A BVAR TOOLKIT TO ASSESS MACROFINANCIAL RISKS IN BRAZIL AND MEXICO

2021

BANCO DE ESPAÑA
Eurosistema

Documentos Ocasionales
N.º 2114

Erik Andres-Escayola, Juan Carlos Berganza, Rodolfo Campos and Luis Molina
A BVAR TOOLKIT TO ASSESS MACROFINANCIAL RISKS IN BRAZIL AND MEXICO
A BVAR TOOLKIT TO ASSESS MACROFINANCIAL RISKS IN BRAZIL AND MEXICO (*)

Erik Andres-Escayola, Juan Carlos Berganza, Rodolfo Campos and Luis Molina

BANCO DE ESPAÑA

(*) We thank Pedro del Río, Javier Pérez, and Jacopo Timini for their valuable comments and suggestions. The views expressed in this paper are those of the authors and do not represent the view of the Banco de España or the Eurosystem. Corresponding authors: erik.andres@bde.es; jcberganza@bde.es; rodolfo.campos@bde.es; lmolina@bde.es.
Abstract

This paper describes the set of Bayesian vector autoregression (BVAR) models that are being used at Banco de España to project GDP growth rates and to simulate macrofinancial risk scenarios for Brazil and Mexico. The toolkit consists of large benchmark models to produce baseline projections and various smaller satellite models to conduct risk scenarios. We showcase the use of this modelling framework with tailored empirical applications. Given the material importance of Brazil and Mexico to the Spanish economy and banking system, this toolkit contributes to the monitoring of Spain’s international risk exposure.

Keywords: macroeconomic projections, risk scenarios, Bayesian vector autoregressions.

JEL classification: C32, C53, F44, F47.
Resumen

Este documento describe el conjunto de modelos vectoriales autorregresivos bayesianos (BVAR) que se utilizan en el Banco de España para elaborar proyecciones de crecimiento del PIB y simular escenarios de riesgo macrofinanciero para Brasil y México. Esta herramienta está compuesta por un modelo base para elaborar proyecciones de referencia y varios modelos satélite para llevar a cabo escenarios de riesgo. Ilustramos el uso de este marco de modelización con aplicaciones empíricas específicas. Dada la importancia material de Brasil y México para la economía española y su sistema bancario, este conjunto de modelos contribuye al seguimiento de la exposición internacional de España.

**Palabras clave:** proyecciones macroeconómicas, escenarios de riesgo, vectores autorregresivos bayesianos.

**Códigos JEL:** C32, C53, F44, F47.
1 Introduction

The analysis of the Latin American economies has a long tradition at the Banco de España, as evidenced by the continued publication of a half-yearly report on the region since September 2003. Over time, the analysis has become more sophisticated which has led to the use of macroeconometric tools tailored for each country. Among the new tools in use, vector autoregression (VAR) models have proved to be a suitable and flexible kit to study the co-movement of macroeconomic variables in these economies.\footnote{See for example the half-yearly report Banco de España (2016) or the half-yearly report Banco de España (2017).} Starting with the half-yearly report of 2020 (Banco de España (2020)), VAR models have been used to guide and inform forecasts for the two largest economies of the region: Brazil and Mexico. In this paper, we describe the suite of Bayesian VAR (BVAR) models that are currently in use to inform those projections.\footnote{We consider these two Latin American economies as they are of major importance for the Spanish economy and they represent the largest exposure of the Spanish banking system among emerging economies, see Box 2 in Banco de España (2020).} These two countries are the only countries—other than Spain—for which Banco de España publishes regular forecasts. The advantage of these models over global structural models such as NiGEM or Global Economic Model\footnote{These are two popular models used in central banks from the National Institute of Economic and Social Research and Oxford Economics.} is that they are better adapted to the characteristics of the economies of the region and allow for an introduction of relevant idiosyncratic variables. Further, this flexibility and empirical nature of BVARs makes them better suited for designing adequate and reasonable risk scenarios.

There have been prior in-house efforts of using macroeconometric tools to study Latin American economies. For example, Estrada et al. (2020) describe BVAR models that were estimated for Brazil, Mexico, Turkey, Chile, and Peru. However, these prior models did not closely tie the forecasts to the technical assumptions that are used for producing forecasts within the Eurosystem. Therefore, their results were difficult to square with the forecasts for Brazil and Mexico in the (Broad) Macroeconomic Projections Exercise (B/MPE) of the Eurosystem\footnote{For details on the Eurosystem’s projection exercises please refer to the website here.} and the forecasts obtained from their use were also not compatible with assumptions underlying the forecasts for the Spanish economy that are regularly published.
by Banco de España. The current methodology solves this problem. Moreover, from a methodological point of view, the current BVAR models for Brazil and Mexico follow closely the methodology of the suite of BVAR models for the Spanish economy, which is described in detail by Leiva-Leon (2017).

The toolkit for Brazil and Mexico contains a relatively large set of variables (10 variables) and includes all technical assumptions in the Eurosystem’s B/MPE that are relevant for Brazil and Mexico. A large benchmark model that includes all variables is used to determine a baseline projection for GDP growth, whereas smaller reduced versions of it are used to predict the impact of changes of technical assumptions or the steady-state on the growth forecast. Following Leiva-Leon (2017), we define a number of satellite models for Brazil and Mexico that capture the mechanisms of the particular risk scenario to be simulated. The satellite models for scenarios concerning deviations in the technical assumptions are structurally identified via sign restrictions, as described by Uhlig (2005). For the scenario that changes the steady-state of GDP growth, we use an auxiliary model to estimate potential output using a production function. In this paper, we simulate scenarios related to fluctuations in foreign demand, changes in the commodity prices, shifts in domestic economic policy uncertainty and financial tensions, and long-term effects on output as we could witness with the COVID-19 pandemic.

The rest of the paper is structured as follows: in section 2 we explain the methodological framework, the details of the theoretical BVAR models used to carry out the baseline projections and the risk scenarios, and the data used for the empirical exercise. In section 3 we present the estimation results and discuss our findings, and in section 4 we conclude.
2 Methodology

In this section, we define the framework and models of the toolkit used for producing baseline projections and risk scenarios. We also refer to the data included in the models for the empirical results.

2.1 Framework

Our modelling strategy to conduct growth projections and simulate risk scenarios entails two steps. The first step consists of defining a benchmark model capturing most of the fundamental macrofinancial relations of the economies of Brazil and Mexico. We then run conditional forecasts where the conditions are anchored to the technical assumptions of the Eurosystem’s B/MPE. This benchmark model is used to carry out the baseline projection of GDP growth. Then, four satellite models are defined which are in essence reduced versions of the benchmark model. Fewer variables enable for better identification and to focus on the mechanisms for the particular scenario considered. For each of the satellite models, we first simulate a central forecast that includes the same technical assumptions or steady-state as the benchmark model. The risk scenario then includes deviations of the technical assumptions for some specific variables or a different steady-state. Finally, we compute the difference between the central and the scenario forecasts in the satellite model to obtain the net effect that we add to the baseline projection. By isolating this effect, and integrating it into the baseline projection, we measure the impact of each scenario separately and shed light on the sensitivity of our projections.

The ten model variables are split up into four global and six local ones. For the group of global variables, we construct a measure of foreign demand (EXD) for each country as a weighted average of real imports from the main trade partners. The weights are based on bilateral exports. Further, we include oil prices to proxy commodity prices (OIL), a measure for global financial turbulences (VIX) and the US short-term interest rate to proxy foreign monetary policy (FFU). We assume that global variables affect local variables, but

5For more details on how we adopt the B/MPE technical assumption to our projection exercises at the Banco de España, see Box 3 in the report on the Latin American economy, Banco de España (2020).
not the other way around (i.e., we assume block exogeneity). In this way, we can better capture the international spillover effects that potentially affect the growth projections of Brazil and Mexico. The local variables are real GDP growth (GDP), CPI core inflation (INF), bilateral exchange rate vis-à-vis the USD (FXR), the EMBI+ as a measure of the sovereign spread that proxies external financing costs (EMB), a measure of economic policy uncertainty (EPU), and the policy interest rate (INT) for the two Latin American countries.

