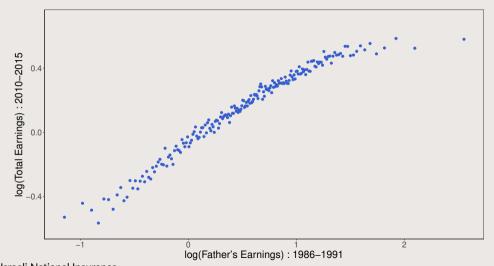
Firms and Inter-generational Mobility


Bank of Spain Workshop

Caue Dobbin & Tom Zohar

CEMFI

April 26, 2022

Intergenerational Elasticity of Earnings (IGE)

What can explains the IGE?

- Earning is persistent across generations
 - Possible explanations: human capital, genetics, neighborhoods...
 - ▶ Focus of the lit. early life conditions and human capital investments that shape essential life skills

Heckman and Mosso (2014); Lee and Seshadri (2019)

What can explains the IGE?

- ▶ Earning is persistent across generations
 - ▶ Possible explanations: human capital, genetics, neighborhoods...
 - ▶ Focus of the lit. early life conditions and human capital investments that shape essential life skills

Heckman and Mosso (2014); Lee and Seshadri (2019)

- Some firms pay workers with similar skills more than others
 - These differences in firm pay premiums contribute substantially to the distribution of earnings

AKM (1999); CHK (2013); Sorkin (2017,2018); Card et al. (2018); Song et al. (2019)

What can explains the IGE?

- ▶ Earning is persistent across generations
 - ▶ Possible explanations: human capital, genetics, neighborhoods...
 - ▶ Focus of the lit. early life conditions and human capital investments that shape essential life skills

Heckman and Mosso (2014); Lee and Seshadri (2019)

- Some firms pay workers with similar skills more than others
 - These differences in firm pay premiums contribute substantially to the distribution of earnings

AKM (1999); CHK (2013); Sorkin (2017,2018); Card et al. (2018); Song et al. (2019)

 Richer children might have better access to these higher paying firms, increasing the IGE

This paper

Research question

▶ How much of the observed intergenerational elasticity of earnings (IGE) can be explained by access to better paying firms?

This paper

Research question

▶ How much of the observed intergenerational elasticity of earnings (IGE) can be explained by access to better paying firms?

Empirical strategy

- Decompose child's earnings to:
 - Individual's productivity
 - ▶ Firm-specific wage-premium
- ▶ Equalize the firm wage-premium and measure the implied change in the IGE

This paper

Research question

▶ How much of the observed intergenerational elasticity of earnings (IGE) can be explained by access to better paying firms?

Empirical strategy

- Decompose child's earnings to:
 - Individual's productivity
 - ▶ Firm-specific wage-premium
- Equalize the firm wage-premium and measure the implied change in the IGE

Results

- ▶ Differential access to better-paying firms explains 17% of the IGE, out of which:
 - ▶ 45% assortative matching
 - ▶ 30% labor-market separation of certain ethnicities

Outline

- 1 Firms and Inter-generational Mobility
- 2 Assortative Matching and IGM
- 3 Applications to Ethnicity
- 4 Conclusions & Follow-up Projects (in Spain)

Outline

- 1 Firms and Inter-generational Mobility
- 2 Assortative Matching and IGM
- 3 Applications to Ethnicity
- 4 Conclusions & Follow-up Projects (in Spain)

Data: Israeli National Insurance

The dataset

- Monthly level individual records of earnings
- Firms' and workers' identifiers
- Civil registry of all residents
 - Births, Deaths, Emigration
- Parent-child links
 - 95% match rate

Our sample

- Birth cohort
 - Children: 1965-1980
- Labor market outcomes
 - Children: 2010-2015 (30-50 years old)
 - Fathers: 1986-1991 (78% between 30-50 years old)

