali (2003) and Woodford (2003). In its simplest log-

linearized7 version the model consists of three building blocks, describing the

behavior of households, �rms and the monetary authority.

The �rst block, known as the "IS curve", summarizes the household�s optimal

consumption decision,

xt = Etxt+1 � � (it � Et�t+1 � rnt ) (1)

It relates the "output gap" xt (i.e. the deviation of output from its �exible price

equilibrium) positively to the expected future output gap and negatively to the

gap between the ex-ante real interest rate, it � Et�t+1; and the "natural" (i.e.

�exible price equilibrium) real rate, rnt (which is observed by all agents at time

t). Consumption smoothing accounts for the positive dependence of current on

expected future output demand, while intertemporal substitution implies the

negative e¤ect of the ex-ante real interest rate. The interest rate elasticity of

output, �; corresponds to the inverse of the coe¢ cient of relative risk aversion

in the consumers�utility function.

The second building block of the model is a "Phillips curve"-type equation,

which derives from the optimal price setting decision of monopolistically com-

petitive �rms under the assumption of staggered price setting a la Calvo (1983),

�t = �Et�t+1 + �xt (2)

where � is the time discount factor and �, "the slope" of the Phillips curve,

is related inversely to the degree of price stickiness8 . Since �rms are unable

7 It is important to note that, like in the studies cited in the introduction, the objective
here is a modest one, in that the only source of non-linearity in the model stems from the
ZLB. Solving the fully non-linear sticky price model with Calvo (1983) contracts can be a
worthwile enterprise, however it increases the dimensionality of the computational problem
by the number of states and co-states that one should keep track of (e.g. the measure of
price dispersion and in the case of optimal policy the Lagrange multipliers associated with all
forward-looking constraints).

8 In the underlying sticky price model the slope � is given by [�(1 + '")]�1 (1� �) (1 �
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to adjust prices optimally every period, whenever they have the opportunity

to do so, they choose to price goods as a markup over a weighted average of

current and expected future marginal costs. Under appropriate assumptions

on technology and preferences, marginal costs are proportional to the output

gap, resulting in the above Phillips curve. Here this relation is assumed to hold

exactly, ignoring the so-called �cost-push�shock, which sometimes is appended

to generate a short-term trade-o¤ between in�ation and output stabilization.

The �nal building block models the behavior of the monetary authority. The

model assumes a "cashless limit" economy in which the instrument controlled

by the central bank is the nominal interest rate. One possibility is to assume

a benevolent monetary policy maker seeking to maximize the welfare of house-

holds. In that case, as shown in Woodford (2003), the problem can be cast in

terms of a central bank that aims to minimize (under discretion or commitment)

the expected discounted sum of losses from output gaps and in�ation, subject

to the optimal behavior of households (1) and �rms (2), and the zero nominal

rate �oor:

Min
it;�t;xt

E0

1X
t=0

�t
�
�2t + �x

2
t

�
(3)

s.t. (1); (2)

it � 0 (4)

where � is the relative weight of the output gap in the central bank�s loss

function.

An alternative way of modeling monetary policy is to assume that the central

bank follows some sort of simple decision rule that relates the policy instrument,

implicitly or explicitly, to other variables in the model. An example of such a

rule, consistent with the zero �oor, is a truncated Taylor rule,

it = max [0; r
� + �� + �� (�t � ��) + �xxt] (5)

where r� is an equilibrium real rate, �� is an in�ation target, and �� and �x

are response coe¢ cients for in�ation and the output gap.

��)(��1 + ');where � is the fraction of �rms that keep prices unchanged in each period, '
is the (inverse) wage elasticity of labor supply, and " is the elasticity of substitution among
di¤erentiated goods.
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To close the model one needs to specify the behavior of the natural real rate.

In the fuller model the latter is a composite of a variety of real shocks, including

preferences, government spending, and technology. Following Woodford (2003)

here I assume that the natural real rate follows an exogenous mean-reverting

process, brnt = �brnt�1 + �t; (6)

where brnt � rnt � r�, is the deviation of the natural real rate from its mean, r�;

�t are i.i.d. N
�
0; �2�

�
real shocks, and 0 � � < 1 is a persistence parameter.

The equilibrium conditions of the model therefore include the constraints

(1), (2), and either a set of �rst-order optimality conditions (in the case of

optimal policy), or a simple rule like (5). In either case the resulting system

of equations cannot be solved with standard solution methods relying on local

approximation because of the non-negativity constraint on the nominal rate.

Hence I solve them with a global solution technique known as "collocation".

The rational expectations equilibrium with occasionally binding constraint is

solved by way of parametrizing expectations (Christiano and Fischer 2000), and

is implemented with the MATLAB routines developed by Miranda and Fack-

ler (2001). Appendix A outlines the simulation algorithm, while the following

sections report the results.

2.1 Baseline Calibration

The model�s parameters are chosen to be consistent with the "standard" Wood-

ford (2003) calibration to the US economy, which in turn is based on Rotemberg

and Woodford (1997) (Table 1). Thus, the slope of the Phillips curve (0.024),

the weight of the output gap in the central bank loss function (0.003), the time

discount factor (0.993), the mean (3% pa) and standard deviation (3.72%) of

the natural real rate are all taken directly from Woodford (2003). The persis-

tence (0.65) of the natural real rate is assumed to be between the one used by

Woodford (2003) (0.35) and that estimated by Adam and Billi (2006) (0.8) us-

ing a more recent sample period.9 The real interest rate elasticity of aggregate

demand (0.25)10 is lower than the elasticity assumed by Woodford (2003) (0.5),
9These parameters for the shock process imply that the natural real interest rate is negative

about 15% of the time on an annual basis. This is slightly more often than with the standard
Woodford calibration (10%).
10which corresponds to a constant relative risk aversion of 4 in the underlying model.

8
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Structural parameters
Discount factor � 0.993
Real interest rate elasticity of output � 0.25
Slope of the Phillips curve � 0.024
Weight of the output gap in loss function � 0.003

Natural real rate parameters
Mean (% per annum) r� 3%
Standard deviation (annual) �(rn) 3.72%
Persistence (quarterly) � 0.65

Simple instrument rule coe¢ cients
In�ation target (% per annum) �� 0%
Coe¢ cient on in�ation �� 1.5
Coe¢ cient on output gap �x 0.5
Interest rate smoothing coe¢ cient �i 0

Table 1: Baseline calibration (quarterly unless otherwise stated)

but as these authors point out, if anything a lower degree of interest sensitiv-

ity of aggregate expenditure biases the results towards a more modest output

contraction as a result of a binding zero �oor.11 In the simulations with simple

rules, the baseline target in�ation rate (0%) is consistent with the implicit zero

target for in�ation in the central bank�s loss function. The baseline reaction

coe¢ cients on in�ation (1.5), the output gap (0.5), and the lagged nominal in-

terest rate (0) are standard in the literature on Taylor (1993)-type rules. Section

8 studies the sensitivity of the results to various parameter changes.

3 Optimal Discretionary Policy with Zero Floor

Abstracting from the zero �oor, the solution to the discretionary optimization

problem is well known12 . Under discretion, the central bank cannot manipulate

the beliefs of the private sector and it takes expectations as given. The private

sector is aware that the central bank is free to re-optimize its plan in each period

and, therefore, in a rational expectations equilibrium, the central bank should

have no incentives to change its plans in an unexpected way. It can be shown

that in this case the discretionary policy problem reduces to a sequence of static

11With the Woodford (2003) value of this parameter (6.25), the model predicts unrealisti-
cally large output shortfalls when the zero �oor binds - e.g. an output gap around -30% for
values of the natural real rate around -3%.
12 In this section attention is restricted to Markov-perfect equilibria only.