In Figure 1 we illustrate our approach to producing the baseline projections and the risk scenarios.

Figure 1: Summary of the modelling framework to produce the GDP growth baseline projections and the risk scenarios of Brazil and Mexico

Baseline projection

Benchmark model: EXD, OIL, VIX, FFU, GDP, INF, FXR, EMB, EPU, INT
Central forecast based on technical assumptions

Risk scenarios

External satellite model: EXD, GDP, INF, INT
Commodity satellite model: OIL, GDP, INF, INT
Uncertainty satellite model: GDP, INF, EMB, EPU, INT
Central forecast based on technical assumptions
Scenario forecast based on deviations from technical assumptions
Potential output satellite model: same as benchmark
Central forecast based on baseline projection steady-state
Scenario forecast based on deviations from baseline projection steady-state (use an auxiliary model to determine the deviation)

Notes: The benchmark model is used for the baseline projection which is conditioned on technical assumptions. The different satellite models are used to produce a central and a scenario forecast that makes up the net effect of the risk scenario at hand. This net effect is added to the baseline projection to measure the impact of the risk scenario.

2.2 General Models

For the projection exercises we estimate large VARs using Bayesian inference. These models have become an essential empirical tool for central banks to conduct macroeconomic analysis. As explained in detail in Bańbura et al. (2010) and Giannone et al. (2015) larger systems
and Bayesian estimation are extremely appealing for forecasting applications. Based on marginal likelihoods and in-sample criteria, we specify models with four lags and Minnesota-type priors. These priors are the most common ones used in the literature and they assume that the VAR coefficients behave according to a normal distribution.\(^6\) Then, it is left to the researcher to specify the values for the mean and covariance of the distribution, known as the hyperparameters. For the Minnesota-type prior the hyperparameter values follow a certain rationale.\(^7\)

Finally, Bayes’ formula is applied to combine information of the prior distribution and the likelihood function, resulting in a posterior distribution. From this latter distribution one obtains draws to compute the functions and estimates of interest (i.e., impulse response functions (IRFs) and forecasts).\(^8\) In practical terms, the estimation is implemented using Markov chain Monte Carlo (MCMC) algorithms (i.e., Gibbs sampling).\(^9\)

The multivariate time-series model for periods \(t = 1, \ldots, T\) consists of a \(n \times 1\) vector of variables \(\{y_t\}_{t=1}^T\), \(n \times n\) matrices of coefficients \(A_i, i = 1, \ldots, p\) capturing the dynamics of the \(p\)th lagged system, a \(n \times 1\) vector of constants \(C\) and a \(n \times 1\) vector of error terms \(\varepsilon_t\) with zero-mean and positive-definite \(n \times n\) covariance matrix \(\Sigma\). This data generating process is assumed to evolve according to the following VAR(\(p\)):

\[
y_t = C + A_1 y_{t-1} + A_2 y_{t-2} + \cdots + A_p y_{t-p} + \varepsilon_t, \quad \text{with } \varepsilon_t \sim \mathcal{N}(0, \Sigma). \tag{1}
\]

The open-economy model contains variables for the global block (G) and for the local block (L) consisting of variables for Brazil (BR) and Mexico (MX). Hence, \(y_t = \{y_t^G, y_t^L\}\), with

\(^6\)In contrast to the frequentist approach, Bayesian inference treats the data as deterministic and the parameter space as stochastic. This type of inference has become increasingly popular as a shrinkage method to resolve overparametrization issues, often encountered in empirical macroeconomics. Given that the time series in Brazil and Mexico are relatively short compared to advanced economies, the use of a shrinkage method is particularly appropriate in our application.

\(^7\)Litterman (1986) describes the specific structure of hyperparameters in the Minnesota prior. They are applied to the whole block of coefficients and are therefore a global shrinkage method to reduce overfitting. For the Minnesota prior, the residual covariance matrix is estimated from the model via OLS, whereas other approaches treat it as unknown, and assume an inverse Wishart distribution as the prior. We choose the hyperparameters by running a grid search algorithm that automatically selects suitable hyperparameters based on the marginal likelihood. Then, we partly adjust the hyperparameter values based on this information.

\(^8\)Usually, the median of the posterior is reported and used as the point estimate. Note that under Bayesian inference the model uncertainty is much better captured since one computes an entire distribution for the parameters.

\(^9\)For the computational implementation of the models we used the developer version of the BEAR toolbox. Refer to Dieppe et al. (2016) for further details.
Each superscript indicates a group of variables (10 variables in total, 4 in the G group and 6 in the L group). In particular we have $y_t^G = (EXD_t, OIL_t, VIX_t, FFU_t)^\top$ and $y_t^L = (GDP_t, INF_t, FXR_t, EMB_t, EPU_t, INT_t)^\top$ in the case of the benchmark model and subsets from both blocks in the case of the satellite models. The block exogeneity assumption entails imposing zero-restrictions on the coefficient matrices so to cancel out past effects\footnote{This restriction implies that local variables are not Granger causing global variables.} of $y_t^L$ on $y_t^G$:

\[
\begin{pmatrix}
y_t^G \\
y_t^L
\end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \sum_{i=1}^{p} \begin{pmatrix} a_{11,i} & 0 \\ a_{21,i} & a_{22,i} \end{pmatrix} \begin{pmatrix} y_{t-i}^G \\
y_{t-i}^L \end{pmatrix} + \begin{pmatrix} \varepsilon_t^G \\
\varepsilon_t^L \end{pmatrix}. \tag{2}
\]

One might be interested in having an economic interpretation of the shocks, and for this, one needs to define the contemporaneous relationships between variables. Let $D_j, j = 0, \ldots, p$ capture such structural relationships, $K$ be the constants and $\eta_t$ be the structural innovations with zero-mean and structural covariances $\Gamma$. Therefore, the structural VAR($p$) is given by:

\[
D_0 y_t = K + D_1 y_{t-1} + D_2 y_{t-2} + \cdots + D_p y_{t-p} + \eta_t, \quad \text{with } \eta_t \sim \mathcal{N}(0, \Gamma). \tag{3}
\]

As a result, the link between the reduced-form VAR and the structural counterpart\footnote{The key difference between equation 1 and 3 is that the reduced-form VAR is a mere statistical model, for which estimation is possible. Conversely, the structural augmentation makes the model economically interpretable but not feasible for estimation. These types of models are the workhorse for empirical macroeconomics since their introduction by Sims (1980).} is established by $A_i = DD_t$, $C = DK$, $\varepsilon_t = D\eta_t$ and $\Sigma = D\Gamma D^\top$, with $D = D_0^{-1}$. To recover the structural model from its reduced-form or disentangle $\eta_t$ from $\varepsilon_t$, one needs to adopt an identification strategy to restrict the contemporaneous matrix $D$.

\section*{2.3 Conditional Forecasts}

Note that the baseline projection and the risk scenarios are carried out through conditional forecasts in terms of sequences of observables, as described by Waggoner and Zha (1999). In particular, the conditional forecasts when using this technique describe the most likely future...
path of the unconditioned variable given conditions imposed for the rest of variables (i.e., the likely future path of GDP growth given the assumed path of the rest of the variables). As explained in Antolín-Díaz et al. (2021), the structural identification of $D$ does not play a role in how the conditional forecasts are constructed using this approach. However, structural identification still helps to gain insights on why we observe this forecasting path for the unconditioned variable in the context of a “what if” scenario. Therefore, for the benchmark model we run the central forecasts based on the technical assumptions and obtain the baseline projection without adopting any specific structural identification. Contrary, for the satellite models used for simulating risk scenarios, it makes sense to identify structural shocks to gain additional insights regarding the impact of the scenarios on the baseline projections.

