Temporary Layoffs, Loss-of-Recall, and Cyclical Unemployment Dynamics

Mark Gertler¹, Christopher Huckfeldt², Antonella Trigari³

¹New York University, NBER

²Federal Reserve Board

³Bocconi University, CEPR, and IGIER

Fifth Banco de España Annual Research Conference
December 1-2, 2022

What We Do (1/2)

- ▶ Document the contribution of temporary layoffs (TL) to unemployment dynamics, from 1978 onwards
- Study contribution of "loss-of-recall" to the cyclicality of unemployment
- Develop model of unemployment fluctuations that distinguishes between temporary and permanent separations ...

What We Do (2/2)

- Model has 2 types of unemployment, as in Hall and Kudlyak (2022):
 - Jobless unemployment (JL): search for new job
 - ► Temporary-layoff unemployment (TL): wait for recall

Worker in u_{TL} moves to u_{JL} if prior job is destroyed (i.e., loss-of-recall)

- Calibrate model to dynamics of jobless and temporary-layoff unemployment using CPS, 1979-2019
- ▶ Adapt the model to study the Covid-19 labor market

Why We Do It (1/2)

Revisit recessionary impact of temporary layoffs

- Stabilizing "direct" effect: due to recall hiring
 - ▶ Workers in u_{TL} return to work faster than workers in u_{JL}
 - ► Thus, TL's are stabilizing relative to permanent separations
 - Traditional view
- Destabilizing "indirect" effect: due to loss-of-recall
 - ▶ Workers in u_{TL} may lose their recall option and move to u_{JL}
 - They do so at a higher rate during recessions
 - \blacktriangleright We estimate $u_{JL-from-TL}$ to be countercyclical and highly volatile

Note: recall and loss-of-recall are endogenous and thus policy-dependent

Why We Do It (2/2)

- Onset of Covid-19 pandemic: surge of temporary layoffs
 - First month: 15% of employed workers move to u_{TL}
 - \triangleright u_{TL} remains persistently high thereafter (across all sectors)
- Fiscal response: Paycheck Protection Program (PPP)
 - Forgivable loans for firms to recall workers
 - \$953-billion program— larger than 2009 Recovery Act
- What role did PPP play in shaping employment recovery?
 - ▶ What is the no-PPP counterfactual? Requires structural model
- \triangleright Our findings: Large monthly reductions in u_{JL} due to PPP
 - $ightharpoonup \approx 2$ p.p. in short-run, ≥ 1 p.p. thru May 2021
 - Achieved by preventing loss-of-recall

Plan

- ► Empirics of temporary-layoff unemployment
- Model (three stocks, five flows)
- Model evaluation

and then

► Application to Covid-19 Recession

- . . .

Empirics of

Temporary-Layoff Unemployment

& "Loss-of-Recall"

1. u_{TL} comprises just 1/8 of total unemployment (u)

Table: Total (U), jobless (JL), and temporary-layoff (TL) unemployment, 1978–2019

	U =		
	JL + TL	JL	TL
mean(x)	6.2	5.4	0.8
std(x)/std(Y)	8.5	8.6	9.7
corr(<i>x</i> , <i>Y</i>)	-0.86	-0.82	-0.87

For second and third row, series are taken as (1) quarterly averages of seasonally adjusted monthly series, (2) logged, (3) HP-filtered with smoothing parameter 1600

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u

Table: Gross worker flows, 1978–2019

Ta

From	Ε	TL	JL	1	
E	0.955	0.005	0.011	0.029	
TL	0.435	0.245	0.191	0.129	
JL	0.244	0.022	0.475	0.259	
1	0.043	0.001	0.027	0.929	

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate

Table: Transitions from JL, TL, and JL-from-TL, 1978–2019

Ta

From	E	TL	JL	1
JL, unconditional	0.244	0.022	0.475	0.259
TL, unconditional	0.435	0.245	0.191	0.129
JL-from-TL	0.271	0.000	0.556	0.173

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:

	$p_{E,TL}$				$p_{TL,JL}$
std(x)/std(Y)	11.325	5.257	6.266	6.650	10.119
corr(x, Y)	-0.494	-0.683	0.620	0.784	-0.301

