Government Procurement and Access to Credit: Firm Dynamics and Aggregate Implications

Julian di Giovanni*, Manuel García-Santana Priit Jeenas Priit Jeenas Josep Pijoan-Mas

I BdE Conference on the Spanish Economy

Madrid, July 2022

This project does not represent official views of the Banco de España or the FRBNY

Motivation

- Governments play a key role in economic activity
 - Set taxes and transfers, large employers
 - Purchase goods and services from private firms → Public Procurement Contracts

Motivation

- Governments play a key role in economic activity
 - Set taxes and transfers, large employers
 - Purchase goods and services from private firms → Public Procurement Contracts
- Public procurement
 - Large fraction of economic activity (10-15% of GDP in EU-27 and U.S.)
 - o It is spread across many industries of the economy

Motivation

- Governments play a key role in economic activity
 - Set taxes and transfers, large employers
 - \circ Purchase goods and services from private firms \rightarrow Public Procurement Contracts
- Public procurement
 - Large fraction of economic activity (10-15% of GDP in EU-27 and U.S.)
 - It is spread across many industries of the economy
- Recurrent policy debate: should governments target specific types of firms?
 - Target big firms to build "national champions"
 - Target small firms to help them grow (e.g., U.S. Small Business Act or European Parliament)

What we do

- Study the effects of public procurement on firm outcomes and the macroeconomy
 - o Focus on severity and type of firms' financial frictions
 - O Show how allocation of contracts to firms can have first-order effects

What we do

- Study the effects of public procurement on firm outcomes and the macroeconomy
 - o Focus on severity and type of firms' financial frictions
 - Show how allocation of contracts to firms can have first-order effects
- New administrative data set and a model of firm dynamics with a government sector to analyze:
 - Firm selection into procurement
 - o Treatment effect of procurement on firm dynamics
 - ⇒ Quantify the *long-run macroeconomic consequences* of alternative procurement allocation systems in Spain

Our data

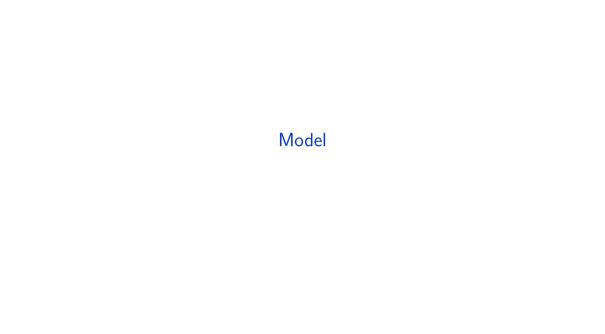
- 1 Data on procurement contracts from Spanish Central Government's Official Bulletin
 - o Details on 150,000 contracts over 2000–13, winners/losers for subset

Our data

- 1 Data on procurement contracts from Spanish Central Government's Official Bulletin
 - o Details on 150,000 contracts over 2000–13, winners/losers for subset
- Balance sheet of non-financial Spanish firms constructed by Bank of Spain
 - Annual frequency 2000–13 (85% of all firms)

Our data

- 1 Data on procurement contracts from Spanish Central Government's Official Bulletin
 - Details on 150,000 contracts over 2000–13, winners/losers for subset
- Balance sheet of non-financial Spanish firms constructed by Bank of Spain
 - Annual frequency 2000–13 (85% of all firms)
- 3 Universe of loans at the firm-bank-month level
 - o Including whether a loan features posted (tangible) collateral
 - Loan applications for "new" firm-bank relations
 - Coan applications for new firm-bank relations



1 Winning a procurement contract associated with higher credit growth Fact 1

- 1 Winning a procurement contract associated with higher credit growth Fact 1
- 2 Winning a contract associated with a change in credit composition (Fact 2)

- Winning a procurement contract associated with higher credit growth Fact 1
- Winning a contract associated with a change in credit composition Fact 2
- 3 Consistent with an increase in firms' borrowing capacity
 - Loan applications: Winning a contract ↑ probability of acceptance Fact 3