2.4 Satellite Models

In the spirit of Leiva-León (2017) we partially set-identify the satellite models using sign restrictions.\(^{12}\) For conducting the sign restriction identification, one needs to focus on $\varepsilon_t = D\eta_t$ to restrict the contemporaneous impact matrix $D$. For the case of sign-identified models we have $D = PQ$, where $P$ is the Cholesky decomposition of $\Sigma$ and $Q$ is a $n \times n$ orthogonal matrix such that $QQ^\top = I_n$, with $I_n$ being the $n$-dimensional identity matrix. Then, to achieve identification rewrite the vector of structural impulse responses as $\Xi = f(A, \Sigma, Q)$, where $f(\cdot)$ is a non-linear function, $A = (A_1, A_2, \ldots, A_n)$ contains the coefficient matrices, $\Sigma$ is the covariance of reduced-form errors, and $Q$ is the matrix from which to obtain candidate draws that satisfy the imposed sign restrictions. Refer to Kilian and Lütkepohl (2017) for an extensive discussion in the identification and estimation of sign-restricted models and to Arias et al. (2018) for the practical implementation we use for this class of models.

Moving to the details of the specification of the satellite models, each one of them contains a set of core variables shared across all satellite models and then additional variables included explicitly for the risk scenario. The core variables are GDP growth, inflation, and interest rates. As is common in the literature, these three variables are used to identify demand, cost-

\(^{12}\)There is an ongoing discussion about how appropriate this identification strategy is, see Fry and Pagan (2011), Baumeister and Hamilton (2015), Uhlig (2017), Inoue and Kilian (2020). Yet for the purpose of our analysis this identification scheme is flexible and well-established.
push, and monetary policy shocks. Then, we augment this core setup with scenario-specific
variables to identify additional structural shocks. We specify the following satellite models:
(i) the external model with \( y_{\text{external},t} = (EXD_t, GDP_t, INF_t, INT_t)^\top \) where we identify an
external shock, (ii) the commodity model with \( y_{\text{commodity},t} = (OIL_t, GDP_t, INF_t, INT_t)^\top \)
where we identify a commodity shock, and (iii) the uncertainty model with \( y_{\text{uncertainty},t} =
(GDP_t, INF_t, EMB_t, EPU_t, INT_t)^\top \) where we identify financial risk and economic policy risk
shocks. In the fourth scenario concerning the long-term effects of output, we use (iv) the
potential output model which has the same ten variables as the benchmark model \( y_{\text{potential},t} = y_t \).
Given that in this particular scenario we are concerned with deviations from the steady-
state and not in deviations from the technical assumptions, we implement an alternative
modelling strategy detailed later.

Following the literature described in Leiva-Leon (2017) we establish the structural iden-
tification schemes for the satellite models (i) - (iii):

**External:**
\[
\begin{pmatrix}
\varepsilon_{\text{exd},t} \\
\varepsilon_{\text{gdp},t} \\
\varepsilon_{\text{inf},t} \\
\varepsilon_{\text{int},t}
\end{pmatrix} =
\begin{pmatrix}
+ & * & * & * \\
+ & + & - & - \\
* & + & + & - \\
* & + & + & +
\end{pmatrix}
\begin{pmatrix}
\eta_{\text{external},t} \\
\eta_{\text{demand},t} \\
\eta_{\text{cost-push},t} \\
\eta_{\text{monetary},t}
\end{pmatrix}.
\] (4)

**Commodity:**
\[
\begin{pmatrix}
\varepsilon_{\text{oil},t} \\
\varepsilon_{\text{gdp},t} \\
\varepsilon_{\text{inf},t} \\
\varepsilon_{\text{int},t}
\end{pmatrix} =
\begin{pmatrix}
+ & * & * & * \\
+ & + & - & - \\
+ & + & + & - \\
* & + & + & +
\end{pmatrix}
\begin{pmatrix}
\eta_{\text{commodity},t} \\
\eta_{\text{demand},t} \\
\eta_{\text{cost-push},t} \\
\eta_{\text{monetary},t}
\end{pmatrix}.
\] (5)

**Uncertainty:**
\[
\begin{pmatrix}
\varepsilon_{\text{gdp},t} \\
\varepsilon_{\text{inf},t} \\
\varepsilon_{\text{emb},t} \\
\varepsilon_{\text{epu},t} \\
\varepsilon_{\text{int},t}
\end{pmatrix} =
\begin{pmatrix}
+ & - & - & - \\
+ & + & * & - \\
* & * & + & * \\
* & * & * & + \\
+ & + & * & +
\end{pmatrix}
\begin{pmatrix}
\eta_{\text{demand},t} \\
\eta_{\text{cost-push},t} \\
\eta_{\text{fin-risk},t} \\
\eta_{\text{pol-risk},t} \\
\eta_{\text{monetary},t}
\end{pmatrix}.
\] (6)
Each entry in the $D$ matrix describes how the responses to the structural shocks will be restricted in relation to the observables. That is, the candidate draws from $Q$ have to satisfy the positive and negative sign restrictions in order to be accepted and they are then used to obtain $\Xi$ from the posterior distribution. The symbol “$\ast$” denotes that the entry in the matrix is left unrestricted. With these sign-identified satellite models, we run the central forecasts following the technical assumptions and the scenario forecasts based on deviations from the technical assumptions for some variables. The difference between these two forecasts results in the net effect that is added to the baseline projection and measures the impact of the risk scenario.

### 2.5 Auxiliary Models

Lastly, for the scenario on the long-term effects on output we use the potential output satellite model which is based on an alternative BVAR model. Specifically, since our goal is to impose a different steady-state than the one from the baseline projection we decide to depart from the standard BVAR described above and use the mean-adjusted BVAR of Villani (2009). In this alternative representation of the model, the unconditional mean of the vector of variables is $\mathbb{E}(y_t) = \mu$, where $\mu$ is an $n \times 1$ vector of constants with the steady-state values.\footnote{This relation is straight forward because the only exogenous component of our model is the vector of constants $C$, for the full derivation of the model refer to Villani (2009).} Hence, we can now include information on the steady-state through the prior mean of $\mu$.

Next, we obtain potential output for Brazil and Mexico using an auxiliary model. Using historical data, we fit a calibrated Cobb-Douglas production function and apply the Hodrick-Prescott (HP) filter with smoothing parameter $\lambda = 1600$ to the production factors to compute the long-run trend of output. As explained by Tóth (2021), this is a common approach used by international organizations to obtain a measure of potential output. Assuming that the time-series considered can be decomposed into a cycle and a trend component, we specify a production function with constant returns to scale:

$$Y^* = A^* K^{\alpha} L^{1-\alpha}, \quad (7)$$
where the asterisk denotes the trend component of a variable, and $Y_t$ refers to output, $A_t$ to Total Factor Productivity (TFP), $K_t$ to capital, and $L_t$ to labor. The parameter $\alpha$ is the share of capital in output.