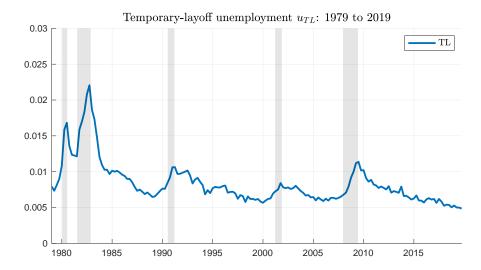
- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL

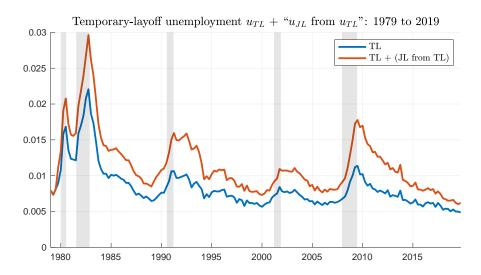
	$p_{E,TL}$	$p_{E,JL}$	$p_{\mathit{TL},E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.325	5.257	6.266	6.650	10.119
corr(x, Y)	-0.494	-0.683	0.620	0.784	-0.301

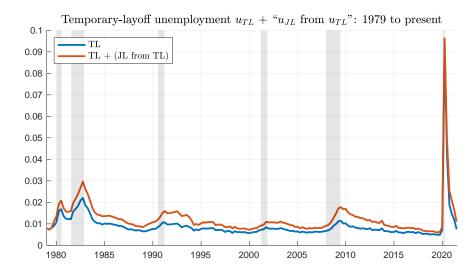
- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment

	$p_{E,TL}$	$p_{E,JL}$	$p_{TL,E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.325	5.257	6.266	6.650	10.119
corr(x, Y)	-0.494	-0.683	0.620	0.784	-0.301

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)


	$p_{E,TL}$	$p_{E,JL}$	$p_{\mathit{TL},E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.325	5.257	6.266	6.650	10.119
corr(x, Y)	-0.494	-0.683	0.620	0.784	-0.301

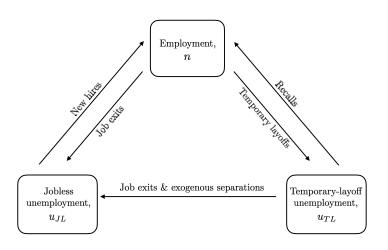

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)


```
Direct effect: p_{E,TL} \uparrow \& p_{TL,E} \downarrow \Rightarrow u_{TL} \uparrow
Indirect effect: p_{E,TL} \uparrow \& p_{TL,JL} \uparrow \Rightarrow u_{JL\text{-from-}TL} \uparrow
```

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)
- 5. We develop methods to estimate the indirect effect, i.e. JL-from-TL

Direct effect:
$$p_{E,TL} \uparrow \& p_{TL,E} \downarrow \Rightarrow u_{TL} \uparrow$$

Indirect effect: $p_{E,TL} \uparrow \& p_{TL,JL} \uparrow \Rightarrow u_{JL\text{-from-}TL} \uparrow$



Model

Model

Model

Starting point: RBC model with search and matching

- ► Perfect consumption insurance
- Wage rigidity via staggered Nash wage bargaining

Key variations:

- Endog. separations into temporary-layoff unemp.
- Recall hiring from temporary-layoff unemployment
- Endogenous separations into jobless unemployment
 - Allow for temporary paycuts: avoid inefficient separations
 - ▶ Permanent sep. triggers $u_{TL} \rightarrow u_{JL}$ for some workers
- Hiring from jobless unemployment

Details of Model

- Unemployed are either in
 - JL: Searching for work in a DMP-style matching market
 - TL: Waiting for recall or loss-of-recall
- Firms, w/ CRS technology in labor and capital, draws cost shocks
 - ► Overhead costs to entire firm ⇒ separations to JL and JL-from-TL
 - ► Worker-specific overhead costs ⇒ separations to TL
- After separations: firms rent capital, hire from JL, and recall from TL
 - Separate hiring costs: recalls less expensive than new hiring
- Base wages set via staggered Nash bargaining
 - But temporary paycuts avoid inefficient exit

Model Evaluation

Calibration

- Calibrate model to match standard labor market stocks and flows...
 - Plus characteristics of temporary layoff, recall, and loss-of-recall
- Nested, two-stage estimation of 18 parameters
 - Inner loop: long-run moments
 - Outer loop: business cycle features

```
▶ Parameters and Moments
```

- Where we tie our hands:
 - Not a small-surplus calibration
 - Wage rigidity to match evidence on contract duration
 - Temporary paycuts can undo wage rigidity
- Model does well!