Estimating Firm-level Earnings

We impose a log-linear structure on earnings

(AKM 1999, CHK 2013, Sorkin 2018, Song et al. 2019)

$$logY_{it} = \alpha_i + \psi_{J_{it}} + r_{it}$$

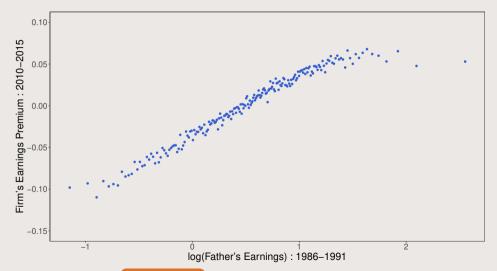
- $\triangleright log Y_{i\bar{t}}$ log-earnings of individual *i* at time *t*
- $\triangleright \alpha_i$ worker fixed effects
- $\triangleright \psi_{J_{it}}$ earnings premium of firm J_{it}

Estimating Firm-level Earnings

We impose a log-linear structure on earnings

(AKM 1999, CHK 2013, Sorkin 2018, Song et al. 2019)

$$logY_{it} = \alpha_i + \psi_{J_{it}} + r_{it}$$


- $\triangleright log Y_{it}$ log-earnings of individual i at time t
- $\triangleright \alpha_i$ worker fixed effects
- $\triangleright \psi_{J_{it}}$ earnings premium of firm J_{it}
- $\triangleright r_{it}$ error term

Taking averages across the sample years:

$$\overline{logY_i} = \hat{\alpha}_i + \overline{\hat{\psi}_i}$$

Wealthier Children Work in Higher-paying Firms

Source: Israeli National Insurance Controling for Ability

Intergenerational Elasticity (IGE):

$$\overline{logY_i} = \beta^{IGE} \cdot \overline{logY_{f(i)}} + \epsilon_i^{IGE}$$

Intergenerational Elasticity (IGE):

$$\overline{\textit{logY}_{\textit{i}}} = \beta^{\textit{IGE}} \cdot \overline{\textit{logY}_{\textit{f(i)}}} + \epsilon^{\textit{IGE}}_{\textit{i}}$$

Recall average AKM decomposition:

$$\overline{logY_i} = \hat{\alpha}_i + \overline{\hat{\psi}_i}$$

Intergenerational Elasticity (IGE):

$$\overline{\textit{logY}_{\textit{i}}} = \beta^{\textit{IGE}} \cdot \overline{\textit{logY}_{\textit{f(i)}}} + \epsilon^{\textit{IGE}}_{\textit{i}}$$

Recall average AKM decomposition:

$$\overline{logY_i} = \hat{\alpha}_i + \overline{\hat{\psi}_i}$$

Regressing the AKM components on fathers' earnings:

$$\begin{split} \frac{\hat{\alpha_i}}{\hat{\psi_i}} &= \beta^{\alpha} \cdot \overline{logY_{f(i)}} + \epsilon^{\alpha}_i \\ \overline{\hat{\psi_i}} &= \beta^{\psi} \cdot \overline{logY_{f(i)}} + \epsilon^{\psi}_i \end{split}$$

Intergenerational Elasticity (IGE):

$$\overline{\textit{logY}_{\textit{i}}} = \beta^{\textit{IGE}} \cdot \overline{\textit{logY}_{\textit{f(i)}}} + \epsilon^{\textit{IGE}}_{\textit{i}}$$

Recall average AKM decomposition:

$$\overline{logY_i} = \hat{\alpha}_i + \overline{\hat{\psi}_i}$$

Regressing the AKM components on fathers' earnings:

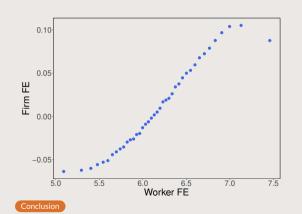
$$\begin{split} \frac{\hat{\alpha_i}}{\hat{\psi_i}} &= \beta^{\alpha} \cdot \overline{logY_{f(i)}} + \epsilon_i^{\alpha} \\ \overline{\hat{\psi_i}} &= \beta^{\psi} \cdot \overline{logY_{f(i)}} + \epsilon_i^{\psi} \end{split}$$

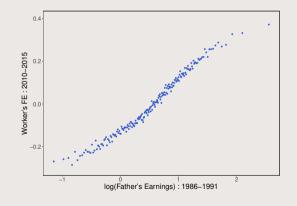
▶ Therefore, we can decompose:

$$\beta^{IGE} = \beta^{\alpha} + \beta^{\psi}$$

17% of the IGE is Due to Access to Better Paying Firms

	Interpretation	Coefficient	Share
β^{IGE}		0.415	
β^{α}	Worker's Productivity	0.344	83%
eta^ψ	Firm's Premium	0.071	17%