We first construct the capital series using the perpetual inventory method, that is, iteratively applying the law of motion of capital:

$$K_t = (1 - \delta)K_{t-1} + I_t, \quad t \geq 1,$$

where $I_t$ denotes investment and $\delta$ is the depreciation rate of capital. We initialize $K_0$ in (8) with the pre-sample historical average. We compute TFP by the Solow residual:

$$A_t = \frac{Y_t}{K_t^\alpha L_t^{1-\alpha}}.$$

The series for the labor input is observable, but we need to pin down values for $\alpha$ and $\delta$ to determine the evolution of capital and TFP. Following the common practice in neoclassical growth models we calibrate these parameters by computing the averages of the right-hand side terms in the following equations:

$$\alpha = 1 - \frac{w_t L_t}{Y_t},$$

$$\delta = \frac{\frac{\alpha}{1 + \beta}}{\frac{\beta}{1 + \beta}},$$

$$\beta = \frac{1}{1 + r_t},$$

where $w_t$ is the real wage rate and $r_t$ is the real rental rate of capital. For the forecasting periods, we iterate forward the series of each factor input using long-term growth rates proxied by historical averages. Subsequently, we apply the HP filter to the factor input series and substitute their trend components into the Cobb-Douglas production function (7). In this way, we obtain potential output $Y^*$ for both countries over the historical and forecasting periods.

Using this auxiliary model, we calculate steady-states as the average of potential output growth rates over all periods. To compute an alternative steady-state from a simulated
scenario, we assume that factor inputs evolve at different long-term growth rates than the ones assumed initially. This results in different trend components of the factor inputs and therefore yields an alternative potential output series. The differences between these averages determine the deviation of the steady-state from the baseline projection. We introduce it into the mean-adjusted BVAR through alternative priors for $\mu$.

2.6 Data

We use quarterly data from 2000Q1 to 2020Q4, but the estimation sample runs until 2019Q4 and the year 2020 is included as conditional paths for the forecasting exercises. We do so to avoid problems in the estimation process and the stability of the parameters in the model due to outliers in most variables during the COVID-19 period. Given that the focus of the paper is to illustrate the functionalities of the toolkit and the simulation of risk scenarios rather than accurately forecasting GDP during current times, this approach is the most appealing for our applications. Yet in our half-yearly reports of Banco de España (2020) and Banco de España (2021), we explicitly deal with this current issue because there our growth projections reflect our most updated stance on the future evolution of the Brazilian and Mexican economies. For details on how we do this, refer to the reports.

Data included have the following features. We took seasonally adjusted real GDP, as published by the respective statistics offices. To get seasonally adjusted core CPI we use the method X-13-ARIMA-SEATS from JDemetra+. For other high-frequency variables, daily or monthly data are averaged to get quarterly series. The growth rates are expressed as quarter-on-quarter percentages. Moreover, we test for stationarity using the augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests and in the latter, there is enough empirical evidence to reject the hypothesis of unit roots at a 5% significance level.

Our data is downloaded from international sources as well as national sources. Starting with the global variables, for the foreign demand, we use real imports of goods and services

---

14 For a more thorough treatment on how to perform estimation and forecasts with VARs in the context of the COVID-19 pandemic see Lenza and Primiceri (2020) and Primiceri and Tambalotti (2020).

15 This software is a tool specifically designed for the seasonal adjustment of time-series and has been officially recommended by the European Commission. For more details visit the website here.
from national sources. The bilateral exports data to construct the weights in the foreign demand measure come from the IMF’s Direction of Trade Statistics (DOTS). We consider the main trade partners for both countries: in Brazil we take the US, Euro Area, and China whereas in Mexico it suffices to consider the US only as it makes up most of the total exports. Brent oil prices are taken from Bloomberg and the US 3-months interest rate from national sources. The VIX is the volatility of options on S&P 500 as calculated by the Chicago Board Options Exchange (CBOE). For the local variables, we obtain real GDP growth, core CPI inflation, the bilateral exchange rate vis-à-vis the USD, and the policy interest rates from national sources. The EMBI+ comes from JP Morgan Chase and the EPU comes from Ghirelli et al. (2020).

Finally, for constructing the series of potential output and calibrating the production function we use data from national sources and the Penn World Table (PWT) version 10.0 from Feenstra et al. (2015) between 1960 and 2020. A summary of the data’s descriptive statistics, correlation heatmaps, and the corresponding codebooks is in the appendix D.
3 Empirical Results

In this section, we evaluate the performance of the benchmark model in terms of its forecast accuracy and go over a few stylized empirical applications that showcase the use of satellite models to construct risk scenarios.

3.1 Validations

To assess the performance of the benchmark model, we evaluate the model’s ability to forecast GDP growth in a historical out-of-sample exercise over the period 2015–2019. For each quarter, we generate unconditional forecasts for annual GDP growth rates over a 2-year forecasting horizon using only data available at the time of the forecast. We proceed iteratively until 2019, and then compare the quarterly baseline projections to two possible targets: the range of forecasts of private analysts compiled by Consensus Forecasts and published data produced by the respective national statistics office. Our evaluation of the benchmark model is not a real-time exercise because we use revised GDP series. These were not available to private analysts at the time of their forecasts and would also not have been available to the model. Contrary to private analysts, the model does not use high-frequency indicators or analyst judgement to inform the projections, like nowcast estimations, monthly GDP, or industrial production data. As shown in Figures A.1 through A.5, our baseline projections compare favorably to Consensus Forecasts ranges in most of the cases. Whenever the model’s projection departs from the consensus of private analysts, it does so in the direction of the actual data.\textsuperscript{16}

After validating the use of the benchmark model for the projections we turn our attention to the satellite models used to simulate the risk scenarios. In the external, commodity, and uncertainty models, structural shocks are identified using sign restrictions. For these satellite models, GDP growth can be decomposed in terms of structural shocks. To validate the satellite models, we verify whether historical decompositions of GDP growth are coherent with economic events in each country. As explained in the previous section, the sign-restricted

\textsuperscript{16}In the half-yearly report Banco de España (2021) we decompose the revisions of the projections to disentangle the effect from changes in the technical assumptions, high-frequency indicators/nowcasting, and revisions of historical data.
satellite models share a common core of variables that make up the demand, cost-push, and monetary policy shocks. We focus on the decomposition of the shock of the particular satellite model relative to the remainder of shocks (i.e., shocks of the core variables and exogenous shocks). For the external model, the external shock is identified as a positive co-movement of GDP growth and foreign demand, leaving the rest of the variables unrestricted. In the commodity model, we restrict oil prices to move in the same direction as GDP growth and inflation,\(^7\) leaving the rest undetermined. Lastly, in the uncertainty model, we identify two shocks. The financial/economic policy risk shock is characterized by GDP growth and the EMBI+/EPU moving in opposite directions, leaving the rest unchanged.

For Brazil, Figures B.1 and B.2 show the decomposition of GDP growth over the estimation period 2001–2019. The Global Financial Crisis (GFC) impacts Brazilian GDP growth via a fall in foreign demand, coupled with sinking commodity prices, and, to a lower extent, an increase in economic policy uncertainty and a tightening of financial conditions.\(^8\) The subsequent expansionary policy contributed more substantially to the exit from the crisis as of 2009, with favorable foreign demand also playing a relevant role. The impact of the collapse of oil prices since October 2014 and the global financial turbulences linked to the Chinese stock turmoil in the summer of 2015 is also recorded by the respective satellite models. This is also reflected by negative foreign demand shocks around 2015–2016 driven mainly by Chinese imports. Political noise surrounding the impeachment of former President Dilma Rousseff, which covered the first semester of 2016, is reflected in the uncertainty satellite model, as well. Low growth from 2016 to 2019 is driven, according to these results, by negative external shocks, low commodity prices and increasing uncertainty, which were

\(^{17}\) Note that a commodity shock would also have appreciation effects on the domestic currencies of these economies, potentially posing deflationary pressures. However, in our application sign restrictions hold for one period (i.e., static sign restrictions) and in the short run the exchange rate pass-through effect is weaker than the inflationary effect. Pedersen (2015) provides evidence of this dominant inflationary effect for the case of Chile as a copper exporter using a similar model setup. Hence, for our set of countries it is more likely that the inflationary effect prevails in the short term.