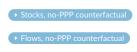
► Loss-of-Recall

Application to the Covid-19

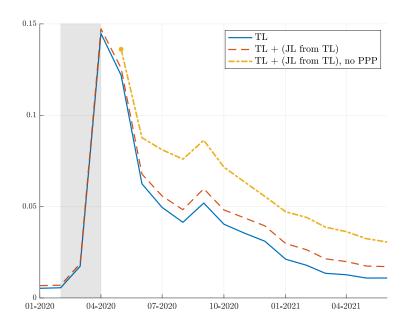
Recession

Adapting the Model to the Covid-19 Recession

- Introduce two shocks:
 - "Lockdown" shocks: workers move to lockdown-TL (MIT shock)
 - Persistent shocks to effective TFP w/ each wave (social distancing)
- Add two parameters specific to workers on lockdown-TL:
 - Allow for different recall cost (vs. TL)
 - Allow for different rate for loss-of-recall (vs. TL)
- Treatment of PPP:
 - Direct factor payment subsidy, à la Kaplan, Moll, Violante (2020)
 - Pre-announcement: program is unexpected
 - Post-announcement: availability of funds is known
- Estimate shocks and parameters to match stocks and flows
 - Model does well!


No-PPP Counterfactual

Q: What did PPP do?


Keep decision rules, parameters, and shocks, but remove PPP

A: Saved a lot of worker/job matches!

- ▶ Average monthly employment gains of \approx 2.14 p.p. in first 6 months
- Doubled cumulative number of recalls over the same period
- Achieved through reduction of loss-of-recall

Counterfactual: JL-from-TL without PPP

Conclusion

Concluding Remarks

Two Directions for Further Work

- 1. Match-specific capital
 - Recalls preserve match-specific capital
 - Thus, interesting to consider heterogenous match quality

2. Reallocation

- Evidence that smaller firms benefited more from PPP
- ▶ PPP might have hindered efficient reallocation

Supplementary Slides

Estimating JL-from-TL

Use accumulation equations:

$$u_{JL\text{-from-}TL,t} = \sum_{j=0}^{T} e'_{JL} x_{t-j-1,t}$$

where $x_{t-j-1,t}$ is the distribution of workers at time t whose last exit from employment was for u_{TL} at time t-j-1, s.t.

$$X_{t-m,t-j} = \tilde{P}_t X_{t-m,t-j-1}$$

 $X_{t-m,t-m} = e_{TL} \cdot (n_{t-m-1}^E \cdot p_{t-m}^{E,TL})$

- Relatively small: $u_{JL-from-TL}$ is 40% of u_{TL}
- ▶ Highly volatile: twice as volatile as total unemployment, $16 \times$ as GDP

Model: Full Slides

Searchers, Matching and Recalls

- ► Jobless unemployment (DMP matching market)
 - New hires *m* from unemployment

$$m = \sigma_m(u_{JL})^{\sigma}(v)^{1-\sigma}$$

▶ Job finding and job filling probabilities p and q, hiring rate x

$$p = \frac{m}{u_{JL}}, \quad q = \frac{m}{v}, \quad x = \frac{p \cdot u_{JL}}{\mathcal{F}(\vartheta^*)n} = \frac{q \cdot v}{\mathcal{F}(\vartheta^*)n}$$

- ▶ Temporary-layoff unemployment
 - Recalls m_r from TL unemployment, recall hiring rate x_r

$$m_r = p_r u_{TL}, \quad x_r = \frac{p_r u_{TL}}{\mathcal{F}(\vartheta^*)n}$$

▶ Workers in $u_{TL} \rightarrow u_{JL}$ with prob. $1 - \rho_r$ or if firm exits (prob. $1 - \mathcal{G}(\gamma^*)$)

Firms (or plants, shifts, production units, etc.)