Outline

- 1 Firms and Inter-generational Mobility
- 2 Assortative Matching and IGM
- 3 Applications to Ethnicity
- 4 Conclusions & Follow-up Projects (in Spain)

Assortative Matching

Worker FE are correlated w/ parental earnings & w/ firm wage premiums

- Consider 3 regressions:
 - 1. Firm premiums on father's earnings:

$$\overline{\hat{\psi}_i} = \mathbf{\beta}^{\psi} \cdot \overline{logY_{f(i)}} + \epsilon_i^{\psi}$$

- Consider 3 regressions:
 - 1. Firm premiums on father's earnings:

$$\overline{\hat{\psi}_i} = \underline{\beta^{\psi}} \cdot \overline{logY_{f(i)}} + \varepsilon_i^{\psi}$$

2. Worker FE on father's income:

$$\hat{\alpha}_i = \beta_{Y_f}^{\alpha} \cdot \overline{logY_{f(i)}} + \epsilon_i^{\alpha}$$

- Consider 3 regressions:
 - 1. Firm premiums on father's earnings:

$$\overline{\hat{\psi}_i} = \underline{\beta}^{\psi} \cdot \overline{logY_{f(i)}} + \epsilon_i^{\psi}$$

2. Worker FE on father's income:

$$\hat{\alpha}_i = \beta_{Y_f}^{\alpha} \cdot \overline{logY_{f(i)}} + \epsilon_i^{\alpha}$$

3. Firm premium on worker FE and fathers earnings (cross-elasticites):

$$\overline{\hat{\psi_i}} = \beta_{\alpha}^{\psi} \cdot \alpha_i + \beta_{Y_f}^{\psi} \cdot \overline{logY_{f(i)}} + \eta_i^{\psi}$$

- ▶ Consider 3 regressions:
 - 1. Firm premiums on father's earnings:

$$\overline{\hat{\psi}_i} = \mathbf{eta^\psi} \cdot \overline{\mathit{log}Y_{f(i)}} + \epsilon_i^\psi$$

2. Worker FE on father's income:

$$\hat{\alpha}_i = \beta_{Y_f}^{\alpha} \cdot \overline{logY_{f(i)}} + \epsilon_i^{\alpha}$$

3. Firm premium on worker FE and fathers earnings (cross-elasticites):

$$\overline{\hat{\psi}_i} = \beta_{\alpha}^{\psi} \cdot \alpha_i + \beta_{Y_{\epsilon}}^{\psi} \cdot \overline{logY_{f(i)}} + \eta_i^{\psi}$$

Using these cross-elasticities to decompose the role of firms:

$$eta^{\psi} = \underbrace{eta^{\psi}_{lpha} \cdot eta^{lpha}_{Y_f}}_{ ext{Assortative Matching Component}} + \underbrace{eta^{\psi}_{Y_f}}_{ ext{Remaining Parental Earni}}$$

Cross Elasticities Estimation

	Dependent variable: Child's Firm Wage-Premium	
	(1)	(2)
log(Father's Earnings)	0.071***	0.036***
	(0.0002)	(0.0002)
Worker's FE		0.088***
		(0.0001)
Observations	2,017,304	2,017,304
\mathbb{R}^2	0.067	0.332
Note:	*p<0.1; **p<0.05; ***p<0.01	

Assortative Matching Explain 47% of the Role of Firms

$$eta^{\psi} = \underbrace{eta^{\psi}_{lpha} \cdot eta^{lpha}_{Y_f}}_{ ext{Assortative Matching Component}} + \underbrace{eta^{\psi}_{Y_f}}_{ ext{Remaining Parental Earnings Component}}$$

	Coefficient	Share
IGE (Wages)	0.415	
Firm Effects Removed	0.344	17%
Baseline (Firm Effects)	0.071	
Assortative Matching	0.034	47%
Direct Effect	0.036	53%