- Winning a procurement contract associated with higher credit growth Fact 1
- Winning a contract associated with a change in credit composition Fact 2
- 3 Consistent with an increase in firms' borrowing capacity
 - Loan applications: Winning a contract ↑ probability of acceptance Fact 3
- Onsistent with earnings from the public sector being more pledgeable
- 4.a/ Procurement contract significant when controlling for future sales growth Fact 4
- 4.b/ Procurement associated with higher leverage growth ("structural", more below)

Model's main ingredients

- Build on standard framework of firm dynamics with financial frictions (Midrigan and Xu, 2014)
 - a. Exogenous differences in productivity across firms
 - b. Firms can borrow and save
 - c. Borrowing is subject to a financial constraint

Model's main ingredients

- Build on standard framework of firm dynamics with financial frictions (Midrigan and Xu, 2014)
 - a. Exogenous differences in productivity across firms
 - b. Firms can borrow and save
 - c. Borrowing is subject to a financial constraint
- We extend this setting to allow for:
 - d. Downward-sloping demands in both the private and public sectors
 - e. Endogenous choice to compete for procurement projects
 - f. Earnings-based borrowing constraints

- Two final goods
 - \circ Private good (Y_p) : used for private consumption, capital formation, procurement applications
 - $\circ\;$ Public good (Y_g): used to provide public services

- Two final goods
 - \circ Private good (Y_p) : used for private consumption, capital formation, procurement applications
 - Public good (Y_g) : used to provide public services
- A continuum of differentiated intermediate varieties y_i with $i \in [0,1]$
 - Private good uses all varieties
 - \circ Public good only uses a subset $I_g \subset [0,1]$ of varieties (w/ measure m_g)

$$Y_p = \left(\int_{[0,1]} y_{ip}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}} \quad \text{ and } \quad Y_g = m_g \frac{1}{1-\sigma} \left(\int_{I_g} y_{ig}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$$

- Two final goods
 - o Private good (Y_p) : used for private consumption, capital formation, procurement applications
 - Public good (Y_g) : used to provide public services
- A continuum of differentiated intermediate varieties y_i with $i \in [0,1]$
 - Private good uses all varieties
 - \circ Public good only uses a subset $I_g \subset [0,1]$ of varieties (w/ measure m_g)

$$Y_p = \left(\int_{\left[0,1\right]} y_{ip}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}} \quad \text{ and } \quad Y_g = m_g \frac{1}{1-\sigma} \left(\int_{I_g} y_{ig}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$$

• Each Intermediate good produced by a different firm, with CRS technology $y_i = s_i k_i$

- Two final goods
 - \circ Private good (Y_p) : used for private consumption, capital formation, procurement applications
 - Public good (Y_g) : used to provide public services
- A continuum of differentiated intermediate varieties y_i with $i \in [0,1]$
 - Private good uses all varieties
 - \circ Public good only uses a subset $I_g \subset [0,1]$ of varieties (w/ measure m_g)

$$Y_p = \left(\int_{\left[0,1\right]} y_{ip}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}} \quad \text{ and } \quad Y_g = m_g \frac{1}{1-\sigma} \left(\int_{I_g} y_{ig}^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$$

- Each Intermediate good produced by a different firm, with CRS technology $y_i = s_i k_i$
- Firms compete independently in each sector facing the following demands

$$p_{ip} = B_p [y_{ip}]^{-1/\sigma}$$
, where $B_p \equiv P_p Y_p^{1/\sigma}$
 $p_{ig} = B_g [y_{ig}]^{-1/\sigma}$, where $B_g \equiv P_g Y_g^{1/\sigma}$

Public procurement

- Procurement allocation system:
 - o Firms compete for contracts by preparing costly applications
 - Firms must invest $b_{it} > 0$ at t in order to obtain a procurement contract at t+1 ($d_{it+1} = 1$)
 - o Better applications more likely to succeed, but there is always uncertainty

$$Pr(d_{it+1} = 1 \mid b_{it}) = 1 - e^{-\eta_0 b_{it}^{\eta_1}}$$

(with $\eta_0>0$ and $1>\eta_1>0$ to ensure positive and diminishing returns)