\(^{18}\) Although Brazil is a relatively closed economy (exports represent only 11.3% of GDP), and soybeans and iron ore (its main export raw materials) only represent 20% of the export basket, the effect of oil prices is much higher as they impact directly on the public oil firm PETROBRAS, which accounts for 2% of Brazilian GDP and 10% of Brazilian investment. The company slashed investment by 33% both in 2014 and 2015 to adjust to lower oil prices and also in response to a widespread corruption case. The direct and indirect effects of PETROBRAS declining investment have been estimated to subtract around 2 percentage points from GDP growth in 2015. For a detailed analysis see this press article.
especially visible around the last presidential elections, at the end of 2018. In the last plot of Figure B.2, we see the initial estimate of potential output and the corresponding alternative estimate that includes the long-lasting effects on potential output. The difference between both lines is what makes up the effect that we include in the steady-state for the scenario.

Figures B.3 and B.4 display the GDP growth decomposition over the period 2001-2019 for Mexico. As for Brazil, the model results go largely in line with the historical narrative of the Mexican economic developments in the 21st century, inclusive for its salient events. For example, in the case of the GFC, the model shows the relevance of the external sector in explaining the 2009 GDP fall, a natural element for a very open economy, strongly intertwined with the US, the epicentre of the crisis. The model also shows that, during the GFC, upsurges in economic policy uncertainty, tighter financial conditions, and plummeting commodity prices also played a role. Despite Mexico being a net oil importer of refined petroleum products (yet overall a net crude oil exporter), the latter finding is easily rationalized by the importance of the public oil company, PEMEX, particularly for the country’s fiscal position. The model indicates that economic policy risk and commodity shocks negatively contribute to growth also at the end of the sample. This time span coincides with a period of higher perceived risk, related to government (structural) policy reforms and reversals, and to the increasingly delicate financial situation of PEMEX, whose high debt and persistent budget deficits have sparked investors’ worries. Overall, external shocks play a larger role than in Brazil, both in contractions and recoveries, reflecting Mexico’s progressively higher openness. Conversely, in Mexico commodity shocks seem short-lived with respect to Brazil. As before, the last plot shows the estimated trend component of GDP and how the scenario kicks in to simulate long-term effects on growth.

### Applications

Next, we proceed to show the empirical applications that illustrate the sensitivity of the models. Table C.1 shows the values assumed in the conditional forecast for the ten variables that enter the benchmark model. Using these assumptions, we generate the conditional forecasts that deliver the baseline projections. The purpose of these projections is to set the
baseline which we use as a reference for the macrofinancial scenarios. For the explicit growth projections for Brazil and Mexico using the methodology of this paper refer to Banco de España (2021).

In Table 1 we show the deviations of the variables assumed in each satellite model to construct the macrofinancial risk scenarios. These deviations are constructed in a similar way for both countries and are intended just as stylized examples.\(^{19}\)

All three sign-restricted satellite models assume an initial impact in the first quarter of a year which persists for the rest of that year. After this year, the conditioning paths revert to the baseline technical assumptions. As such we consider temporary scenarios that exhibit the main impact in the first year and then the effect fades away in the next periods. The external scenario simulates a more buoyant foreign demand by assuming an increase of 1 percentage point. The commodity scenario simulates a rise in oil prices. It assumes that oil prices increase by 3 standard deviations. The uncertainty scenario simulates increased financial and economic policy tensions. It assumes that the EMBI+ and the EPU increase

<table>
<thead>
<tr>
<th>Deviations</th>
<th>External</th>
<th>Commodity</th>
<th>Uncertainty</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign demand</td>
<td>+1 pp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil prices</td>
<td></td>
<td>+3 STD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMBI+</td>
<td></td>
<td></td>
<td>+3 STD</td>
<td></td>
</tr>
<tr>
<td>EPU</td>
<td></td>
<td></td>
<td>+3 STD</td>
<td></td>
</tr>
<tr>
<td>Steady-state</td>
<td></td>
<td></td>
<td></td>
<td>-0.2 pp</td>
</tr>
</tbody>
</table>

Notes: The deviations from the technical assumptions and steady-state of the baseline projections correspond to the different satellite models. These deviations for the risk scenarios are in terms of standard deviations (STD) and percentage points (pp), and they last for one year in the technical assumptions whereas the change is permanent for the steady-state of the quarterly growth rate of output.

Source: Own calculations.

\(^{19}\)For an example of how this methodology has been applied to more realistic risk scenarios, see Banco de España (2020) or Banco de España (2021).
by 3 standard deviations. The last scenario simulates a slowdown of potential output. To capture the long-run effect we extend the effect until year 5. For this scenario, we use the auxiliary model explained before and assume that labor, capital, and TFP grow at a rate that is 3 standard deviations below their average rate during the forecasting horizon (i.e., the effect is evenly distributed along the periods). This results in a slowdown of potential output that implies a deviation of -0.2 percentage points for the quarterly growth rate steady-state. Using these deviations from the baseline conditioning paths, we generate conditional forecasts that result in the macrofinancial scenarios.

The impact of the risk scenarios on the baseline projections is summarized in Figure 2. Brazil appears to be more resilient than Mexico in the uncertainty scenario; the negative effect on GDP growth in the first year in Mexico doubles that in Brazil. Because historical

---

**Figure 2:** Impact of the risk scenarios on the GDP growth baseline projections of Brazil and Mexico

![Figure 2](image)

**Notes:** The baseline projections are conducted using the benchmark model and the risk scenarios using the satellite models. The impact of the risk scenarios is expressed in terms of deviations with respect to the baseline projections.

**Source:** Own estimations.

---

20We take 3 standard deviations as an example to have a sizeable magnitude that illustrates the effects on GDP growth given the historical shocks of both countries.
episodes of financial distress have been larger in Brazil (as exemplified by the resilience of growth to the tightening of financial conditions during the electoral crisis in the summer of 2002), without a comparable decline in GDP, the model interprets that Brazilian growth projections are less affected by changes in these variables.

In the external scenario, the positive impact on growth is larger in Mexico than in Brazil (i.e., about twice as large). This suggests that Mexico is more sensitive to changes in foreign demand. The Brazilian economy is relatively more closed in comparison to Mexico. Hence, this is in line with the greater elasticity of Mexico’s GDP growth to foreign demand.

Oil prices have a larger positive effect on growth in Brazil than in Mexico. In this case, the magnitude of the deviations from the baseline assumptions is the same in both countries by design. Both countries are oil producers (mainly because of PETROBRAS in Brazil and PEMEX in Mexico), but the sensitivity of GDP growth to oil prices in this model is unambiguously larger in Brazil. The last scenario simulates a slowdown of potential output in line with the current discussion on the scarring effects from the COVID-19 pandemic on developing economies, see International Monetary Fund (2021a). Although the production function is calibrated for each country, the mix of inputs in the production function does not differ that much. Therefore, the accumulated effect after five years is roughly similar in both countries.

---

21Since the 2000s, Mexico has increased its trade openness (measured as the sum of exports and imports as a share of GDP) from 50% to 70% whereas Brazil’s trade openness has remained much lower at 20%–30% during recent times.
4 Concluding Remarks

In this paper, we introduce a toolkit to assess macrofinancial risks to GDP growth in Brazil and Mexico, the two largest economies of Latin America and two of the countries which are considered of material importance for the Spanish banking sector. We use BVARs to construct a benchmark model for the baseline projections and various satellite models to simulate risk scenarios through conditional forecasts. The model seems to perform well in comparison with the projections obtained from the consensus of private analysts, and also seems to be coherent with the standard economic narrative of GDP growth and the origin of contractions and expansions in both countries. One recurrent application of this toolkit is in the Banco de España publication of the half-yearly report on Latin American economies.