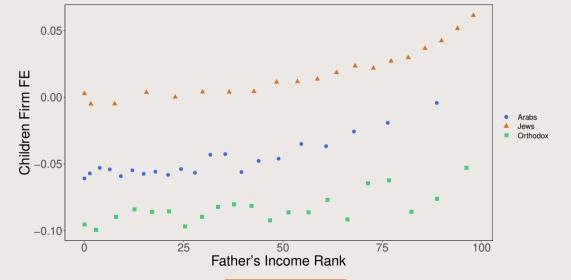
Other Potential Drivers

- Network effect (San 2021)
 - > x3 more likely to find employment in firms where their parents have connections
- Search time
 - ▶ Richer kids can search for longer and end in 'better' firm (a la Chetty 2009)
 - ▶ We find no evidence for this channel (Pr(find a job vs. parental income)

Geographical segregation with better labor markets (or discrimination)

Outline

- 1 Firms and Inter-generational Mobility
- 2 Assortative Matching and IGM
- 3 Applications to Ethnicity
- 4 Conclusions & Follow-up Projects (in Spain)


Inequality & Ethnicity in Israel

Israel is one of the most unequal countries in the OECD, second only to the United States in terms of disposable income inequality

- ▶ This high inequality is commonly attributed to the SES disadvantages and high unemployment rates experienced by two segregated communities:
 - Israeli-Arab
 - Ultra-Orthodox Jews

Firm Wage Premiums and Parental Earnings (by Ethnicity)

Decomposing the Role of Firms in IGM

- ▶ Consider an alternative cross-elasticity:
 - 1. Firm premiums on father's earnings:

$$\overline{\hat{\psi}_i} = \underline{eta^{\psi}} \cdot \overline{logY_{f(i)}} + \varepsilon_i^{\psi}$$

Decomposing the Role of Firms in IGM

- ▶ Consider an alternative cross-elasticity:
 - 1. Firm premiums on father's earnings:

$$\overline{\hat{\psi}_i} = \underline{\beta^{\psi}} \cdot \overline{logY_{f(i)}} + \epsilon_i^{\psi}$$

2. Firm premium on worker FE and fathers earnings and ethnicity (cross-elasticites):

$$\overline{\hat{\psi_i}} = \beta_\alpha^\psi \cdot \alpha_i + \beta_{Y_f}^\psi \cdot \overline{\textit{logY}_{f(i)}} + \beta_{\textit{eth}(i)}^\psi + \eta_i^\psi$$

Decomposing the Role of Firms in IGM

- Consider an alternative cross-elasticity:
 - 1. Firm premiums on father's earnings:

$$\overline{\hat{\psi}_i} = \mathbf{\beta}^{\psi} \cdot \overline{logY_{f(i)}} + \epsilon_i^{\psi}$$

2. Firm premium on worker FE and fathers earnings and ethnicity (cross-elasticites):

$$\overline{\hat{\psi_i}} = \beta_\alpha^\psi \cdot \alpha_i + \beta_{Y_f}^\psi \cdot \overline{\textit{logY}_{f(i)}} + \beta_{\textit{eth}(i)}^\psi + \eta_i^\psi$$

Using these cross-elasticities to decompose the role of firms:

$$\beta^{\psi} = \underbrace{\beta^{\psi}_{\alpha} \cdot \beta^{\alpha}_{Y_{f}}}_{\text{Assortative Matching Component}} + \underbrace{\beta^{\psi}_{eth} \cdot \beta^{eth}_{Y_{f}}}_{\text{Ethnicity Component}} + \underbrace{\beta^{\psi}_{Y_{f}}}_{\text{Parental Earnings Component}}$$

Cross Elasticities Estimation

	De	pendent varial	ble:
		Child's Firm Fl	Ξ
	(1)	(2)	(3)
log(Father's Earnings)	0.071***	0.048***	0.022***
	(0.0002)	(0.0002)	(0.0002)
Worker's FE			0.084*** (0.0001)
Ethnicity FE	No	Yes	Yes
Observations	2,017,304	2,017,304	2,017,304
R^2	0.067	0.140	0.371
Note: robust SE in paranthesis	*p<0.1; **p<0.05; ***p<0.01		

Ethnicity Explain Another 22% of Firm's Role in IGE

$$\beta^{\psi} = \underbrace{\beta^{\psi}_{\alpha} \cdot \beta^{\alpha}_{w_{f}}}_{\text{Assortative Matching Component}} + \underbrace{\beta^{\psi}_{eth} \cdot \beta^{eth}_{w_{f}}}_{\text{Ethnicity Component}} + \underbrace{\beta^{\psi}_{w_{f}}}_{\text{Parental Earnings Component}}$$