Public procurement

- Procurement allocation system:
 - Firms compete for contracts by preparing costly applications
 - Firms must invest $b_{it} > 0$ at t in order to obtain a procurement contract at t+1 ($d_{it+1} = 1$)
 - o Better applications more likely to succeed, but there is always uncertainty

$$Pr(d_{it+1} = 1 \mid b_{it}) = 1 - e^{-\eta_0 b_{it}^{\eta_1}}$$

(with $\eta_0 > 0$ and $1 > \eta_1 > 0$ to ensure positive and diminishing returns)

- Government policy parameters
 - \circ Level of demand Y_g
 - \circ Set I_q of varieties used
 - Its measure m_g
 - Its composition

Public procurement

• Procurement allocation system:

- Firms compete for contracts by preparing costly applications
- Firms must invest $b_{it} > 0$ at t in order to obtain a procurement contract at t+1 $(d_{it+1} = 1)$
- o Better applications more likely to succeed, but there is always uncertainty

$$Pr(d_{it+1} = 1 \mid b_{it}) = 1 - e^{-\eta_0 b_{it}^{\eta_1}}$$

(with $\eta_0>0$ and $1>\eta_1>0$ to ensure positive and diminishing returns)

Government policy parameters

- \circ Level of demand Y_g
- \circ Set I_g of varieties used
 - Its measure m_g
 - Its composition

Equilibrium

 \circ η_0 ensures that the fraction of firms obtaining a procurement project equals m_g

First principles

• Firm i owned by entrepreneur i, w/ survival probability θ and preferences:

$$\sum_{t=0}^{\infty} (\beta \theta)^t \mathbb{E} \left[\frac{c_{it}^{1-\mu} - 1}{1-\mu} \right]$$

First principles

• Firm i owned by entrepreneur i, w/ survival probability θ and preferences:

$$\sum_{t=0}^{\infty} (\beta \theta)^t \mathbb{E} \left[\frac{c_{it}^{1-\mu} - 1}{1-\mu} \right]$$

• Budget constraint given by:

$$c_{it} + b_{it} + k_{it+1} + (1+r)l_{it} \le p_{ipt}y_{ipt} + p_{igt}y_{igt} + (1-\delta)k_{it} + l_{it+1} - tax_{it}$$

First principles

• Firm i owned by entrepreneur i, w/ survival probability θ and preferences:

$$\sum_{t=0}^{\infty} (\beta \theta)^t \mathbb{E} \left[\frac{c_{it}^{1-\mu} - 1}{1-\mu} \right]$$

• Budget constraint given by:

$$c_{it} + b_{it} + k_{it+1} + (1+r)l_{it} \le p_{ipt}y_{ipt} + p_{igt}y_{igt} + (1-\delta)k_{it} + l_{it+1} - tax_{it}$$

• The amount of debt is limited by the constraint:

$$l_{it+1} \leq \varphi_k k_{it+1} + \varphi_p p_{ipt+1} y_{ipt+1} + \varphi_g p_{igt+1} y_{igt+1}$$

First principles

• Firm i owned by entrepreneur i, w/ survival probability θ and preferences:

$$\sum_{t=0}^{\infty} (\beta \theta)^t \mathbb{E} \left[\frac{c_{it}^{1-\mu} - 1}{1-\mu} \right]$$

Budget constraint given by:

$$c_{it} + b_{it} + k_{it+1} + (1+r)l_{it} \le p_{ipt}y_{ipt} + p_{igt}y_{igt} + (1-\delta)k_{it} + l_{it+1} - tax_{it}$$

The amount of debt is limited by the constraint:

$$l_{it+1} \leq \varphi_k k_{it+1} + \varphi_p p_{ipt+1} y_{ipt+1} + \varphi_g p_{igt+1} y_{igt+1}$$

- With the proper timing assumptions
 - \circ We can re-write the problem in terms of firm's net worth $a_{it} \equiv k_{it} l_{it}$
 - We can split the problem into a static production and a dynamic saving problems

Static problem:

- Size and between-firm misallocation
 - o Constrained firms produce at MRPK > $(r + \delta) \iff k_p, k_g$ below optimal

Static problem:

- Size and between-firm misallocation
 - Constrained firms produce at MRPK > $(r + \delta) \iff k_p, k_q$ below optimal
- Within-firm misallocation
 - \circ If active in procurement, constrained firms over-sell to the government $(\mathrm{MRPK}_p > \mathrm{MRPK}_g)$

Static problem:

- Size and between-firm misallocation
 - Constrained firms produce at MRPK > $(r + \delta) \iff k_p, k_q$ below optimal
- Within-firm misallocation
 - \circ If active in procurement, constrained firms over-sell to the government $(\mathrm{MRPK}_p > \mathrm{MRPK}_g)$
- Effect of "procurement shock" *treatment*:
 - \circ on profits π : positive and increasing in s and a (strictly if constrained)
 - on private production y_p : negative if constrained

Static problem:

- Size and between-firm misallocation
 - Constrained firms produce at MRPK > $(r + \delta) \iff k_p, k_q$ below optimal
- Within-firm misallocation
 - \circ If active in procurement, constrained firms over-sell to the government $(\mathrm{MRPK}_p > \mathrm{MRPK}_g)$
- Effect of "procurement shock" *treatment*:
 - on profits π : positive and increasing in s and a (strictly if constrained)
 - \circ on private production y_p : negative if constrained

Dynamic problem:

- Entrepreneurs with lower levels of net worth (a = k l) have
 - o higher returns to asset accumulation (relax asset-based constraint),
 - o lower returns of winning a procurement project
- ⇒ Selection into procurement by firms with high net worth

Borrowing constraint

• We have 3 parameters in the borrowing constraint $(\varphi_k, \varphi_p, \varphi_g)$

$$l_t = \varphi_k k_t + \varphi_p p_{pt} y_{pt} + \varphi_g p_{gt} y_{gt}$$

Borrowing constraint

• We have 3 parameters in the borrowing constraint $(\varphi_k, \varphi_p, \varphi_g)$

$$l_t = \varphi_k k_t + \varphi_p p_{pt} y_{pt} + \varphi_g p_{gt} y_{gt}$$

- Earnings-based parameters (φ_p, φ_g) :
 - Rewrite borrowing constraint as:

$$\Delta_t \left(\frac{l_t}{k_t} \right) = \varphi_p \ \Delta_t \left(\frac{p_t y_t}{k_t} \right) + (\varphi_g - \varphi_p) \ \Delta_t \left(\frac{p_g t y_g t}{k_t} \right)$$

Borrowing constraint

• We have 3 parameters in the borrowing constraint $(\varphi_k, \varphi_p, \varphi_q)$

$$l_t = \varphi_k k_t + \varphi_p p_{pt} y_{pt} + \varphi_g p_{gt} y_{gt}$$

- Earnings-based parameters (φ_p, φ_g) :
 - Rewrite borrowing constraint as:

$$\Delta_t \left(\frac{l_t}{k_t} \right) \; = \; \varphi_p \; \Delta_t \left(\frac{p_t y_t}{k_t} \right) \; + \; \left(\varphi_g - \varphi_p \right) \; \Delta_t \left(\frac{p_g t y_g t}{k_t} \right)$$

• Run this regression for firms likely to be constrained (young firms): $\varphi_p = 0.43$ and $\varphi_g - \varphi_p = 0.68$ Regressions

Borrowing constraint

• We have 3 parameters in the borrowing constraint $(\varphi_k, \varphi_p, \varphi_g)$

$$l_t = \varphi_k k_t + \varphi_p p_{pt} y_{pt} + \varphi_g p_{gt} y_{gt}$$

- Earnings-based parameters (φ_p, φ_g) :
 - Rewrite borrowing constraint as:

$$\Delta_t \left(\frac{l_t}{k_t} \right) = \varphi_p \ \Delta_t \left(\frac{p_t y_t}{k_t} \right) + \left(\varphi_g - \varphi_p \right) \ \Delta_t \left(\frac{p_g t y_g t}{k_t} \right)$$