We showcase the sensitivity of the models by evaluating the impact of a series of illustrative scenarios: an increase in foreign demand, a rise in oil prices, tighter financial conditions, and higher economic policy uncertainty, as well as a slowdown of potential output growth. In the model, Mexico’s GDP growth is more sensitive to changes in domestic financial stress and economic policy uncertainty, and foreign demand. Conversely, Brazil is relatively more sensitive to fluctuations in oil prices. Finally, were a slowdown of the potential output to materialize, the long-run effect on output would be about the same for both countries.

This flexible toolkit allows for interesting additional extensions. For example, it would be worth including variables of capital flows to capture the effect of a potential capital flight during crises. Another possibility is to define a fiscal satellite model to simulate scenarios on fiscal policy, both on the revenue and on the expenditure side, which would be very relevant in the context of soaring fiscal deficits derived from policies implemented to deal with the pandemic. Also, these models could be easily adapted for other relevant Latin American countries. Given the importance of Brazil and Mexico for the Spanish economy, we expect that the use of this toolkit for scenario analysis will be useful for taking informed policy decisions at the Banco de España and other institutions.
References


A Forecasting Exercise

Figure A.1: Forecasting exercise for the GDP growth baseline projections of Brazil and Mexico between 2015-2019

Notes: Comparison between the range of forecasts from private analysts, the actual growth of that year, and the baseline projections using the benchmark model.
Source: Consensus Forecasts and own estimations.
Figure A.2: Forecasting exercise for the GDP growth baseline projections of Brazil and Mexico between 2015-2019 (continued)

Notes: Comparison between the range of forecasts from private analysts, the actual growth of that year, and the baseline projections using the benchmark model.
Source: Consensus Forecasts and own estimations.
Figure A.3: Forecasting exercise for the GDP growth baseline projections of Brazil and Mexico between 2015-2019 (continued)

Notes: Comparison between the range of forecasts from private analysts, the actual growth of that year, and the baseline projections using the benchmark model.
Source: Consensus Forecasts and own estimations.
Figure A.4: Forecasting exercise for the GDP growth baseline projections of Brazil and Mexico between 2015-2019 (continued)

Notes: Comparison between the range of forecasts from private analysts, the actual growth of that year, and the baseline projections using the benchmark model.
Source: Consensus Forecasts and own estimations.
Figure A.5: Forecasting exercise for the GDP growth baseline projections of Brazil and Mexico between 2015-2019 (continued)

Notes: Comparison between the range of forecasts from private analysts, the actual growth of that year, and the baseline projections using the benchmark model.
Source: Consensus Forecasts and own estimations.
B Historical Decompositions and Potential Output

Figure B.1: Historical decomposition of GDP growth and potential output from the satellite models of Brazil

Notes: The historical series are decomposed by the structural shocks of the respective satellite model. The series of potential output are constructed using the auxiliary model.

Source: Own estimations.
Figure B.2: Historical decomposition of GDP growth and potential output from the satellite models of Brazil (continued)

Notes: The historical series are decomposed by the structural shocks of the respective satellite model. The series of potential output are constructed using the auxiliary model.  
Source: Own estimations.
Figure B.3: Historical decomposition of GDP growth and potential output from the satellite models of Mexico

Notes: The historical series are decomposed by the structural shocks of the respective satellite model. The series of potential output are constructed using the auxiliary model.
Source: Own estimations.
Figure B.4: Historical decomposition of GDP growth and potential output from the satellite models of Mexico (continued)

Notes: The historical series are decomposed by the structural shocks of the respective satellite model. The series of potential output are constructed using the auxiliary model.
Source: Own estimations.
C Technical Assumptions

Most of the variables are directly taken from the Eurosystem’s technical assumptions or, whenever this is not possible, they are constructed using a similar methodology. Oil prices and interest rates are based on prices traded in futures markets and the VIX, the exchange rate, EMBI+, and EPU are held fixed for the forecasting horizon based on the ten-day average prior to the cut-off date. The benchmark model estimates a steady-state of quarterly GDP growth of around 0.5% for Brazil and Mexico which is in line with the long-run annual growth rate of about 2% estimated in International Monetary Fund (2021b).

Table C.1: Technical assumptions and steady-state used in the GDP growth baseline projections of Brazil and Mexico

<table>
<thead>
<tr>
<th>Baseline projection</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Global variables</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreign demand of Brazil (growth rates)</td>
<td>10.2</td>
<td>4.6</td>
</tr>
<tr>
<td>Foreign demand of Mexico (growth rates)</td>
<td>14.8</td>
<td>3.4</td>
</tr>
<tr>
<td>Oil prices (log)</td>
<td>4.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Short-term interest rate of the US (%)</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>VIX (log)</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td><strong>Local variables</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy interest rate of Brazil (%)</td>
<td>2.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Policy interest rate of Mexico (%)</td>
<td>3.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Exchange rate of Brazil (growth rates)</td>
<td>4.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Exchange rate of Mexico (growth rates)</td>
<td>-6.5</td>
<td>0.1</td>
</tr>
<tr>
<td>EMBI+ of Brazil (basis points)</td>
<td>270.1</td>
<td>270.1</td>
</tr>
<tr>
<td>EMBI+ of Mexico (basis points)</td>
<td>200.8</td>
<td>200.8</td>
</tr>
<tr>
<td>EPU of Brazil (log)</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>EPU of Mexico (log)</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>GDP steady-state of Brazil (growth rates)</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>GDP steady-state of Mexico (growth rates)</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The technical assumptions and steady-state correspond to the benchmark model. The annual average and growth rate values are based on the methodology and technical assumptions of the Eurosystem’s March 2021 MPE, with cut-off date 16th of February 2021.
Source: Eurosystem and own calculations.
## D Data Details

Table D.1: Descriptive statistics of model variables of Brazil and Mexico

<table>
<thead>
<tr>
<th></th>
<th>gdpBR</th>
<th>infBR</th>
<th>fxrBR</th>
<th>intBR</th>
<th>embBR</th>
<th>epuBR</th>
<th>vixBR</th>
<th>ffuBR</th>
<th>oilBR</th>
<th>exdBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.55</td>
<td>1.44</td>
<td>1.55</td>
<td>12.64</td>
<td>413.05</td>
<td>4.59</td>
<td>2.93</td>
<td>1.99</td>
<td>4.04</td>
<td>1.09</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>1.79</td>
<td>0.67</td>
<td>8.18</td>
<td>5.11</td>
<td>325.25</td>
<td>0.33</td>
<td>0.34</td>
<td>1.89</td>
<td>0.50</td>
<td>2.40</td>
</tr>
<tr>
<td>Median</td>
<td>0.89</td>
<td>1.39</td>
<td>0.01</td>
<td>12.29</td>
<td>272.39</td>
<td>4.58</td>
<td>2.89</td>
<td>1.31</td>
<td>4.10</td>
<td>1.25</td>
</tr>
<tr>
<td>Maximum</td>
<td>7.66</td>
<td>4.37</td>
<td>37.58</td>
<td>26.33</td>
<td>1855.08</td>
<td>5.40</td>
<td>3.99</td>
<td>6.70</td>
<td>4.81</td>
<td>10.41</td>
</tr>
<tr>
<td>Minimum</td>
<td>-9.21</td>
<td>0.17</td>
<td>-14.56</td>
<td>2.00</td>
<td>152.73</td>
<td>3.68</td>
<td>2.34</td>
<td>0.23</td>
<td>2.96</td>
<td>-9.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>gdpMX</th>
<th>infMX</th>
<th>fxrMX</th>
<th>intMX</th>
<th>embMX</th>
<th>epuMX</th>
<th>vixMX</th>
<th>ffuMX</th>
<th>oilMX</th>
<th>exdMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.44</td>
<td>0.98</td>
<td>1.04</td>
<td>6.74</td>
<td>213.60</td>
<td>4.63</td>
<td>2.93</td>
<td>1.99</td>
<td>4.04</td>
<td>0.83</td>
</tr>
<tr>
<td>Std. dev.</td>
<td>2.53</td>
<td>0.32</td>
<td>5.00</td>
<td>3.13</td>
<td>80.43</td>
<td>0.26</td>
<td>0.34</td>
<td>1.89</td>
<td>0.50</td>
<td>3.55</td>
</tr>
<tr>
<td>Median</td>
<td>0.60</td>
<td>0.93</td>
<td>0.10</td>
<td>6.96</td>
<td>195.07</td>
<td>4.60</td>
<td>2.89</td>
<td>1.31</td>
<td>4.10</td>
<td>0.87</td>
</tr>
<tr>
<td>Maximum</td>
<td>12.40</td>
<td>2.29</td>
<td>26.44</td>
<td>17.10</td>
<td>402.67</td>
<td>5.25</td>
<td>3.99</td>
<td>6.70</td>
<td>4.81</td>
<td>17.87</td>
</tr>
<tr>
<td>Minimum</td>
<td>-16.82</td>
<td>0.29</td>
<td>-8.63</td>
<td>3.00</td>
<td>85.23</td>
<td>4.06</td>
<td>2.34</td>
<td>0.23</td>
<td>2.96</td>
<td>-17.68</td>
</tr>
</tbody>
</table>