9
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optimization problems in which the central bank minimizes current period losses

by choosing the current in�ation, output gap and nominal rate (Clarida, Gali

and Gertler 1999).

Since in the baseline model there are no endogenous state variables, the

Markovian policy functions depend only on the exogenous natural real rate,

rnt : The solution without zero bound then is straightforward: in�ation and the

output gap are fully stabilized at their (zero) targets in every period and state

of the world, while the nominal interest rate moves one-for-one with the natural

real rate. This is depicted by the dotted lines in Figure 2. With this policy the

central bank is able to achieve the globally minimal welfare loss of zero at all

times.

With the zero �oor, the problem of discretionary optimization can also be

cast as a sequence of static problems. The Lagrangian is

Lt =
1

2

�
�2t + �x

2
t

�
+ �1t [xt � f1t + � (it � f2t)] + �2t [�t � �xt � �f2t] + �3tit

(7)

where �1t is the Lagrange multiplier associated with the IS curve (1), �2t with

the Phillips curve (2), and �3t with the zero constraint (4). The functions

f1t = Et (xt+1), and f2t = Et (�t+1) are the private sector expectations which

the central bank takes as given. Noticing that �3t = ��1t; the Kuhn-Tucker

conditions for this problem can be written as:

�t + �2t = 0 (8)

�xt + �1t � ��2t = 0 (9)

it�1t = 0 (10)

it � 0 (11)

�1t � 0 (12)

Substituting (8) and (9) into (10), and combining the result with (1), (2), and

(4), a Markov perfect rational expectations equilibrium in the case of discre-

10
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tionary optimization should satisfy:

xt � Etxt+1 + � (it � Et�t+1 � rnt ) = 0 (13)

�t � �xt � �Et�t+1 = 0 (14)

it (�xt + ��t) = 0 (15)

it � 0 (16)

�xt + ��t � 0 (17)

Notice that (15) implies that the typical "targeting rule" involving in�ation

and the output gap is satis�ed whenever the zero �oor on the nominal interest

rate is not binding,

�xt + ��t = 0; (18)

if it > 0 (19)

However, when the zero �oor is binding, from (13) the dynamics are governed

by

xt + �pt � �rnt = Etxt+1 + �Etpt+1 (20)

if it = 0 (21)

where pt is the (log) price level. Notice that it is no longer possible to set

in�ation and the output gap to zero at all times, for such a policy would require

a negative nominal rate when the natural real rate falls below zero. Moreover,

(20) implies that if the natural real rate falls so that the zero �oor becomes

binding, then since next period�s output gap and price level are independent of

today�s actions, for expectations to be rational, the sum of the current output

gap and price level must fall. The latter is true for any process for the natural

real rate which allows it to take negative values.

An interesting special case, which replicates the �ndings of Jung, Teranishi

and Watanabe (2005), is the case of perfect foresight. By perfect foresight

it is meant here that the natural real rate jumps initially to some (possibly

negative) value, after which it follows a deterministic path (consistent with

an AR(1) process) back to its steady-state. In this case the policy functions

are represented by the solid lines in Figure 2. As anticipated in the previous

paragraph, at negative values of the natural real rate both the output gap and

11
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in�ation are below target. On the other hand, at positive levels of the natural

real rate, prices and output can be stabilized fully in the case of discretionary

optimization with perfect foresight. The reason for this is simple - in the absence

of an endogenous state variable the discretionary optimization problem is static

and once the natural real rate is above zero deterministic reversion to steady-

state ensures that it will never be negative. This means that it can always

be tracked one-for-one by the nominal rate (as in the case without zero �oor),

which is su¢ cient to fully stabilize prices and output.

One of the contributions of this paper is to extend the analysis in Jung,

Teranishi and Watanabe (2005) to the more general case in which the natural

real rate follows a stochastic AR(1) process. Figure 3 plots the optimal dis-

cretionary policies in the stochastic environment. Clearly optimal discretionary

policy di¤ers in several important ways both from the optimal policy uncon-

strained by the zero �oor and from the constrained perfect-foresight solution.

First of all, given the zero �oor, it is in general no longer optimal to set either

in�ation or the output gap to zero in any period. In fact, in the solution with

zero �oor, in�ation falls short of target at any level of the natural real rate. This

gives rise to a "de�ationary bias" of optimal discretionary policy, in other words

an average rate of in�ation below the target. Sensitivity analysis shows that for

some plausible parameter values the de�ationary bias becomes quantitatively

signi�cant13 . This implies that any quantitative analysis of discretionary biases

in monetary models that does not take into account the zero lower bound can

be misleading.

Secondly, as in the case of perfect foresight, at negative levels of the natural

real rate, both in�ation and the output gap fall short of their respective targets.

However, the deviations from target are larger in the stochastic case - up to 1.5

percentage points for the output gap, and up to 15 basis points for in�ation at

a natural real rate of -3% under the baseline calibration.

Third, above a positive threshold for the natural real rate, the optimal output

gap becomes positive, peaking around +0.5%.

Finally, at positive levels of the natural real rate the optimal nominal interest

rate policy with zero �oor is both more expansionary (i.e. prescribing a lower

13E.g. half a percentage point with � = 0:8 and r� = 2%:
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nominal rate), andmore aggressive (i.e. steeper) compared to the optimal policy

without zero �oor14 . As a result, the nominal rate hits the zero �oor at levels

of the natural real rate as high as 1.8% (and is constant at zero for lower levels

of the natural real rate).

These results hinge on two factors: (1) the non-linearity induced by the zero

�oor; and (2) the stochastic nature of the natural real rate. The combined e¤ect

is an asymmetry in the ability of the central bank to respond to positive versus

negative shocks when the natural real rate is close to zero. Namely, while the

central bank can fully o¤set any positive shocks to the natural real rate because

nothing prevents it from raising the nominal rate by as much as is necessary,

it cannot fully o¤set large enough negative shocks. The most it can do in

this case is to reduce the nominal rate down to zero, which is still higher than

the rate consistent with zero output gap and in�ation. Taking private sector

expectations as given, the latter implies a higher than desired real interest rate,

which depresses output and prices through the IS and Phillips curves.

At the same time, when the natural real rate is close to zero, private sector

expectations re�ect the asymmetry in the central bank�s problem: a positive

shock in the following period is expected to be neutralized, while an equally

probable negative one is expected to take the economy into a liquidity trap.

This gives rise to a "de�ation bias" in expectations, which in a forward-looking

economy has an immediate impact on the current evolution of output and prices.

Absent an endogenous state, the current evolution of the economy is all that

matters today, and so it is rational for the central bank to partially o¤set the

depressing e¤ect of expectations about the future on today�s outcome by more

aggressive lowering of the nominal rate when the risk of de�ation is high. In

this way, by engineering a positive output gap at low levels of the natural real

rate, the central bank is able to "lean against" de�ation in equilibrium.

At su¢ ciently high levels of the natural real rate, the probability for the zero

�oor to become binding converges to zero. In that case optimal discretionary

policy approached the unconstrained one, namely zero output gap and in�ation

and a nominal rate equal to the natural real rate. However, around the deter-

ministic steady-state the di¤erences between the two policies - with and without

14 ... or compared to the optimal discretionary policy with zero �oor and perfect foresight.
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zero �oor - remain signi�cant.