	Coefficient	Share
IGE (Wages)	0.415	
Firm Effects Removed	0.344	17%
Baseline (Firm Effects)	0.071	
Assortative Matching	0.032	45%
Ethnicity Component	0.015	22%
Direct Effects	0.022	31%

Outline

- 1 Firms and Inter-generational Mobility
- 2 Assortative Matching and IGM
- 3 Applications to Ethnicity
- 4 Conclusions & Follow-up Projects (in Spain)

Conclusion

- Wealthier children work in better-paying firms
 - Differential access to better-paying firms explains 17% of the IGE

- Firms exacerbate the role of individual's productivity
 - Assortative matching explain half of the role of firms in IGE

- ▶ This disadvantage seems to be bigger among specific communities
 - Affirmative action policies might help mitigate this source of inequality

 Split by Ethnicity

(Potential) Follow-up Projects in Spain

- ▶ Correlation in risk (e.g. income and firm volatility) of fathers and sons
 - Sons of richer parents might have more variation in their occupational risk (variance)

▶ IGM and the life-cycle patterns (dynamics): diff b/t life cycle of father-son by parental inc deciles

Observed human capital and firms

▶ IGM vs. cross sectional importance of firms

THE END!

Appendix

Outline

5 Data Requirements

IMV Effects: The Case of the Spanish Lottery

- An existing WP by Kent and Martinez examines the town-level wealth shocks on economic activity
 - ▶ Consumption increase, economic activity decrease

- Cannot examine the effects on the individual level due to data constraints
 - ▶ E.g. employment, education, opening a small buisness
 - ▶ These are first order UBI questions that are hard to answer
 - ▶ The Spanish Lottery serves as close as possible to a RCT and can provide deep insights on UBI in the Spanish context

Outline

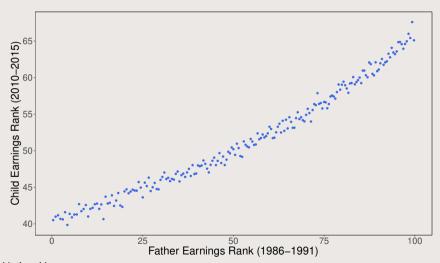
5 Data Requirements

Data Requirements

- Employer-employee datasets (workers, firms, year, earnings)
 - Need a long time frame (from mid-late 80's will work)

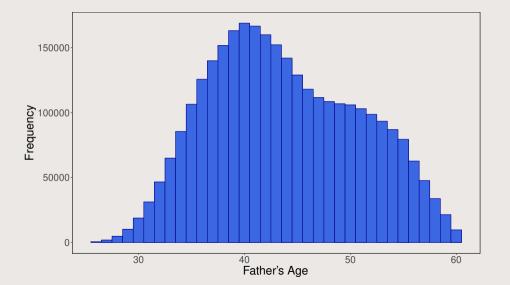
Link to census data to identify parents-child links

▶ Link to revenues and profits of each firm


Existing Datasets

- Spanish MCVL:
 - ▶ Good: EE, benefits and unemployment (can decompose?), education, manager indicator, gender
 - Bad: Sample of workers (won't observe managers and workers together); can't do IGM (connect generations); only 8 occupation groups; no firm sales/profits
- Spanish PET: MCVL (4% of country), all workers in same firm, cannot identify worker-manager within establishment
- Problems:
 - ▶ We cannot estimate AKM on the existing datasets (we need the population)
 - We also cannot link parents and children

Opportunity Atlas Data


- Parents are identified from tax statement (5.4 million parents)
- ≥ 2.7M children (cohorts of 1980-1990), dependents in model 100 of the parents' 2003 income statement
- For each parental household, gross income (aggregated for parents), location and postal code are available
- ▶ From the children, 2015 income data is observed: gross and net income of the individual and household
- Individualized database of children, with location, sex and different incomes

Rank-Rank IGM

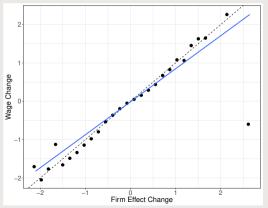
Source: Israeli National Insurance

Most fathers observed between 30 and 50 years old

Persistence is driven by fathers' earnings

 $rank(family\ earnings) = \beta \cdot rank(child\ earnings)$

	Family Earnings Measure			
	Household	Father	Mother	
Coefficient	.23	.246	.093	
	(.003)	(.003)	(.003)	
Obs	156555	156555	156555	
R ²	.049	.055	.008	