Notes: The mnemonic of the model variables is composed of the abbreviation of the variable in lower case (see 2.1 for details) and the country code in upper case, which follows the ISO classification (i.e., Brazil (BR) and Mexico (MX)). The values represent the descriptive statistics of variables for the sample periods 2000Q1–2020Q4. Source: Own calculations.
Figure D.1: Correlation matrices for model variables of Brazil and Mexico

**Brazil**

<table>
<thead>
<tr>
<th></th>
<th>gdpBR</th>
<th>inflBR</th>
<th>fxBR</th>
<th>intBR</th>
<th>embBR</th>
<th>epuBR</th>
<th>vixBR</th>
<th>fluBR</th>
<th>oilBR</th>
<th>exdBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>gdpBR</td>
<td>1</td>
<td>-0.092</td>
<td>-0.4</td>
<td>-0.022</td>
<td>-0.034</td>
<td>-0.22</td>
<td>-0.15</td>
<td>0.11</td>
<td>0.098</td>
<td>0.75</td>
</tr>
<tr>
<td>inflBR</td>
<td>-0.092</td>
<td>1</td>
<td>0.055</td>
<td>0.68</td>
<td>0.37</td>
<td>0.13</td>
<td>-0.24</td>
<td>-0.28</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>fxBR</td>
<td>-0.4</td>
<td>0.055</td>
<td>1</td>
<td>-0.12</td>
<td>0.26</td>
<td>0.47</td>
<td>0.35</td>
<td>-0.092</td>
<td>-0.11</td>
<td>-0.39</td>
</tr>
<tr>
<td>intBR</td>
<td>-0.022</td>
<td>0.68</td>
<td>-0.12</td>
<td>1</td>
<td>0.67</td>
<td>0.032</td>
<td>0.046</td>
<td>0.34</td>
<td>-0.57</td>
<td>0.081</td>
</tr>
<tr>
<td>embBR</td>
<td>-0.034</td>
<td>0.6</td>
<td>0.26</td>
<td>0.67</td>
<td>1</td>
<td>0.4</td>
<td>0.39</td>
<td>0.17</td>
<td>-0.76</td>
<td>-0.018</td>
</tr>
<tr>
<td>epuBR</td>
<td>-0.22</td>
<td>0.37</td>
<td>0.47</td>
<td>0.032</td>
<td>0.4</td>
<td>1</td>
<td>0.39</td>
<td>-0.46</td>
<td>-0.19</td>
<td>-0.26</td>
</tr>
<tr>
<td>vixBR</td>
<td>-0.15</td>
<td>0.13</td>
<td>0.35</td>
<td>0.046</td>
<td>0.39</td>
<td>0.39</td>
<td>1</td>
<td>-0.083</td>
<td>-0.26</td>
<td>-0.33</td>
</tr>
<tr>
<td>fluBR</td>
<td>0.11</td>
<td>-0.24</td>
<td>-0.092</td>
<td>0.34</td>
<td>0.17</td>
<td>-0.46</td>
<td>-0.083</td>
<td>1</td>
<td>-0.3</td>
<td>0.004</td>
</tr>
<tr>
<td>oilBR</td>
<td>-0.098</td>
<td>-0.28</td>
<td>-0.11</td>
<td>-0.57</td>
<td>-0.76</td>
<td>-0.19</td>
<td>-0.26</td>
<td>-0.3</td>
<td>1</td>
<td>0.024</td>
</tr>
<tr>
<td>exdBR</td>
<td>0.75</td>
<td>0.052</td>
<td>-0.39</td>
<td>0.081</td>
<td>-0.018</td>
<td>-0.26</td>
<td>-0.33</td>
<td>0.004</td>
<td>0.024</td>
<td>1</td>
</tr>
</tbody>
</table>

**Mexico**

<table>
<thead>
<tr>
<th></th>
<th>gdpMX</th>
<th>inflMX</th>
<th>fxMX</th>
<th>intMX</th>
<th>embMX</th>
<th>epuMX</th>
<th>vixMX</th>
<th>fluMX</th>
<th>oilMX</th>
<th>exdMX</th>
</tr>
</thead>
<tbody>
<tr>
<td>gdpMX</td>
<td>1</td>
<td>-0.28</td>
<td>-0.41</td>
<td>-0.072</td>
<td>-0.24</td>
<td>-0.19</td>
<td>-0.24</td>
<td>-0.015</td>
<td>0.12</td>
<td>0.91</td>
</tr>
<tr>
<td>inflMX</td>
<td>-0.28</td>
<td>1</td>
<td>-0.065</td>
<td>0.76</td>
<td>0.58</td>
<td>0.0056</td>
<td>0.31</td>
<td>0.57</td>
<td>-0.41</td>
<td>-0.039</td>
</tr>
<tr>
<td>fxMX</td>
<td>-0.41</td>
<td>-0.065</td>
<td>1</td>
<td>-0.064</td>
<td>0.28</td>
<td>0.23</td>
<td>0.37</td>
<td>-0.075</td>
<td>-0.13</td>
<td>-0.39</td>
</tr>
<tr>
<td>intMX</td>
<td>-0.072</td>
<td>0.76</td>
<td>-0.064</td>
<td>1</td>
<td>0.55</td>
<td>-0.035</td>
<td>0.15</td>
<td>0.81</td>
<td>-0.51</td>
<td>-0.088</td>
</tr>
<tr>
<td>embMX</td>
<td>-0.24</td>
<td>0.58</td>
<td>0.28</td>
<td>0.55</td>
<td>1</td>
<td>0.28</td>
<td>0.65</td>
<td>0.16</td>
<td>-0.74</td>
<td>-0.21</td>
</tr>
<tr>
<td>epuMX</td>
<td>-0.19</td>
<td>0.0056</td>
<td>0.23</td>
<td>-0.035</td>
<td>0.28</td>
<td>1</td>
<td>0.17</td>
<td>-0.19</td>
<td>-0.21</td>
<td>-0.14</td>
</tr>
<tr>
<td>vixMX</td>
<td>-0.24</td>
<td>0.31</td>
<td>0.37</td>
<td>0.15</td>
<td>0.65</td>
<td>0.17</td>
<td>1</td>
<td>-0.083</td>
<td>-0.26</td>
<td>-0.26</td>
</tr>
<tr>
<td>fluMX</td>
<td>-0.015</td>
<td>0.57</td>
<td>-0.075</td>
<td>0.81</td>
<td>0.16</td>
<td>-0.19</td>
<td>-0.083</td>
<td>1</td>
<td>-0.3</td>
<td>-0.048</td>
</tr>
<tr>
<td>oilMX</td>
<td>0.12</td>
<td>-0.41</td>
<td>-0.13</td>
<td>-0.51</td>
<td>-0.74</td>
<td>-0.21</td>
<td>-0.26</td>
<td>-0.3</td>
<td>1</td>
<td>0.013</td>
</tr>
<tr>
<td>exdMX</td>
<td>0.91</td>
<td>-0.039</td>
<td>-0.39</td>
<td>-0.088</td>
<td>-0.21</td>
<td>-0.14</td>
<td>-0.26</td>
<td>-0.048</td>
<td>0.013</td>
<td>1</td>
</tr>
</tbody>
</table>

**Notes:** The mnemonic of the model variables is composed of the abbreviation of the variable in lower case (see 2.1 for details) and the country code in upper case, which follows the ISO classification (i.e., Brazil (BR) and Mexico (MX)). The values represent the correlation among variables for the sample periods 2000Q1–2020Q4.