- Firms are "large", i.e., hire a continuum of workers
 - Firm, or establishment, or assembly line, etc.
- CRS technology
 - $ightharpoonup n \equiv$ beginning of period employment
 - $ightharpoonup \mathcal{F} \equiv$ fraction of workers not on temporary layoff
 - $\blacktriangleright \xi_k, \xi_n \equiv$ factor utilization rates

$$y = \check{z}(\xi_k k)^{\alpha}(\xi_n \mathcal{F} n)^{1-\alpha}$$
$$= zk^{\alpha}(\mathcal{F} n)^{1-\alpha}$$

Given CRS technology, firm decisions scale independent

Overhead Costs: Temporary versus Permanent Layoffs

- $\gamma \equiv i.i.d.$ firm-specific cost shock
- $\vartheta \equiv i.i.d.$ worker-specific cost shock
 - Non-exiting firms ($\gamma < \gamma^*$) pay overhead costs to operate:

$$\varsigma(\gamma, \vartheta^*) n = \left[\varsigma_{\gamma} \gamma + \varsigma_{\vartheta} \int^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta) \right] n$$
$$\mathcal{F}(\vartheta^*) = \Pr\{\vartheta \leq \vartheta^*\} \qquad \mathcal{G}(\gamma^*) = \Pr\{\gamma \leq \gamma^*\}$$

- ▶ Temporary layoff: each worker draws ϑ
 - ▶ Workers w/ $\vartheta \ge \vartheta^*$ (endog. thresh.) go on temporary layoff
- ightharpoonup Permanent layoff: firms draws γ
 - Firm operates if $\gamma < \gamma^*$ (endog. thresh.); otherwise exits

Timing of Events

- 1. Firm enters period with stock of workers *n*
- 2. Aggregate & worker-specific shocks revealed
- 3. Firms and workers bargain over base wages w
- 4. Firms assigns $1 \mathcal{F}(\vartheta^*)$ workers to temporary layoff
- 5. Firm-specific shock γ revealed
 - ▶ If $\gamma \ge \gamma^*$ → firm exits, employed workers move to u_{JL}
 - Firm's workers in u_{TL} move to u_{JL}
 - ▶ If $\gamma < \gamma^* \rightarrow$ firm continues
 - Rents capital and produces output
 - \blacktriangleright Hires workers from u_{JL} , recalls workers from u_{TL}
 - Possibility of temporary paycuts, i.e. remitted wages $\omega < w$

Timing of Events

- 1. Firm enters period with stock of workers *n*
- 2. Aggregate & worker-specific shocks revealed
- 3. Firms and workers bargain over base wages w
- 4. Firms assigns $1 \mathcal{F}(\vartheta^*)$ workers to temporary layoff
- 5. Firm-specific shock γ revealed
 - ▶ If $\gamma \ge \gamma^*$ → firm exits, employed workers move to u_{JL}
 - Firm's workers in u_{TL} move to u_{JL}
 - ▶ If $\gamma < \gamma^* \rightarrow$ firm continues
 - Rents capital and produces output
 - \blacktriangleright Hires workers from u_{JL} , recalls workers from u_{TL}
 - Possibility of temporary paycuts, i.e. remitted wages $\omega < w$

Solve backwards

Behind the Timing

- ► Timing accomplishes the following:
 - 1. Temporary layoff policy ϑ^* independent of γ
 - Analytical tractability
 - 2. Base wages are independent of γ
 - Computational tractability
 - 3. Firm cannot cut wages to avoid temporary layoffs
 - Consistent with data
- \blacktriangleright (1) and (2) achieved by mid-period realization of γ
- (3) achieved by separation of temporary layoffs and bargaining

Firm Problem (at non-exiting firms w/ TL policy ϑ^*)

$$J(\boldsymbol{w}, \gamma, \mathbf{s}) = \max_{\boldsymbol{k}, \boldsymbol{x}, \boldsymbol{x}_r} \left\{ z \mathcal{F}(\vartheta^*) \boldsymbol{k}^{\alpha} - \omega \left(\boldsymbol{w}, \gamma, \mathbf{s} \right) \mathcal{F}(\vartheta^*) - r \mathcal{F}(\vartheta^*) \boldsymbol{k}^{\alpha} \right.$$

$$\left. - \left(\iota(\boldsymbol{x}) \mathcal{F}(\vartheta^*) + \iota_r(\boldsymbol{x}_r) \mathcal{F}(\vartheta^*) \right) - \varsigma(\vartheta^*, \gamma) \right.$$

$$\left. + \mathcal{F}(\vartheta^*) \left(1 + \boldsymbol{x} + \boldsymbol{x}_r \right) \mathbb{E} \left\{ \Lambda(\mathbf{s}, \mathbf{s}') \mathcal{J}(\boldsymbol{w}', \mathbf{s}') |, \boldsymbol{w}, \mathbf{s} \right\} \right\}$$