- Run this regression for firms likely to be constrained (young firms): $\varphi_p = 0.43$ and $\varphi_g \varphi_p = 0.68$ Regressions
- Asset-based parameter (φ_k)
 - Match aggregate credit to capital ratio: $\varphi_k = 0.54$

• We have 4 parameters related to procurement

- We have 4 parameters related to procurement
- Size of public procurement (m_g, Y_g)

- We have 4 parameters related to procurement
- Size of public procurement (m_g, Y_g)
 - \circ Set m_g = 3.8% (fraction of procurement firms)

- We have 4 parameters related to procurement
- Size of public procurement (m_g, Y_g)
 - \circ Set m_g = 3.8% (fraction of procurement firms)
 - match $P_g Y_g / GDP = 12\%$

- We have 4 parameters related to procurement
- Size of public procurement (m_g, Y_g)
 - Set $m_g = 3.8\%$ (fraction of procurement firms)
 - match $P_g Y_g / GDP = 12\%$
- Procurement allocation system (η_0, η_1)

$$Pr(d_{it+1} = 1 \mid b_{it}) = 1 - e^{-\eta_0 b_{it}^{\eta_1}}$$

- We have 4 parameters related to procurement
- Size of public procurement (m_g, Y_g)
 - Set $m_g = 3.8\%$ (fraction of procurement firms)
 - \circ match $P_gY_g/GDP = 12\%$
- Procurement allocation system (η_0, η_1)

$$Pr(d_{it+1} = 1 \mid b_{it}) = 1 - e^{-\eta_0 b_{it}^{\eta_1}}$$

o η_1 : match "ex-ante procurement premium" in revenues of 72% (difference in size between proc. and no proc. firms the year before winning a contract)

- We have 4 parameters related to procurement
- Size of public procurement (m_g, Y_g)
 - Set $m_g = 3.8\%$ (fraction of procurement firms)
 - \circ match $P_gY_g/GDP = 12\%$
- Procurement allocation system (η_0, η_1)

$$Pr(d_{it+1} = 1 \mid b_{it}) = 1 - e^{-\eta_0 b_{it}^{\eta_1}}$$

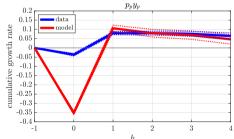
- o η_1 : match "ex-ante procurement premium" in revenues of 72% (difference in size between proc. and no proc. firms the year before winning a contract)
- \circ η_0 : match average probability of procurement in equilibrium equal to m_g

- We have 4 parameters related to procurement
- Size of public procurement (m_g, Y_g)
 - \circ Set m_g = 3.8% (fraction of procurement firms)
 - match $P_g Y_g / GDP = 12\%$
- Procurement allocation system (η_0, η_1)

$$Pr(d_{it+1} = 1 \mid b_{it}) = 1 - e^{-\eta_0 b_{it}^{\eta_1}}$$

- o η_1 : match "ex-ante procurement premium" in revenues of 72% (difference in size between proc. and no proc. firms the year before winning a contract)
- \circ η_0 : match average probability of procurement in equilibrium equal to m_g

Benchmark economy: Selection and treatment


- Selection: we match a 72% "ex-ante procurement premium" in p_iy_i with
 - \circ "ex-ante procurement premium" in a=53%
 - \circ "ex-ante procurement premium" in s=36%

Benchmark economy: Selection and treatment

- Selection: we match a 72% "ex-ante procurement premium" in p_iy_i with
 - \circ "ex-ante procurement premium" in a=53%
 - \circ "ex-ante procurement premium" in s=36%

• Treatment:

- Short-run crowding-out (scarce collateral split between two markets)
- Long-run crowding-in (higher revenues accelerates self-financing channel)

"set aside" policies

• Think about expenditure-neutral reforms

- Think about *expenditure-neutral* reforms
- What if the government "encourages" participation of smaller firms?