Since in the baseline model the discretionary optimization problem is equiv-

alent to a sequence of static problems, optimal policy is independent of history.

This means that it is only the current risk of falling into a liquidity trap that

matters for current policy, regardless of whether the economy is approaching a

liquidity trap or has just exited one. This is in sharp contrast with the optimal

policy under commitment, which involves a particular type of history depen-

dence as will become clear in the following section.

4 Optimal Commitment Policy with Zero Floor

In the absence of the zero lower bound the equilibrium outcome under optimal

discretion is globally optimal and therefore it is observationally equivalent to

the outcome under optimal commitment policy. The central bank manages to

stabilize fully in�ation and the output gap while adjusting the nominal rate

one-for-one with the natural real rate.

However, this observational equivalence no longer holds in the presence of

a zero interest rate �oor. While full stabilization under either regime is not

possible, important gains can be obtained from the ability to commit to future

policy. In particular, by committing to deliver in�ation in the future, the central

bank can a¤ect private sector�s expectations about in�ation, and thus the real

rate, even when the nominal interest rate is constrained by the zero �oor. This

channel of monetary policy in simply unavailable to a discretionary policy maker.

Using the same Lagrange method as before, but this time taking into account

the dependence of expectations on policy choices, it is straightforward to obtain

14
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the equilibrium conditions that govern the optimal commitment solution:

xt � Etxt+1 + � (it � Et�t+1 � rnt ) = 0 (22)

�t � �xt � �Et�t+1 = 0 (23)

�t � �1t�1�=� + �2t � �2t�1 = 0 (24)

�xt + �1t � �1t�1=� � ��2t = 0 (25)

it�1t = 0 (26)

it � 0 (27)

�1t � 0 (28)

From conditions (24) and (25) it is clear that the Lagrange multipliers in-

herited from the past period will have an e¤ect on current policy. They in turn

will depend on the history of endogenous variables and in particular on whether

the zero �oor was binding in the past. In this sense the Lagrange multipliers

summarize the e¤ect of commitment, which in contrast to optimal discretionary

policy, involves a particular type of history dependence.

Figures 4 to 6 plot the optimal policies in the case of commitment. The

�gures illustrate speci�cally the dependence of policy on �1t�1; the Lagrange

multiplier associated with the zero �oor, while holding �2t�1 �xed. When the

nominal interest rate is constrained by the zero �oor �1 becomes positive, im-

plying that the central bank commits to a lower nominal rate, higher in�ation

and higher output gap in the following period, conditional on the value of the

natural real rate.

Since the commitment is assumed to be credible, it enables the central bank

to achieve higher expected in�ation and a lower real rate in periods when the

nominal rate is constrained by the zero �oor. The lower real rate reinforces ex-

pectations for higher future output and thus further stimulates current output

demand through the IS curve. This, together with higher expected in�ation

stimulates current prices through the expectational Phillips curve. Commit-

ment therefore provides an additional channel of monetary policy, which works

through expectations and through the ex-ante real rate, and which is unavailable

to a discretionary monetary policy maker.

A standard way to illustrate the di¤erences between optimal discretionary

and commitment policies is to compare the dynamic evolution of endogenous

15
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variables under each regime in response to a single shock to the exogenous

natural real rate. Figures 7 and 8 plot the impulse-responses for a small and

a large negative shock to the natural real rate respectively. Notice that in the

case of a small shock to the natural real rate from its steady-state of 3% down

to 2%, in�ation and the output gap under optimal commitment policy (lines

with circles) remain almost fully stabilized. In contrast, under discretionary

optimization (lines with squares), in�ation stays slightly below target and the

output gap remains about half a percentage point above target, consistent with

equation (18), as the economy converges back to its steady-state. The nominal

interest rate under discretion is about 1% lower than the one under commitment

throughout the simulation, yet it remains strictly positive at all times.

The picture changes substantially in the case of a large negative shock to the

natural interest rate to -3%. Notably, under both commitment and discretion,

the nominal interest rate hits the zero lower bound, and remains there until

two quarters after the natural interest rate has returned to positive.15 Under

discretionary optimization, both in�ation and the output gap fall on impact,

consistent with equation (20), after which they converge towards their steady-

state. The initial shortfall is signi�cant, especially for the output gap, amounting

to about 1.5%. In contrast, under the optimal commitment rule the initial

output loss and de�ation are much milder, owing to the ability of the central

bank to commit to a positive output gap and in�ation once the natural real rate

has returned to positive.

An alternative way to compare optimal discretionary and commitment poli-

cies in the stochastic environment is to juxtapose the dynamic paths that they

prescribe for endogenous variables under a chosen evolution for the stochastic

natural real rate16 . The experiment is shown in �gure 9, which plots a sim-

ulated "liquidity trap" under the two regimes. The line with triangles in the

bottom panel is the assumed evolution of the natural real rate. It slips down

from +3 percent (its deterministic steady-state) to -3 percent over a period of

15 quarters, then remains at -3 percent for 10 quarters, before recovering grad-

15That the zero interest rate policy should terminate in the same quarter under commitment
and under discretion is a coincidence in this experiment. The relative duration of a zero
interest rate policy under commitment versus discretion depends on the parameters of the
shock process as well as the particular realization of the shock.
16 In the model agents observe only the current state, i.e. the future evolution of the natural

real rate is unknown to them in this experiment.
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ually (consistent with the assumed AR(1) process) to +3 percent in another 15

quarters.

The �rst and the second panels of �gure 9 show the responses of in�ation

and the output gap under each of the two regimes. Not surprisingly, under

the optimal commitment regime both in�ation and the output gap are closer to

target than under the optimal discretionary policy. In particular, under optimal

discretion in�ation is always below the target as it falls to -0.15% shadowing the

drop in the natural real rate. Compared to that, under optimal commitment

prices are almost fully stabilized, and in fact they even slightly increase while

the natural real rate is negative. In turn, under optimal discretion the output

gap is initially around +0.4% but then it declines sharply to -1.6% with the

decline in the natural real rate. In contrast, under optimal commitment, output

is initially at its potential level and the largest negative output gap is only half

the size of the one under optimal discretion.

Supporting these paths of in�ation and the output gap are corresponding

paths for the nominal interest rate. Under discretionary optimization the nom-

inal rate starts at around 2% and declines at an increasing rate until it hits

zero two quarters before the natural real rate has turned negative. It is then

kept at zero while the natural real rate is negative, and only two quarters after

the latter has returned to positive territory does the nominal interest rate start

rising again. Nominal rate increases following the liquidity trap mirror the de-

creases while approaching the trap, so that the tightening is more aggressive in

the beginning and then gradually diminishes as the nominal rate approaches its

steady-state.

In contrast, the nominal rate under optimal commitment begins closer to

3%, then declines to zero one quarter before the natural real rate turns nega-

tive. After that, it is kept at its zero �oor until three quarters after the recovery

of the natural real rate to positive levels, that is one quarter longer compared to

optimal discretionary policy. Interestingly, once the central bank starts increas-

ing the nominal rate, it raises it very quickly - the nominal rate climbs nearly

3 percentage points in just two quarters. This is equivalent to six consecutive

monthly increases by 50 basis points each. The reason is that once the central

bank has validated the in�ationary expectations (which help mitigate de�ation

17
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during the liquidity trap), the is no more incentive to keep in�ation above target

when the natural interest rate has returned back to normal.