**Source:** Own calculations.
### Table D.2: Global variables data codebook

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign demand</td>
<td>Quarterly growth rates</td>
<td>Weighted average of the main trade partners’ real imports. Weights are computed as the share of bilateral exports with the trade partner relative to total exports.</td>
<td>National sources, DOTS, and own calculations.</td>
</tr>
<tr>
<td>Oil prices</td>
<td>Log</td>
<td>Brent oil prices.</td>
<td>Bloomberg and own calculations.</td>
</tr>
<tr>
<td>VIX</td>
<td>Log</td>
<td>Measure of the stock market’s expectation of volatility based on S&amp;P 500 index option.</td>
<td>CBOE and own calculations.</td>
</tr>
</tbody>
</table>

### Table D.3: Auxiliary variables data codebook

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production factors</td>
<td>Levels</td>
<td>Construction of labor, capital, and TFP series and calibration of the production function to obtain potential output.</td>
<td>Penn World Table version 10.0, national sources, and own calculations.</td>
</tr>
<tr>
<td>Variable</td>
<td>Unit</td>
<td>Description</td>
<td>Source</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------------</td>
</tr>
</tbody>
</table>
| Real GDP          | Quarterly growth rates | Seasonally adjusted GDP at constant prices.                                  | National sources and own calcula-
|                   |                       |                                                                             | tions.                          |
| Core CPI Inflation| Quarterly growth rates | Seasonally adjusted core consumer price index.                              | National sources and own calcula-
|                   |                       |                                                                             | tions.                          |
| Policy interest rate | %                    | Central bank’s monetary policy interest rate. SELIC in Brazil and TIIE in Me-
|                   |                       |                                                                             | xico.                           |
| Exchange rate     | Quarterly growth rates | Bilateral exchange rate vis-à-vis the USD.                                  | National sources and own calcula-
|                   |                       |                                                                             | tions.                          |
| EMBI+             | Basis points          | Public debt sovereign spread between Brazil or Mexico and the US.           | JPM and own calculations.       |
| EPU               | Log                   | News-based economic policy uncertainty index.                               | Ghirelli et al. (2020) and own calculations. |
2026 PABLO AGUILAR, ÓSCAR ARCE, SAMUEL HURTADO, JAIME MARTÍNEZ-MARTÍN, GALO NUÑO and CARLOS THOMAS: The ECB monetary policy response to the COVID-19 crisis. (There is a Spanish version of this edition with the same number).

2027 EDUARDO GUTIÉRREZ, ENRIQUE MORAL-BENITO and ROBERTO RAMOS: Tendencias recientes de la población en las áreas rurales y urbanas.

2028 ÁNGEL LUIS GÓMEZ: The effects of changes in the composition of employment on euro area wage growth: panel data analysis. (There is a Spanish version of this edition with the same number).

2029 MIGUEL GARCÍA-POSADA GÓMEZ: Analysis of insolvency proceedings in Spain against the backdrop of the COVID-19 crisis: insolvency proceedings, pre-insolvency arrangements and the insolvency moratorium. (There is a Spanish version of this edition with the same number).

2030 ÁNGEL GÓMEZ-CARRIEÑO GARCÍA-MORENO: Juan Sebastián Elcano – 500 años de la Primera vuelta al mundo en los billetes del Banco de España. Historia y tecnología del billete.

2031 OLYMPIA BOVER, NATALIA FABRA, SANDRA GARCÍA-URIBE, AITOR LACUESTA and ROBERTO RAMOS: Firms and households during the pandemic: what do we learn from their electricity consumption?

2032 JÚLIA BRUNET, LUCÍA CUADRO-SÁEZ and JAVIER J. PÉREZ: Contingency public funds for emergencies: the lessons from the international experience. (There is a Spanish version of this edition with the same number).


2101 LUNA AZAHARA ROMO GONZÁLEZ: Una taxonomía de actividades sostenibles para Europa.

2102 FRUCTUOSO BORRALLO, SUSANA PARRAGA-RODRÍGUEZ and JAVIER J. PÉREZ: Taxation challenges of population ageing: comparative evidence from the European Union, the United States and Japan. (There is a Spanish version of this edition with the same number).

2103 LUIS J. ÁLVAREZ, Mª DOLORES GADEA and ANA GÓMEZ LÓSCOS: Cyclical patterns of the Spanish economy in Europe. (There is a Spanish version of this edition with the same number).

2104 PABLO HERNÁNDEZ DE COS: Draft State Budget for 2021. Testimony before the Parliamentary Budget Committee, 4 November 2020. (There is a Spanish version of this edition with the same number).

2105 PABLO HERNÁNDEZ DE COS: The independence of economic authorities and supervisors. The case of the Banco de España. Testimony by the Governor of the Banco de España before the Audit Committee on Democratic Quality / Congress of Deputies, 22 December 2020. (There is a Spanish version of this edition with the same number).

2106 PABLO HERNÁNDEZ DE COS: The Spanish pension system: an update in the wake of the pandemic. Banco de España contribution to the Committee on Monitoring and Assessment of the Toledo Pact Agreements. 2 September 2020. (There is a Spanish version of this edition with the same number).

2107 EDUARDO BANDRÉS, MARÍA-DOLORES GADEA and ANA GÓMEZ LÓSCOS: Dating and synchronisation of regional business cycles in Spain. (There is a Spanish version of this edition with the same number).

2108 PABLO BURriel, VÍCTOR GONZÁLEZ-DIEZ, JORGE MARTÍNEZ-PAGÉS and ENRIQUE MORAL-BENITO: Real-time analysis of the revisions to the structural position of public finances.

2109 CORRINNA GHIRELLI, MARÍA GIL, SAMUEL HURTADO and ALBERTO URTASUN: The relationship between pandemic containment measures, mobility and economic activity. (There is a Spanish version of this edition with the same number).


2111 IRMA ALONSO and LUIS MOLINA: A GPS navigator to monitor risks in emerging economies: the vulnerability dashboard.

2112 JOSÉ MANUEL CARBÓ and ESTHER DIEZ GARCÍA: El interés por la innovación financiera en España. Un análisis con Google Trends.

2113 CRISTINA BARCELÓ, MARIO IZQUIERDO, AITOR LACUESTA, SERGIO PUENTE, ANA REGIL and ERNESTO VILLANUEVA: Los efectos del salario mínimo interprofesional en el empleo: nueva evidencia para España.

2114 ERIK ANDRES-ESCAVOLA, JUAN CARLOS BERGANZA, RODOLFO CAMPOS and LUIS MOLINA: A BVAR toolkit to assess macrofinancial risks in Brazil and Mexico.