$$\varsigma(\gamma, \vartheta^*) = \varsigma_{\gamma} \gamma + \varsigma_{\vartheta} \int_{\vartheta^*} \vartheta d\mathcal{F}(\vartheta)$$

$$\iota(\boldsymbol{x}) = \chi \boldsymbol{x} + \frac{\kappa}{2} \left(\boldsymbol{x} - \tilde{\boldsymbol{x}} \right)^2, \quad \iota_r(\boldsymbol{x}_r) = \chi \boldsymbol{x}_r + \frac{\kappa_r}{2} \left(\boldsymbol{x}_r - \tilde{\boldsymbol{x}}_r \right)^2$$

$$\mathcal{J}(\boldsymbol{w}, \mathbf{s}) = \max_{\vartheta^*} \int_{\vartheta^*} J(\boldsymbol{w}, \gamma, \mathbf{s}) d\mathcal{G}(\gamma)$$

with

Hiring and Recall (at non-exiting firms w/ TL policy ϑ^*)

► FOC's for hiring and recall:

$$\chi + \kappa \left(\mathbf{X} - \tilde{\mathbf{X}} \right) = \mathbb{E} \left\{ \Lambda(\mathbf{s}, \mathbf{s}') \mathcal{J} \left(\mathbf{w}', \mathbf{s}' \right) | \mathbf{w}, \mathbf{s} \right\}$$
$$\chi + \kappa_r \left(\mathbf{X}_r - \tilde{\mathbf{X}}_r \right) = \mathbb{E} \left\{ \Lambda(\mathbf{s}, \mathbf{s}') \mathcal{J} \left(\mathbf{w}', \mathbf{s}' \right) | \mathbf{w}, \mathbf{s} \right\}$$

Calibrated model (and data):

$$\underbrace{\left(\frac{\chi}{\kappa_{r}\tilde{\chi}_{r}}\right)}_{\text{Recall elasticity}} > \underbrace{\left(\frac{\chi}{\kappa\tilde{\chi}}\right)}_{\text{New hires elasticity}}$$

▶ Relation of $\{x, x_r\}$ to job-finding/recall probabilities $\{p, p_r\}$:

$$\mathbf{x} = \frac{\mathbf{p}\mathbf{u}_{JL}}{\mathcal{F}(\vartheta^*)\mathbf{n}}, \quad \mathbf{x}_r = \frac{\mathbf{p}_r\mathbf{u}_{TL}}{\mathcal{F}(\vartheta^*)\mathbf{n}}$$

Temporary Layoffs

Firm must pay overhead costs to continue to operate:

$$\varsigma(\gamma, \vartheta^*) = \varsigma_\gamma \gamma + \varsigma_\vartheta \int^{\vartheta^*} \vartheta \, d\mathcal{F}(\vartheta)$$

► FOC for optimal ϑ^* determines TL threshold:

$$\underbrace{\mathcal{J}(\mathbf{W},\mathbf{S}) + \varsigma_{\gamma}\Gamma + \varsigma_{\vartheta}\mathcal{G}\left(\gamma^{*}\right)\Theta}_{\text{Job value net of period overhead costs}} = \underbrace{\varsigma_{\vartheta}\vartheta^{*}\mathcal{F}(\vartheta^{*})\mathcal{G}\left(\gamma^{*}\right)}_{\text{Marginal overhead costs}}$$

with
$$\Gamma \equiv \int^{\gamma^*} \gamma d\mathcal{G}(\gamma)$$
 and $\Theta \equiv \int^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta)$.

Firm Exits (and Temporary Paycuts)

- ightharpoonup Given cost shock γ and base wage w, allow temp. paycuts to avoid exit
- Shutdown threshold γ^* solves $J(\underline{w}, \gamma^*, \mathbf{s}) = 0$
 - ightharpoonup w \equiv reservation wage
- Paycut threshold $\gamma^{\dagger} \in (0, \gamma^*)$ solves $J(w, \gamma^{\dagger}, \mathbf{s}) = 0$
 - ▶ Paycut wage keeps zero firm surplus for $\gamma \in (\gamma^{\dagger}, \gamma^*)$
- Firm's active laborforce + workers on TL go to u_{JL} upon exit

Workers (1/2)