Under discretion, the paths of in�ation, output and the nominal rate are

symmetric with respect to the midpoint of the simulation period because op-

timal discretionary policy is independent of history. Therefore, in�ation and

the output gap inherit the dynamics of the natural real rate, the only state

variable on which they depend. This is in contrast with the asymmetric paths

of the endogenous variables under commitment, re�ecting the optimal history

dependence of policy under this regime. In particular, the fact that under com-

mitment the central bank can promise higher output gap and in�ation in the

wake of a liquidity trap is precisely what allows it to engage in less preemp-

tive easing of policy in anticipation of the trap, and at the same time deliver a

superior in�ation and output gap performance compared to the optimal policy

under discretion.

5 Targeting Rules with Zero Floor

In the absence of the zero �oor, targeting rules take the form

��Et�t+j + �xEtxt+k + �iEtit+l = �;

where ��; �x; �i are weights assigned to the di¤erent objectives, j; k and l are

forecasting horizons, and � is the target. These are sometimes called �exible

in�ation targeting rules to distinguish them from strict in�ation targeting of

the form Et�t+j = �: When j; k or l > 0; the rules are called in�ation forecast

targeting to distinguish them from targeting contemporaneous variables.

As demonstrated by (20) in section 3, in general such rules are not consistent

with equilibrium in the presence of the zero �oor for they would require negative

nominal interest rates at times. A natural way to modify targeting rules so that

they comply with the zero �oor is to write them as a complementarity condition,

it (��Et�t+j + �xEtxt+k + �iEtit+l � �) = 0 (29)

it � 0 (30)

which requires that either the target � is met, or else the nominal interest rate

should be bounded below by zero. In this sense, a rule like (29)-(30) can be

labelled "�exible in�ation targeting with a zero interest rate �oor".
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In fact, section 3 showed that the optimal policy under discretion takes this

form with �i = 0; �� = �; �x = �; j = k = 0; and � = 0; namely

it

�
xt +

�

�
�t

�
= 0 (31)

it � 0 (32)

In the absence of the zero �oor it is well known that optimal commitment

policy can be formulated as optimal speed limit targeting,

�xt +
�

�
�t = 0;

where �xt = �yt ��yflext is the growth rate of output relative to the growth

rate of �exible price output (the speed limit). In contrast to discretionary op-

timization however, the optimal commitment rule with zero �oor cannot be

written in the form (29)-(30). This is so because with zero �oor the optimal

target involves a particular type of history dependence as shown by Eggertsson

and Woodford (2003)17 . In particular, manipulating the �rst order conditions

of the optimal commitment problem, one can arrive at the following speed limit

targeting rule with zero �oor:

it

�
�xt +

�

�
�t �

1

�

�
�� + �

�
�1t�1 � �1t +

1

�
��1t�1

��
= 0 (33)

it � 0: (34)

Since �� is small and � is close to one, and for plausible values of �1t

consistent with the assumed stochastic process for the natural real rate18 , the

above rule is approximately the same as

it

h
�yt +

�

�
�t � �t

i
= 0 (35)

it � 0: (36)

where �t � �yflext + ��1�2�1t is a history-dependent target (speed limit). In

normal circumstances when �1t = �1t�1 = �1t�2 = 0; the target is equal to

the growth rate of �exible price output, as in the problem without zero bound;

however if the economy falls into a liquidity trap, the speed limit is adjusted in

17These authors derive the optimal commitment policy in the form of a moving price level
targeting rule. Alternatively, it can be formulated as a moving speed limit taregting rule as
demonstrated here.
18�1t is two orders of magnitude smaller than the natural real rate.

19

BANCO DE ESPAÑA      26 DOCUMENTO DE TRABAJO N.º 0637 



each period by the speed of change of the penalty (the Lagrange multiplier) as-

sociated with the non-negativity constraint. The faster the economy is plunging

into the trap therefore, the higher is the speed limit target which the central

bank promises to achieve contingent on the interest rate�s return to positive

territory.

While the above rule is optimal in this framework it is perhaps not very prac-

tical. Its dependence on the unobservable Lagrange multipliers makes it very

hard if not impossible to implement or communicate to the public. Moreover,

as pointed out by Eggertsson and Woodford (2003), credibility might su¤er if

all that the private sector observes is a central bank which persistently under-

shoots its target yet keeps raising it for the following period. To overcome some

of these drawbacks Eggertsson and Woodford (2003) propose a simpler constant

price level targeting rule, of the form

it

h
xt +

�

�
pt

i
= 0 (37)

it � 0

where pt is the log price level.19

The idea is that committing to a price level target implies that any un-

dershooting of the target resulting from the zero �oor is going to be undone

in the future by positive in�ation. This raises private sector expectations and

eases de�ationary pressures when the economy is in a liquidity trap. Figure

10 demonstrates the performance of this simpler rule in a simulated liquidity

trap. Notice that while the evolution of the nominal rate and the output gap

is similar to that under the optimal discretionary rule, the path of in�ation is

much closer to the target. Since the weight of in�ation in the central bank�s

loss function is much larger than that of the output gap, the fact that in�ation

is better stabilized accounts for the superior performance of this rule in terms

of welfare.
19Notice that the weight on the price level is optimal within the class of constant price level

targeting rules. In particular, it is related to �=� = "; the degree of monopolistic competition
among intermediate goods producers.

20

BANCO DE ESPAÑA      27 DOCUMENTO DE TRABAJO N.º 0637 



6 Simple Instrument Rules with Zero Floor

The practical di¢ culties with communicating and implementing optimal rules

like (33) or even (37) have led many researchers to focus on simple instrument

rules of the type proposed by Taylor (1993). These rules have the advantage of

postulating a relatively straightforward relationship between the nominal inter-

est rate and a limited set of variables in the economy. While the advantage of

these rules lies in their simplicity, at the same time - absent the zero �oor - some

of them have been shown to perform close enough to the optimal rules in terms

of the underlying policy objectives (Gali 2003). Hence, it has been argued that

some of the better simple instrument rules may serve as a useful benchmark for

policy, while facilitating communication and transparency.

In most of the existing literature, however, simple instrument rules are spec-

i�ed as linear functions of the endogenous variables. This is in general inconsis-

tent with the existence of a zero �oor because for large enough negative shocks

(e.g. to prices), linear rules would imply a negative value for the nominal inter-

est rate. For instance, a simple instrument rule reacting only to past period�s

in�ation,

it = r
� + �� + �� (�t�1 � ��) (38)

where r� is the equilibrium real rate, �� is the target in�ation rate, and �� is an

in�ation response coe¢ cient, can clearly imply negative values for the nominal

rate.