- Think about *expenditure-neutral* reforms
- What if the government "encourages" participation of smaller firms?
- We run the following counterfactual exercise

- Think about *expenditure-neutral* reforms
- What if the government "encourages" participation of smaller firms?
- We run the following counterfactual exercise
 - \rightarrow Decrease η_1 such that (ex-ante) procurement premium decreases from 72% to 50%

- Think about *expenditure-neutral* reforms
- What if the government "encourages" participation of smaller firms?
- We run the following counterfactual exercise
 - \rightarrow Decrease η_1 such that (ex-ante) procurement premium decreases from 72% to 50%
 - \Rightarrow Gives lower weight to firms' investment in b

- Think about *expenditure-neutral* reforms
- What if the government "encourages" participation of smaller firms?
- We run the following counterfactual exercise
 - \rightarrow Decrease η_1 such that (ex-ante) procurement premium decreases from 72% to 50%
 - \Rightarrow Gives lower weight to firms' investment in b
 - \Rightarrow Selection weakens in both a and s

- Think about expenditure-neutral reforms
- What if the government "encourages" participation of smaller firms?
- We run the following counterfactual exercise
 - \rightarrow Decrease η_1 such that (ex-ante) procurement premium decreases from 72% to 50%
 - \Rightarrow Gives lower weight to firms' investment in b
 - \Rightarrow Selection weakens in both a and s
 - \rightarrow Change Y_q and η_0 such that $P_q Y_q$ and m_q remain constant

- Think about *expenditure-neutral* reforms
- What if the government "encourages" participation of smaller firms?
- We run the following counterfactual exercise
 - \rightarrow Decrease η_1 such that (ex-ante) procurement premium decreases from 72% to 50%
 - \Rightarrow Gives lower weight to firms' investment in b
 - \Rightarrow Selection weakens in both a and s
 - ightarrow Change Y_g and η_0 such that P_gY_g and m_g remain constant
 - ⇒ Average project size remains constant

Main Results

$$\underbrace{\frac{\Delta Y}{Y}}_{+2.07\%} = \underbrace{\frac{\Delta TFP}{TFP}}_{+0.29\%} + \underbrace{\frac{\Delta K}{K}}_{+1.88\%}$$

Main Results

$$\frac{\Delta Y}{Y} = \frac{\Delta TFP}{TFP} + \frac{\Delta K}{K} + 1.88\%$$

- a) TFP
 - ↑ in the private sector (strengthening of the "self-financing" channel ⇒ less misallocation)
 - \circ \downarrow in the procurement sector (entry of low s firms)

Main Results

$$\underbrace{\frac{\Delta Y}{Y}}_{+2.07\%} = \underbrace{\frac{\Delta TFP}{TFP}}_{+0.29\%} + \underbrace{\frac{\Delta K}{K}}_{+1.88\%}$$

- a) TFP
 - ↑ in the private sector (strengthening of the "self-financing" channel ⇒ less misallocation)
 - \circ \downarrow in the procurement sector (entry of low s firms)
- b) Capital
 - \circ \uparrow for new procurement firms (strengthening of the "self-financing" channel \Rightarrow more capital)
 - ↓ for relatively big firms (weakening of the "precautionary savings" motive)

Main Results

$$\underbrace{\frac{\Delta Y}{Y}}_{+2.07\%} = \underbrace{\frac{\Delta TFP}{TFP}}_{+0.29\%} + \underbrace{\frac{\Delta K}{K}}_{+1.88\%}$$

- a) TFP
 - ↑ in the private sector (strengthening of the "self-financing" channel ⇒ less misallocation)
 - \circ \downarrow in the procurement sector (entry of low s firms)
- b) Capital
 - ↑ for new procurement firms (strengthening of the "self-financing" channel ⇒ more capital)
 - ↓ for relatively big firms (weakening of the "precautionary savings" motive)
- The reform generates an 8% increase in P_g/P_p
 - At same expenditure, lower provision of public goods.