Value of work

$$\label{eq:V(w, gamma, s) = omega} V(\textit{w}, \textit{g}, \textit{s}) = \omega\left(\textit{w}, \textit{g}, \textit{s}\right) + \mathbb{E}\left\{\Lambda\left(\textit{s}, \textit{s}'\right)\mathcal{V}(\textit{w}', \textit{s}') | \textit{w}, \textit{s}\right\},$$

with

$$egin{aligned} \mathcal{V}(oldsymbol{w}, oldsymbol{s}) &= \mathcal{F}(artheta^*) \left[\int^{\gamma^*} V\left(oldsymbol{w}, \gamma, oldsymbol{s}
ight) d\mathcal{G}(\gamma) + \left(1 - \mathcal{G}(\gamma^*)\right) U_{JL}(oldsymbol{s})
ight] \ &+ \left(1 - \mathcal{F}(artheta^*)
ight) \mathcal{U}_{TL}(oldsymbol{w}, oldsymbol{s}) \end{aligned}$$

where

- $ightharpoonup U_{JL}(\mathbf{s})$ is the value of jobless unemployment
- $ightharpoonup \mathcal{U}_{TL}$ is the expected value of temporary-layoff unemployment
- $\triangleright \ \omega(\mathbf{w}, \gamma, \mathbf{s})$ are remitted wages

Workers (2/2)

Value of jobless unemployment

$$U_{JL}(\mathbf{s}) = b + \mathbb{E}\left\{\Lambda\left(\mathbf{s}, \mathbf{s}'\right) \left[\rho \bar{V}_{X}\left(\mathbf{s}'\right) + (1-\rho) U_{JL}\left(\mathbf{s}'\right)\right] | \mathbf{s} \right\}$$
 where \bar{V}_{X} is the expected value of being a new hire

Value of temporary-layoff unemployment

$$egin{aligned} U_{TL}(oldsymbol{w},oldsymbol{s}) &= b + \mathbb{E}\left\{\Lambda\left(oldsymbol{s},oldsymbol{s}'
ight)\left[
ho_{r}\mathcal{V}\left(oldsymbol{w}',oldsymbol{s}'
ight) \\ &+ \left(1-
ho_{r}
ight)
ho_{r}\mathcal{U}_{TL}\left(oldsymbol{w}',oldsymbol{s}'
ight) \\ &+ \left(1-
ho_{r}
ight)\left(1-
ho_{r}
ight)\mathcal{U}_{JL}\left(oldsymbol{s}'
ight)
ight]\left|oldsymbol{w},oldsymbol{s}
ight\}. \end{aligned}$$

with

$$\mathcal{U}_{TL}(\mathbf{w},\mathbf{s}) = \mathcal{G}\left(\gamma^*\right) U_{TL}\left(\mathbf{w},\mathbf{s}\right) + \left(1 - \mathcal{G}(\gamma^*)\right) U_{JL}(\mathbf{s})$$
.

Staggered Nash Wage Bargaining

- **Each** period, probability 1λ of renegotiating base wage
- ightharpoonup Parties bargain over surpluses prior to realization of γ
 - ▶ Worker surplus: $\mathcal{H}(w, \mathbf{s}) \equiv \mathcal{V}(w, \mathbf{s}) U_{\mathcal{H}}(\mathbf{s})$
 - Firm surplus: $\mathcal{J}(w, \mathbf{s}) \equiv \max_{\vartheta^*} \int^{\gamma^*} J(w, \mathbf{s}) d\mathcal{G}(\gamma)$
- Contract wage w* solves

$$\max_{\mathbf{w}^*} \mathcal{H}(\mathbf{w}, \mathbf{s})^{\eta} \mathcal{J}(\mathbf{w}, \mathbf{s})^{1-\eta}$$

subject to

$$w' = \begin{cases} w \text{ with probability } \lambda \\ w^{*'} \text{ with probability } 1 - \lambda \end{cases}$$