In the context of liquidity trap analysis a natural way to modify simple

instrument rules is to truncate them at zero with the max(�) operator. For

example, the truncated counterpart of the above Taylor rule can be written as:

it = max [0; r
� + �� + �� (�t�1 � ��)]

In what follows I consider several types of truncated instrument rules, in-

cluding:

1. Truncated Taylor Rules (TTR) that react to past, contemporaneous or

expected future values of the output gap and in�ation,

iTTRt = max [0; r� + �� + �� (Et�t+j � ��) + �x (Etxt+j)] ; j = �1; 0; 1
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2. TTR rules with partial adjustment or "interest rate smoothing" (TTRS),

iTTRSt = max
�
0; �iit�1 + (1� �i) iTTRt

	
3. TTR rules that react to the price level instead of in�ation (TTRP),

iTTRPt = max [0; r� + �� (pt � p�) + �xxt]

where pt is the log price level and p� is a constant price level target; and

4. Truncated "�rst-di¤erence" rules (TFDR) that specify the change in the

interest rate as a function of the output gap and in�ation,

iTFDRt = max [0; it�1 + �� (�t � ��) + �xxt] :

The last formulation ensures that if the nominal interest rate ever hits zero

it will be held there as long as in�ation and the output gap are negative, thus

extending the potential duration of a zero interest rate policy relative to a

truncated Taylor rule.

I illustrate the performance of each family of rules by simulating a liquidity

trap and plotting the implied paths of endogenous variables under each regime.

The more rigorous evaluation of welfare is reserved for the following section.

Given the model�s simplicity the focus here is not on �nding the optimal

values of the parameters within each class of rules but rather on evaluating the

performance of alternative monetary policy regimes. To do that I use values

of the parameters commonly estimated and widely used in simulations in the

literature. I make sure that the parameters satisfy a su¢ cient condition for local

uniqueness of equilibrium. Namely, the parameters are required to observe the

so-called Taylor principle according to which the nominal interest rate must be

adjusted more than one-to-one with changes in the rate of in�ation, implying

�� > 1: I further restrict �x � 0 and 0 � �i � 0:8.

Figure 11 plots the dynamic paths of in�ation, the output gap and the

nominal interest rate which result under regimes TTR and TTRP, conditional on

the same path for the natural real rate as before. Both the truncated Taylor rule

(TTR, lines with squares) and the truncated rule responding to the price level

(TTRP, lines with circles) react contemporaneously with coe¢ cients �� = 1:5

and �x = 0:5; and �� = 0.
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Several features of these plots are worth noticing. First of all, and not

surprisingly, under the truncated Taylor rule, in�ation, the output gap, and the

nominal rate inherit the behavior of the natural real rate. Perhaps less expected

though, while both in�ation and especially the output gap deviate further from

their targets compared to the optimal rules in �gure 9, the nominal interest

rate stays always above one percent, even when the natural real rate falls as low

as -3 percent! This suggests that - contrary to popular belief - an equilibrium

real rate of 3% may provide a su¢ cient bu¤er from the zero �oor even with a

truncated Taylor rule targeting zero in�ation.

Secondly, �gure 11 demonstrates that in principle the central bank can do

even better than TTR by reacting to the price level rather than to the rate of

in�ation. The reason for this is clear - by committing to react to the price level

the central bank promises to undo any past disin�ation by higher in�ation in

the future. As a result when the economy is hit by a negative real rate shock

current in�ation falls by less because expected future in�ation increases.

Figure 12 plots the dynamic paths of endogenous variables under regimes

TTRS and TFDR, again with �� = 1:5; �x = 0:5 and �� = 0. TTRS (lines

with circles) is a partial adjustment version of TTR, with smoothing coe¢ cient

�i = 0:8: TFDR (line with squares) is a truncated �rst-di¤erence rule which

implies more persistent deviations of the nominal interest rate from its steady-

state level.

The �gure suggests that interest rate smoothing (TTRS) may improve some-

what on the truncated Taylor rule (TTR), and may do a bit worse than the rule

reacting to the price level (TTRP). However, it implies the least instrument

volatility. On the other hand, the truncated �rst-di¤erence rule (TFDR) seems

to be doing the best job at stabilization in a liquidity trap among the examined

four simple instrument rules. However, under this rule the nominal interest

rate deviates most from its steady-state, hitting zero for �ve quarters. Inter-

estingly, the paths for in�ation and the output gap under this rule resemble, at

least qualitatively, those under the optimal commitment policy. This suggests

that introducing a substantial degree of interest rate inertia may be approxi-

mating the optimal history dependence of policy implemented by the optimal

commitment rule.
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It is important to keep in mind that the above simulations are conditional on

one particular path for the natural real rate. It is of course possible that a rule

which appears to perform well while the economy is in a liquidity trap, turns out

to perform badly "on average". In the following section I undertake the ranking

of alternative rules according to an unconditional expected welfare criterion,

which takes into account the stochastic nature of the economy, time discounting,

as well as the relative cost of in�ation vis-a-vis output gap �uctuations.

7 Welfare Ranking of Alternative Rules

A natural criterion for the evaluation of alternative monetary policy regimes is

the central bank�s loss function. Woodford (2003) shows that under appropriate

assumptions the latter can be derived as a second order approximation to the

utility of the representative consumer in the underlying sticky price model.20

Rather than normalizing the weight of in�ation to one, I normalize the loss

function so that utility losses arising from deviations from the �exible price

equilibrium can be interpreted as a fraction of steady-state consumption,

WL =
U � U
UcC

=
1

2
E0

1X
t=0

�t
�
" (1 + '") ��1�2t +

�
��1 + '

�
x2t
�
= (39)

=
1

2
" (1 + '") ��1E0

1X
t=0

�tLt (40)

where � = ��1 (1� �) (1� ��) ; � is the fraction of �rms that keep prices

unchanged in each period, ' is the (inverse) elasticity of labor supply, and

" is the elasticity of substitution among di¤erentiated goods. Notice that�
��1 + '

�
[" (1 + '")]

�1
� = �=" = � implies the last equality in the above

expression, where Lt is the central bank�s period loss function, which is being

minimized in (3).

I rank alternative rules on the basis of the unconditional expected welfare.

To compute it, I simulate 2000 paths for the endogenous variables over 1000

quarters and then compute the average loss per period across all simulations.

20Arguably, Woodford�s (2003) approximation to the utility of the representative consumer
is accurate to second order only in the vicinity of the steady-state with zero in�ation. To
the extent that the shock inducing a zero interest rate pushes the economy far away from the
steady-state, the approximation error could in principle be large. In that case, the welfare
evaluation provided here can be interpreted as a relative ranking of alternative policies based
on an ad hoc central bank loss criterion. Studying the welfare implication of di¤erent rules in
the fully non-linear model lies outside the scope of this paper.
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For the initial distribution of the state variables I run the simulation for 200

quarters prior to the evaluation of welfare. Table 2 ranks all rules according to

their welfare score. It also reports the volatility of in�ation, the output gap and

the nominal interest rate under each rule, as well as the frequency of hitting the

zero �oor.

A thing to keep in mind in evaluating the welfare losses is that in the bench-

mark model with nominal price rigidity as the only distortion and a shock to

the natural real rate as the only source of �uctuations, absolute welfare losses

are quite small - typically less than one hundredth of a percent of steady-state

consumption for any sensible monetary policy regime.21 Therefore, the focus

here is on evaluating rules on the basis of their welfare performance relative to

that under the optimal commitment rule with zero �oor.

In particular, in terms of unconditional expected welfare, the optimal dis-

cretionary policy (ODP) delivers losses which are nearly eight times larger than

the ones achievable under the optimal commitment policy (OCP). Recall that

abstracting from the zero �oor and in the absence of shocks other than to the

natural real rate, the outcome under discretionary optimization is the same as

under the optimal commitment rule. Hence, the cost of discretion is substan-

tially understated in analyses which ignore the existence of the zero lower bound

on nominal interest rates. Moreover, conditional on the economy�s fall into a

liquidity trap the cost of discretion is even higher.