Three channels

- **1** Short-run \Rightarrow **GDP** \downarrow **by** 0.10%
 - o Captures the aggregation of the (short-run) crowding out effect

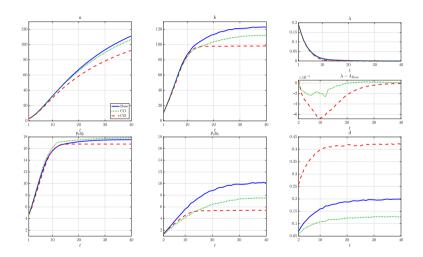
Three channels

- **1** Short-run \Rightarrow **GDP** \downarrow **by** 0.10%
 - Captures the aggregation of the (short-run) crowding out effect
- "Mechanical" long-run \Rightarrow GDP \uparrow by 2.29%
 - Captures the aggregation of the (long-run) crowding in effect

Three channels

- **1** Short-run \Rightarrow **GDP** \downarrow **by** 0.10%
 - o Captures the aggregation of the (short-run) crowding out effect
- 2 "Mechanical" long-run \Rightarrow GDP \uparrow by 2.29%
 - o Captures the aggregation of the (long-run) crowding in effect
- **3** "Full" GE long-run \Rightarrow GDP \uparrow by 2.07%
 - o Captures changes in savings decisions, changes in selection, and GE effects

 Targeting small firms in procurement may increase GDP by strengthening self-financing channel of constrained firms


- Targeting small firms in procurement may increase GDP by strengthening self-financing channel of constrained firms
- However, details matter

- Targeting small firms in procurement may increase GDP by strengthening self-financing channel of constrained firms
- However, details matter
 - Promoting small firms participation by slicing big contracts into smaller ones (Current European Commission's strategy)
 - ⇒ GDP would ↓ by 2.68% (much bigger reduction in big firms' incentives to save)

- Targeting small firms in procurement may increase GDP by strengthening self-financing channel of constrained firms
- However, details matter
 - Promoting small firms participation by slicing big contracts into smaller ones (Current European Commission's strategy)
 - ⇒ GDP would ↓ by 2.68% (much bigger reduction in big firms' incentives to save)
 - \circ In a world in which $\phi_g \simeq \phi_p$
 - ⇒ Effects of policies much less expansionary (may lead to GDP losses)

Life cycle of firms: high productivity firms

Benchmark economy: Aggregates

- Modest levels of misallocation
 - \circ TFP $_p$ gains of reallocating capital across firms: 4.7%
 - \circ TFP $_g$ gains of reallocating capital across firms: 3.3%
- But sizeable output costs of financial frictions
 - GDP increase of setting $\phi_a \rightarrow \infty$: 12.0%
- More efficient provision of public than private goods
 - $P_g/P_p = 0.90 < 1$
 - Selection on s: higher productivity of procurement firms
 - Selection on a and $\phi_q > \phi_p$: less misallocation of capital across procurement firms

Summary statistics

- Types and size of procurement projects
 - A lot of procurement outside construction (>80% of projects outside construction)
 - High presence of relatively small contracts (median ≈ 0.35-0.70 M euro)
- Procurement vs. non-procurement firms Go Go'
 - Procurement firms are larger and older on average (but large overlap in the support of firm size)
 - \circ Higher share of non-collateralized credit for procurement firms, despite larger net worth (86% vs. 71%)
- Back

Number and size of projects **Back**

Table: Value of Procurement projects (budget value in millions of euro), pool of years 2000-13

sector	mean	10th	25th	50th	75th	99th	obs.
Construction	5.28	0.13	0.23	0.74	4.00	70.84	22,549
Consulting	0.66	0.10	0.17	0.37	0.84	3.91	12,427
Services	1.22	0.11	0.20	0.42	1.05	13.47	44,581
Supplies	0.95	0.10	0.17	0.37	0.86	10.20	45,552
Others	1.99	0.09	0.15	0.35	0.99	38.18	5,524