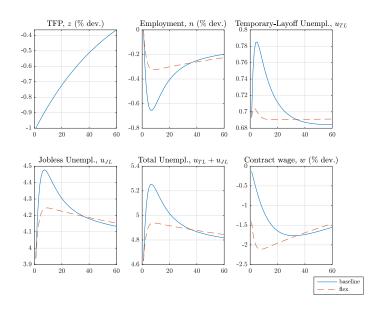
and to wage cut policy

Model Evaluation: Full Slides

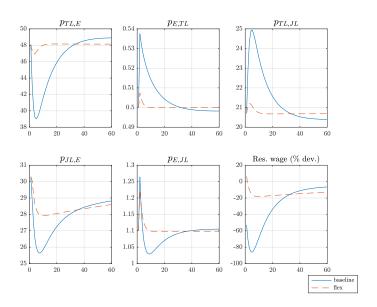
Calibration: Assigned Parameters

Parameter values			
Discount factor	β	$0.997 = 0.99^{1/3}$	
Capital depreciation rate	δ	0.008 = 0.025/3	
Production function parameter	α	0.33	
Autoregressive parameter, TFP	$ ho_{\it z}$	$0.99^{1/3}$	
Standard deviation, TFP	σ_{z}	0.007	
Elasticity of matches to searchers	σ	0.5	
Bargaining power parameter	η	0.5	
Matching function constant	$\sigma_{\it m}$	1.0	
Renegotiation frequency	λ	8/9 (3 quarters)	

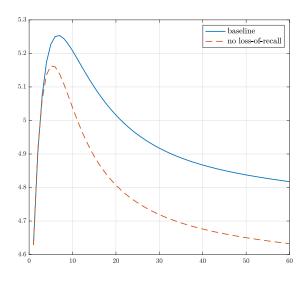
Calibration: Estimated Parameters (inner loop)


Parameter	Description	Value	Target
$\overline{\chi}$	Scale, hiring costs	1.1779	Average JL, E rate (0.303)
$arsigma_{artheta}\cdot oldsymbol{e}^{\mu_{artheta}}$	Scale, overhead costs, worker	1.8260	Average E , TL rate (0.005)
$arsigma_{\gamma}\cdot oldsymbol{e}^{\mu_{\gamma}}$	Scale, overhead costs, firm	0.3599	Average E , JL rate (0.011)
$1- ho_r$	Loss of recall rate	0.3858	Average TL, JL rate (0.207)
b	Flow value of unemp.	0.9834	Rel. value non-work (0.71)

Calibration: Estimated Parameters (outer loop)


Parameter	Description	Value
$\chi/(\kappa \tilde{\mathbf{x}})$	Hiring elasticity, new hires	0.5943
$\chi/(\kappa_r \tilde{x}_r)$	Hiring elasticity, recalls	1.1631
$\sigma_{artheta}$	Parameter lognormal ${\mathcal F}$	1.8260
σ_{γ}	Parameter lognormal ${\cal G}$	0.3599

Moment	Target	Model
SD of hiring rate	3.304	3.257
SD of total separation rate	5.553	4.676
SD of temporary-layoff unemployment, u_{TL}	9.715	9.865
SD of jobless unemployment, u_{JL}	8.570	9.939
SD of hiring rate from u_{JL} relative to	0.443	0.443
SD of recall hiring rate from u_{TL}		


TFP Shock: Employment, Unemployment and Wages

TFP Shock: Transition Probabilities

TFP Shock: Shut off u_{JL} from u_{TL}

Application to PPP: Full Slides

Adapting the Model to the Covid-19 Recession

Introduce series of shocks and two parameters

1. Shocks:

- "Lockdown" shocks
 - ▶ Beginning of period: fraction 1ν move to TL unemp
 - Unanticipated (MIT shock)
- Utilization restrictions on capital and labor
 - Transitory shock at start of pandemic
 - New persistent shock with each Covid wave
- PPP as factor payment subsidy (as in KMV)
 - ▶ PPP 2020: 12.5% of quarterly GDP, most payments May-July 2020
 - PPP 2021: 5.4% of quarterly GDP, most payments Jan-April 2021

Adapting the Model to the Covid-19 Recession, cont.

• • •

2. Two parameters:

▶ (Possibly) reduced recall costs for workers in lockdown

$$\chi x_r + \frac{\kappa_r}{2} \left(x_r - \xi \underbrace{\frac{(1 - \phi)u_{TL}}{\mathcal{F}(\vartheta^*)n}}_{\text{Workers on lockdown}} - \tilde{x}_r \right)^2$$

- $ightharpoonup 0 \le \xi \le 1$
- ▶ Different rate of exogenous TL-to-JL for workers on lockdown, $\rho_{r\phi}$