Interestingly, the frequency of hitting the zero �oor is quite high - around one

third of the time under both optimal policies. This however depends crucially

on the central bank�s targeting zero in�ation in the baseline model without

indexation. If instead the central bank targets a rate of in�ation of 2%, the

frequency of hitting the zero �oor decreases to around 12% of the time (which

is still much higher than what is observed, say, in the US).

Table 2 further con�rms Eggertsson and Woodford (2003) intuition about

the desirable properties of an (optimal) constant price level targeting rule (PLT)

- here losses are only 56% greater than those under the optimal commitment

rule. It also involves hitting the zero �oor around one third of the time.

In contrast, losses under the truncated �rst-di¤erence rule (TFDR) are 7.5

21To be sure, output gaps in a liquidity trap are considerable; however the output gap is
attributed negligible weight in the central bank loss function of the benchmark model.
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OCP PLT TFDR ODP TTRP TTRS TTR
std(�) x 102 1.04 3.47 4.59 3.85 7.23 9.12 12.9
std(x) 0.45 0.69 1.04 0.71 1.61 1.91 1.90
std(i) 3.21 3.20 1.36 3.27 1.06 0.56 1.14
Loss x 105 6.97 10.9 52.3 54.2 62.9 103 147
Loss/OCP 1 1.56 7.50 7.77 9.01 14.8 21.1
Pr(i = 0) % 32.6 32.0 1.29 36.8 0.24 0.00 0.44

Table 2: Properties of Optimal and Simple Rules with Zero Floor

times as large as those under the optimal commitment rule. Interestingly, how-

ever, TFDR narrowly outperforms optimal discretionary policy. Even though

the implied volatility of in�ation and the output gap is slightly higher under

this rule, it does a better job than ODP at keeping in�ation and the output

gap closer to target on average. This is possibly related to the highly inertial

nature of this rule. An additional advantage - albeit one that is not re�ected in

the benchmark welfare criterion - is that instrument volatility is less than half

of that under any of the optimal policies. This is why the zero �oor is hit only

around 1.3% of the time under this rule.

Similarly, losses under the truncated Taylor rule reacting to the price level

(TTRP) are nine times larger than under OCP, but only slightly worse than

optimal discretionary policy. Moreover, instrument volatility under this rule is

smaller than under TFDR, which is why it involves hitting the zero �oor even

more rarely - only one quarter every 100 years on average.

Not surprisingly, the rule with the least instrument volatility among the

studied simple rules - less than one-�fth of that under OCP - is the truncated

Taylor rule with smoothing (TTRS). As a consequence, under this rule the

nominal interest rate virtually never hits the zero lower bound. However, welfare

losses are almost �fteen times larger than under OCP.

Finally, under the simplest truncated Taylor rule (TTR) without smoothing

the zero lower bound is hit only two quarters every 100 years, while welfare

losses are around 20 times larger than those under OCP. Nevertheless, even

under this simplest rule losses are very small in absolute terms.

The fact that the zero lower bound is hit so rarely under the four simple

instrument rules suggests that the zero constraint may not be playing a big role

for unconditional expected welfare under these regimes. Indeed, computing their
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welfare score without the zero �oor (by removing the max operator), reveals that

close to 99% of the welfare losses associated with the four simple instrument

rules stem from their intrinsic suboptimality rather than from the zero �oor per

se. Put di¤erently, if one reckons that the stabilization properties of a standard

Taylor rule are satisfactory in an environment in which nominal rates can be

negative, then adding the zero lower bound to it leaves unconditionally expected

welfare virtually una¤ected. Nevertheless, as was illustrated in the previous

section, conditional on a negative evolution of the natural real rate, the losses

associated with most of the studied simple instrument rules are substantially

higher relative to the optimal policy.

8 Sensitivity Analysis

In this section I analyze the sensitivity of the main �ndings with respect to

the parameters of the shock process, the strength of reaction and the timing

of variables in truncated Taylor-type rules, and an extension of the model with

endogenous in�ation persistence.

8.1 Parameters of the Natural Real Rate Process

8.1.1 Larger variance

Table 3 reports the e¤ects of an increase of the standard deviation of rn to

4.5% (a 20% increase), while keeping the persistence constant, under three al-

ternative regimes - optimal commitment policy, discretionary optimization and

a truncated Taylor rule.

Under OCP, the zero �oor is hit around 23% more often, while welfare losses

more than double. Figure 13 shows that the higher volatility implies that both

the preemptive easing of policy and the commitment to future loosening are

somewhat stronger. In turn, �gure 14 shows that under ODP preemptive easing

is much stronger, the de�ation bias bigger, and table 3 shows that welfare losses

increase by a factor of 2.6. Finally, under TTR, the zero �oor is hit three times

more often, while welfare losses are up by 40%.
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OCP ODP TTR
std(rn) 4.46 4.46 4.46
std(�) x 1.52 x 1.50 x 1.20
std(x) x 1.46 x 1.45 x 1.20
std(i) x 1.14 x 1.14 x 1.19
Loss x 2.12 x 2.60 x 1.42
Pr(i = 0) % x 1.23 x 1.19 x 3.24

Table 3: Properties of Selected Rules with Higher std(rn)

OCP ODP TTR
�(rn) 0.80 0.80 0.80
std(�) x 2.14 x 2.94 x 2.44
std(x) x 1.55 x 1.76 x 1.42
std(i) x 1.02 x 1.04 x 1.52
Loss x 2.69 x 5.47 x 4.39
Pr(i = 0) % x 1.09 x 1.21 x 11.2

Table 4: Properties of Selected Rules with More Persistent brn
8.1.2 Stronger persistence of shocks

Table 4 and �gures 15-17 show the e¤ect of an increase in the persistence of

shocks to the natural real rate to 0:8, while keeping the variance of rn unchanged.

Under OCP (�gure 15), preemptive easing is a bit stronger while future

monetary loosening is much more prolonged. As a result of the stronger per-

sistence, welfare losses under OCP more than double. Under ODP (�gure 16),

preemptive easing is much stronger, the de�ation bias is substantially larger,

and welfare losses increase by a factor of 5.5. And under TTR (�gure 17), de-

viations of in�ation and the output gap from target become larger and more

persistent, the frequency of hitting the zero �oor increases by a factor of 11, and

welfare losses more than quadruple.

8.1.3 Lower mean

The e¤ects of a lower steady state of the natural real rate at 2% - keeping the

variance and persistence of rn constant - are illustrated in �gures 18 and 19 and

summarized in table 5.22

Under OCP, preemptive easing is a bit stronger while future monetary policy

loosening is much more prolonged; losses more than double. Interestingly, under

22Notice that for simple rules such as TTR, it is the sum r�+ �� which provides a "bu¤er"
against the zero lower bound. Therefore, up to a constant shift in the rate of in�ation, varying
r� is equivalent to testing for sensitivity with respect to ��:
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OCP ODP TTR
r� 2% 2% 2%
std(�) x 1.74 x 1.79 x 1.00
std(x) x 1.55 x 1.62 x 1.00
std(i) x 0.89 x 0.87 x 0.98
Loss x 2.55 x 4.47 x 1.48
Pr(i = 0) % x 1.51 x 1.59 x 9.27

Table 5: Properties of Selected Rules with Lower r�

�� 1.01 1.5 2 3 10 100
�x
0 x 1.89 x 1.80 x 1.71 x 1.57 x 0.95 x 0.18
0.5 x 1.03 x 1 x 0.97 x 0.90 x 0.59 x 0.18
1 x 0.65 x 0.63 x 0.62 x 0.58 x 0.50 x 0.17
2 n.a. x 2.05 x 1.13 x 0.64 x 0.41 x 0.23
3 n.a. n.a. x 4.44 x 1.92 x 0.45 x 0.27

Table 6: Relative Losses under TTRs with Di¤erent Response Coe¢ cients

ODP preemptive easing is so strong that the nominal rate is zero more than

half of the time. The de�ation bias is larger, and losses increase by a factor of

4.5. And under TTR, the zero �oor is hit nine times more often while losses

increase by 50%.