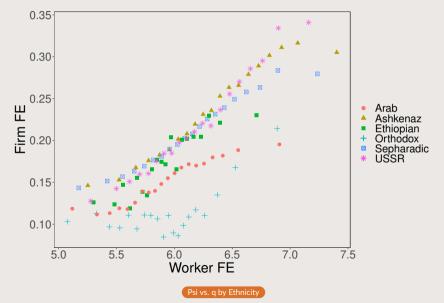
AKM Specification Test

▶ The log-linear structure implies:

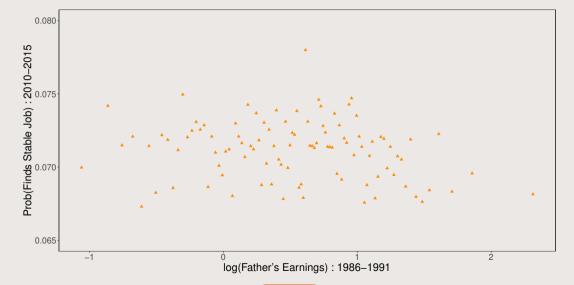
$$\mathbb{E}\left[\Delta w_{i,t} - \Delta \mathbf{X}_{i,t} \cdot \boldsymbol{\beta}\right] = \mathbb{E}\left[\Delta \psi_{J[i,t]}\right].$$

▶ Taking it to the data:

Wealthier Children Work in Higher-paying Firms


Assortative matching

	Dep. Var.: Firm Earnings Premium		
	(1)	(2)	(3)
log(Father's Earnings)	0.064		0.032
	(0.000)		(0.000)
Individual Earnings FE		0.135	0.125
		(0.001)	(0.001)
# Obs	184,431	184,431	184,431



Firm vs Individual FE by Ethnicity

No relationship b/t search time and parental income

	Dependent variable: Children Worker FE		
	(1)	(2)	
q	0.382*** (0.001)	0.310*** (0.001)	
as.factor(dem Group Name) Sepharadic		-0.120*** (0.001)	
as.factor(dem Group Name) Ethiopian		-0.247*** (0.004)	
as.factor(demGroupName)USSR		-0.036*** (0.002)	
as.factor(demGroupName)Orthodox		-0.287*** (0.002)	
as.factor(demGroupName)Arabs		-0.226*** (0.001)	
Observations R ²	2,106,055 0.054	2,106,055 0.079	
Note:	*p<0.1; **p<0.05; ***p<0.01		

Correlates of future firm

- Sample: movers
- Current firm predicts future firm
- ▶ Father's earnings predicts future firm, after controlling for current firm

Dependent Variable: ψ_1

	(1)	(2)	(3)
ψ0	0.587*** (0.012)		0.569*** (0.013)
q		0.161*** (0.012)	0.078*** (0.010)
Observations R ²	157,852 0.319	157,852 0.038	157,852 0.327
Note:	*p<0	0.1; **p<0.05	; ***p<0.01

Correlates of change in earnings premium

	Dependent variable:					
	$\Delta \psi > 0$ Model: Only Pref	$\Delta \psi$ Model: Only Pref	$\Delta \psi > 0$ Model	$\Delta \psi$ Model	$\Delta \psi > 0$ Data	$\Delta \psi$ Data
	(1)	(2)	(3)	(4)	(5)	(6)
$\overline{\psi_0}$	-1.395*** (0.003)	-0.979*** (0.002)	-1.369*** (0.003)	-0.976*** (0.002)	-0.524*** (0.005)	-0.431*** (0.002)
q	-0.013*** (0.002)	-0.009*** (0.001)	0.153*** (0.002)	0.114*** (0.001)	0.136*** (0.004)	0.078*** (0.002)
Constant	0.501*** (0.001)	0.007*** (0.0003)	0.522*** (0.001)	0.007*** (0.0003)	0.566*** (0.001)	0.029*** (0.0005)
$\overline{R^2}$	0.320	0.488	0.311	0.486	0.056	0.198

Note:

*p<0.1; **p<0.05; ***p<0.01