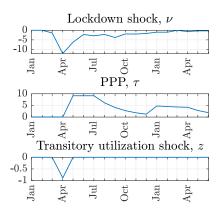
Recession Experiment

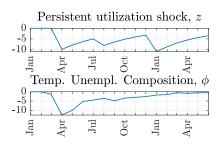
- ► Thus, need to estimate:
 - 1. Lockdown shocks for each month of pandemic (+T)
 - 2. Size of transitory utilization shock at onset of pandemic (+1)
 - 3. Size of persistent utilization shock for three waves (+3)
 - 4. Autoregressive parameter of persistent utilization shock (+1)
 - 5. Two model parameters (+2)
- Moments to match:
 - 1. Stocks: $\{u_{TL}, u_{JL}\}_{\tau}$ since onset of pandemic
 - 2. Gross flows: $\{g_{E,TL}, g_{TL,E}, g_{TL,JL}\}_{\tau}$ since onset
 - 3. Inflows into u_{JL} : March-April 2020 only
 - To discipline size of transitory shock

Recession Experiment, cont.

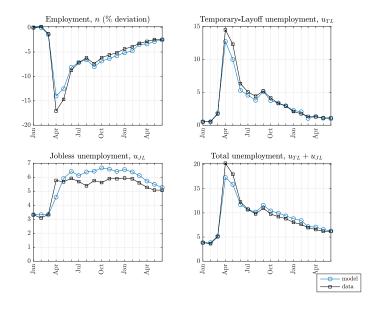
- Estimate by SMM:
 - T months of pandemic w/ 3 waves (for now)
 - \triangleright (5 · T + 1) moments to match
 - ightharpoonup (T+7) parameters to estimate
 - System is highly overidentified

Parameter and Shock Estimates

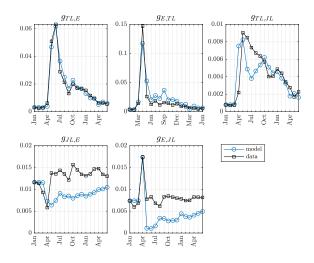

Parameters

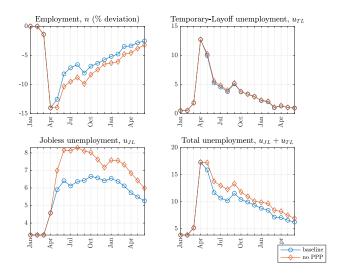

Variable	Description	Value
$ ho_{Z}$	Autoregressive coefficient for persistent utilization shocks	0.7955
ξ	Adjustment costs for workers on lockdown	0.5103
$1- ho_{r\phi}$	Probability of exogenous loss of recall for workers in temporary unemployment	0.3631

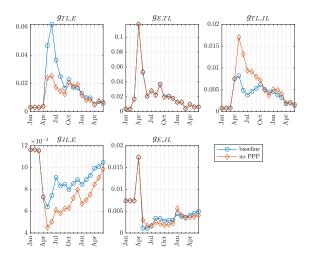
Shocks


Description	Value
Persistent utilization shock, April 2020	-9.89%
Transitory utilization shock, April 2020	-0.89%
Persistent utilization shock, September 2020	-4.14%
Persistent utilization shock, January 2021	-8.35%

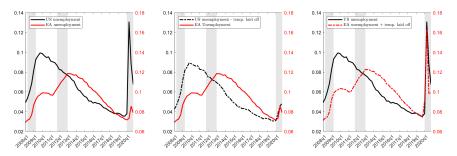
Parameter and Shock Estimates, cont.




Covid Onset, Stocks


Covid Onset, Gross Flows

Policy Counterfactual: No PPP, stocks


Policy Counterfactual: No PPP, flows

PPP takeaway

- PPP achieved sizeable employment gains
- Immediate term: May to September 2020
 - Achieved average monthly employment gains of 2.14%
 - Doubled cumulative recalls
- Longer term
 - Smaller persistent employment gains
 - Avg. monthly empl. at least 1% higher through May 2021
- Employment gains came from recalls
 - ightharpoonup PPP preserved ties btwn firms and workers in u_{TL}
 - Fulfilled mandate

A Tale of Two Unemployment Rates: US vs. EA in Covid

- Unemployment measured differently, e.g. temporary laid off workers
- ► Temporary laid off workers counted among the unemployed in the US and among the employed in the EA
- 2 counterfactual scenarios:
 - 1. TL counted among the employed also in the US (middle panel)
 - 2. TL counted among the unemployed also in the EA (right panel)
- But differences exist in TL definitions: more attachment to job in EA