8.2 Instrument Rule Speci�cation

8.2.1 The strength of response

Table 6 reports the dependence of welfare losses on the size of response co-

e¢ cients in a truncated Taylor rule. It turns out that losses can be reduced

substantially by having the interest rate react more aggressively to in�ation

and output gap deviations from target. For instance, losses are almost halved

with �� = 3 and �x = 1; relative to the benchmark case with �� = 1:5 and

�x = 0:5: And they are reduced further to one �fth, with �� = 100:23

8.2.2 Forward, contemporaneous or backward-looking reaction

For given response coe¢ cients of a truncated Taylor rule, welfare losses turn

out to be smallest under a backward-looking rule and highest under a forward-

looking speci�cation. While losses are still small in absolute value, with �� = 1:5

and �x = 0:5 they are up by 25% under the forward-looking rule and are around

23 It is interesting to explore the behavior of truncated Taylor rules as �� !1 and �x !1.
However, the algorithm used here runs into convergence problems with �� > 100 and �x > 3:
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15% lower under the backward-looking rule, relative to the contemporaneous

one. The frequency of hitting the zero �oor is similarly higher under a forward-

looking speci�cation and lower under a backward-looking one. The reason for

the dominance of the backward looking rule can be that under it the interest

rate tends to be kept lower following periods of de�ation, in a way that resembles

the optimal history dependence under commitment. On the other hand, under

forward-looking rules, the e¤ective response to a given shock to the natural real

rate is lower, given the assumed autoregressive nature of the natural real rate.

8.3 Endogenous In�ation Persistence and the Zero Floor

Wolman (1998) among others has argued that stickiness of in�ation is crucial

in generating costs of de�ation associated with the zero �oor. To follow up on

this hypothesis, I extend the present framework by incorporating endogenous

in�ation persistence.24 Lagged dependence of in�ation may result if �rms that

do not reoptimize prices index them to past in�ation. In this case the (log-

linearized) in�ation dynamics can be represented with the following modi�ed

Phillips curve (Christiano, Eichenbaum and Evans (2001), Woodford (2003)):

b�t = �Etb�t+1 + �xt (41)

where b�t = �t � �t�1 is a quasi-di¤erence of in�ation and  measures the

degree of price indexation.

An important thing to keep in mind is that in principle the welfare-relevant

loss function is endogenous to the structure of the model. Hence strictly speak-

ing one cannot compare welfare in the two environments - with and without in-

�ation persistence - using the same loss criterion. On the other hand, Woodford

(2003) shows that in the case of indexation to past in�ation, the welfare-relevant

loss function takes the same form as (3), except that in�ation is replaced by its

quasi-di¤erence b�t: This implies that in�ation persistence (as measured by )
does not a¤ect welfare under an optimal targeting rule which takes into account

the existing degree of economy-wide indexation. However, since micro evidence

on price changes rejects the presence of such indexation, I use the same criteria

as in the baseline model to evaluate the performance of rules in an environment

24 In this case lagged in�ation becomes a state variable and the �rst-order conditions are
adjusted accordingly.
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PLT PLT ODP ODP TTR TTR
 0.5 0.8 0.5 0.8 0.5 0.8
std(�) x 1.46 x 2.21 x 1.80 x 1.02 x 1.54 x 2.35
std(x) x 1.01 x 1.02 x 1.12 x 0.81 x 0.98 x 0.95
std(i) x 1.00 x 1.00 x 1.01 x 1.02 x 1.06 x 1.10
Loss x 1.50 x 2.77 x 3.74 x 2.66 x 1.83 x 3.70
Pr(i = 0) % x 1.00 x 1.00 x 1.04 x 1.15 x 1.46 x 2.00

Table 7: Performance of Selected Rules with Endogenous In�ation Persistence

with endogenous in�ation persistence.

Table 7 reports the properties of selected regimes relative to an environment

without endogenous in�ation persistence. Under the optimal constant price level

targeting rule, an increase in the persistence of in�ation to 0.8 results in doubling

of in�ation volatility and almost tripling of the baseline loss measure. Similarly,

in�ation volatility more than doubles and welfare losses nearly quadruple under

the baseline truncated Taylor rule when the stickiness of in�ation increases to

0.8. Interestingly, the properties of optimal discretionary policy are found to

depend in a non-linear way on the degree of in�ation persistence. Namely, while

an increase in in�ation persistence to 0.5 raises in�ation volatility by 80% and

nearly quadruples losses, a further increase of in�ation persistence to 0.8 leads to

relatively smaller losses. The reason is that high in�ation persistence serves as

an additional channel of policy, making it possible for the central bank to "steer

away" from an approaching liquidity trap by choosing higher current in�ation.

9 Conclusions

Recent treatments of the zero lower bound issue have su¤ered from some impor-

tant limitations. These include assuming perfect foresight or forcing certainty

equivalence, or treating the zero �oor as an initial condition rather than an oc-

casionally binding non-negativity constraint. This paper addresses these issues,

providing a global solution to a standard stochastic sticky price model with an

explicit occasionally binding ZLB on the nominal interest rate. As it turns out,

the dynamics, and in some cases the unconditional means, of the nominal rate,

in�ation and the output gap are strongly a¤ected by uncertainty in the presence

of the zero interest rate �oor.

In particular, optimal discretionary policy involves a de�ationary bias and
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interest rates are cut more aggressively when the risk of de�ation is high, imply-

ing that they are kept lower both before and after a liquidity trap. The extent

of such lowering of rates is found to increase in the variance and persistence

of shocks to the natural real rate, and to decrease in its unconditional mean.

Moreover, the preemptive lowering of rates is even more important under dis-

cretionary policy in the presence of endogenous in�ation persistence. Compared

to that, under optimal commitment policy the need for preemptive lowering of

interest rates is limited since the central bank can commit to a period of looser

monetary policy conditional on the economy�s recovery from a possible liquidity

trap.

Imposing the zero lower bound correctly in the stochastic model allows us to

evaluate quantitatively the performance of a variety of monetary policy regimes.

Thus, commitment to the optimal rule reduces welfare losses to one-tenth of

those achievable under discretionary policy. Constant price level targeting de-

livers losses which are only 60% bigger than under the optimal policy. In con-

trast, under a truncated Taylor rule losses are 20 times bigger than under the

optimal policy. Another interesting �nding is that the unconditional welfare

losses associated with simple instrument rules are almost una¤ected by the zero

lower bound per se and instead derive from the suboptimal responses to shocks

characteristic of simple rules. This is related to the fact that under simple

instrument rules the zero lower bound is hit very rarely, while optimal policy

involves a zero nominal interest rate around one third of the time.

In fact in an extension of the model with money, optimal policy might be ex-

pected to visit the liquidity trap even more often. Hitting the zero lower bound

in that case would be good because it eliminates the opportunity cost of holding

cash balances. An interesting question to address in that setup would be how

the optimal mean of the nominal interest rate is a¤ected by the existence of

the zero lower bound. Solving the fully non-linear problem would be another

useful extension, which however increases the dimensionality of the computa-

tional problem. A limitation of the solution technique employed here is that it

is practical only for models with a limited number of states.
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Appendix A: Numerical Algorithm
This section illustrates the algorithm used to solve the problem in the case of
discretionary optimization. The cases with commitment and with simple rules
are solved in a similar way. I apply the routines for rational expectations mod-
els included in the CompEcon toolkit of Miranda and Fackler (2001). These
solve for the optimal response x as a function of the state s, when equilibrium
responses are governed by an arbitrage-complementarity condition of the form

f [st; xt; Eth (st+1; xt+1)] = �t (42)

where s follows the state transition function

st+1 = g (st; xt; "t+1) (43)

and xt and �t satisfy the complementarity conditions

a(st) 6 xt 6 b(st); xjt > aj(st)) �jt 6 0; xjt < bj(st)) �jt > 0; (44)

where �t is a vector whose jth element, �jt, measures the marginal loss from ac-
tivity j. In equilibrium, �jt must be non-positive (nonnegative) if xjt is greater
(less) than its lower (upper) bound, otherwise agents can gain by reducing (in-
creasing) activity j. If xjt is neither at its upper nor at its lower bound, �jt
must be zero to preclude arbitrage possibilities.
In the context of the monetary policy model under discretion, fjt is the

derivative of the complementarity condition (15) with respect to the nominal
interest rate, and �jt is the Lagrange multiplier �1t associated to the non-
negativity constraint on the nominal interest rate:

� (�xt + ��t) = �1t (45)

Since there is no upper bound on the interest rate, b (st) = +1, and xt < b (st)
always holds so that �1t is non-negative. This, together with a (st) = 0, im-
plies that in the case of discretionary optimization, the above complementarity
problem reduces to

it > 0; �1t > 0; it > 0) �1t = 0; (46)

which can be written also as

it > 0; �1t > 0; it�1t = 0 (47)

An approximate solution is obtained with the method of collocation, which in
this case consists of approximating the expectation functions Etxt+1 and Et�t+1
by linear combinations of known basis functions, �j , whose coe¢ cients, cj , are
determined by requiring the approximants to satisfy the equilibrium equations
exactly at n collocation nodes:

h [s; x (s)] �
nX

j = 1

cj�j (s) (48)

The coe¢ cients are determined by the following algorithm. For a given value of
the coe¢ cient vector c, the equilibrium responses xi are computed at the n col-
location nodes si by solving the complementarity problem (which is transformed
into a standard root-�nding problem). Then, given the equilibrium responses
xi at the collocation nodes si, the coe¢ cient vector c is updated solving the
n-dimensional linear system

nX
j = 1

cj�j (si) = h(si; xi) (49)
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This iterative procedure is repeated until the distance between successive values
of c becomes su¢ ciently small (Miranda and Fackler 2001).
To approximate the expectation functions, Etxt+1 and Et�t+1, one needs to

discretize the shock to rn. Here the normal shock to the natural rate of interest
is discretized using a K-node Gaussian quadrature scheme:

Eh [s; x (s)] �
KX

k = 1

nX
j = 1

!kcj�j [g (si; x; "k)] (50)

where "k and !k are Gaussian quadrature nodes and weights chosen so that the
discrete distribution approximates the continuous univariate normal distribution
N
�
0; �2�

�
.

In the discretionary optimization problem I use linear splines on a uniform
grid of 2000 points for values of the natural rate of interest between �10%
and +10%, so that each point on the grid corresponds to 1 basis point. In
this problem, linear splines work better than Chebychev polynomials or cubic
splines because the response function has a kink in the place where the zero
bound becomes binding.
There are two types of approximation errors. On the one hand are the

deviations from the equilibrium �rst-order conditions. In this case the "arbitrage
bene�ts" are negligible for each of the three equilibrium equations (13), (14),
and (15). Speci�cally, they are of the order of 10�16 for the IS and the Phillips
curves, and 10�19 for the complementarity condition. On the other hand are
the residuals from the approximation of the expectation functions. Except for a
couple of residuals of the order of 10�4, concentrated mostly in the place where
the zero constraint becomes binding, the rest of the residuals are of the order of
10�8. Given the measurement units, a residual of 10�4 corresponds to 0:001% of
annual in�ation or output gap error, which, provided that the residuals of this
size are just a few, is a satisfactory level of accuracy for the problem at hand.
In principle, the expectations residuals can be reduced further by concentrating
more evaluation points in the neighborhood of the kink, and by using more
quadrature nodes, albeit at the cost of computing time.
In the case of commitment, the problem is �rst cast in the form speci�ed

by (42), (43), (44) by substituting out �2t from (24) into (25) and the resulting
expression for �1t into (26). In addition, the state transition vector is augmented
by the two "costate" variables �1t and �2t, which are cast in recursive form using
(24) and (25):

�1t = �1t�1(1 + ��)=� + ��2t�1 � �xt � ��t (51)

�2t = �1t�1�=� + �2t�1 � �t (52)

With simple rules, the system is in the required form, and the only necessary ad-
justments are to the state transition vector in those cases when past endogenous
variables enter the rule.
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Appendix B: Figures
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Figure 1: Japan�s fall into a liquidity trap
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Figure 2: Optimal discretionary policy with perfect foresight
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Figure 3: Optimal discretionary policy in the stochastic case
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Figure 4: Optimal commitment policy (in�ation)

Figure 5: Optimal commitment policy (output gap)
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Figure 6: Optimal commitment policy (nominal interest rate)
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Figure 7: Impulse-responses to a small shock: commitment vs discretion
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Figure 8: Impulse-responses to a large shock: commitment vs. discretion
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Figure 9: Optimal paths in a liquidity trap - commitment vs discretion
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Figure 10: Dynamic paths under constant price level targeting
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Figure 11: Dynamic paths under truncated Taylor rules responding to the price
level or to in�ation
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Figure 12: Dynamic paths: truncated Taylor rule with smoothing vs truncated
�rst-di¤erence rule
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Figure 13: Sensitivity of OCP to �(rn)

43

BANCO DE ESPAÑA      50 DOCUMENTO DE TRABAJO N.º 0637 



1 5 10 15 20 25 30 35 40
-3

-1.5

0

1.5

3

i

1 5 10 15 20 25 30 35 40
-0.2

-0.1

0

π

1 5 10 15 20 25 30 35 40
-2

-1

0

1

x
σrn = 3.72
σrn = 4.46

rn

Quarters

Figure 14: Sensitivity of ODP to �(rn)
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Figure 15: Sensitivity of OCP to �

44

BANCO DE ESPAÑA      51 DOCUMENTO DE TRABAJO N.º 0637 



1 5 10 15 20 25 30 35 40
-3

-1.5

0

1.5

3

i

Quarters

1 5 10 15 20 25 30 35 40
-0.4

-0.2

0

π

1 5 10 15 20 25 30 35 40
-4

-2

0

2

x
ρ = 0.65
ρ = 0.80

ρ = 0.65

ρ = 0.80

Figure 16: Sensitivity of ODP to �
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