Procurement across industries Back

Sector	Description	Firms (1)	Emp. (2)	Sales (3)	Assets (4)	Credit (5)
19	Manufacture of coke & refined petroleum prod.	0.150	0.332	0.315	0.310	0.243
21	Manufacturing of Pharmaceutical Products	0.149	0.240	0.225	0.231	0.288
42	Civil Engineering	0.093	0.260	0.324	0.366	0.386
80	Security and investigation activities	0.064	0.198	0.299	0.269	0.312
30	Manufacturing of Transport Equipment	0.052	0.176	0.177	0.205	0.180
94	Activities of membership organisations	0.051	0.069	0.127	0.037	0.018
36	Collection, purification and distribution of water	0.040	0.116	0.117	0.088	0.121
61	Telecommunications	0.038	0.217	0.192	0.189	0.207
51	Air transportation	0.033	0.054	0.049	0.078	0.142
81	Services of Buildings Maintenance	0.031	0.137	0.232	0.151	0.211
63	Information services	0.026	0.127	0.100	0.080	0.087
62	Programming, consultancy, other IT activities	0.025	0.151	0.193	0.157	0.214
26	Manufacturing of IT, electronic, & optical prod.	0.025	0.087	0.095	0.125	0.165
71	Technical services of architecture & engineering	0.024	0.152	0.159	0.084	0.103
2	Forestry and logging	0.019	0.069	0.068	0.033	0.080
6	Extraction of crude petroleum and natural gas	0.017	0.021	0.036	0.016	0.026
91	Libraries, archives, museums and cultural activities	0.016	0.061	0.051	0.021	0.017
29	Manufacture of motor vehicles and trailers	0.015	0.030	0.036	0.030	0.086
72	R&D activities	0.014	0.017	0.014	0.003	0.003
17	Paper industry	0.014	0.033	0.032	0.038	0.067

Procurement and non-procurement firms

	mean		2	25th		50th		75th
	<u>Proc</u>	No.proc	<u>Proc</u>	No.proc	<u>Proc</u>	No.proc	<u>Proc</u>	No.proc
Age	20.42	10.95	12.00	5.00	17.00	10.00	24.00	15.00
Employment	73.56	12.75	16.00	3.00	45.00	6.00	155.0	12.00
Sales	8.96	1.19	1.14	0.10	4.22	0.28	16.89	0.86
Procurement/Sales	0.20	0.00	0.01	0.00	0.03	0.00	0.10	0.00
Fixed Assets	3.80	0.85	0.21	0.03	0.82	0.14	3.58	0.50
Credit	2.51	0.57	0.11	0.03	0.48	0.08	2.32	0.30
Coll. Credit (share)	0.14	0.29	0.00	0.00	0.00	0.00	0.14	0.74

Fact 1: Credit growth and procurement

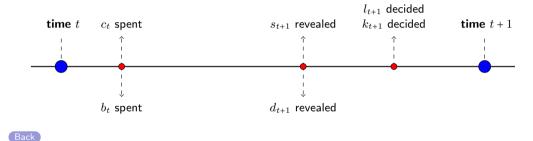
	All firms	Bidde	rs only
		First	Second
	(1)	(2)	(3)
$PROC_{it}$	0.055^{a}	0.073^{a}	-0.061
	(0.004)	(0.028)	(0.049)
$log(Credit_{it-1})$	$\dot{-0.410}^{lpha}$	$\dot{-0.175}^{lpha}$	-0.229^{lpha}
J,,	(0.001)	(0.043)	(0.044)
Observations	700,780	8,310	3,683
R-squared	0.786	0.360	0.458
Sector×quarter FE	Yes	No	No
Firm×year FE	Yes	Yes	Yes
Quarter FE	No	Yes	Yes
Auction FE	No	Yes	Yes

Fact 2: Composition of credit growth and procurement

	All	firms				
			F	irst	Se	cond
	Collat. (1)	NoCollat. (2)	Collat. (3)	NoCollat. (4)	Collat. (5)	NoCollat. (6)
$PROC_{it}$	0.001 (0.006)	$0.070^{a} \ (0.005)$	-0.011 (0.029)	$0.080^{b} \ (0.031)$	-0.019 (0.044)	-0.058 (0.057)
Observations	224,011	557,873	2,690	8,110	1,423	3,606
R-squared	0.791	0.764	0.357	0.368	0.435	0.435
Sector×quarter FE	Yes	Yes	No	No	No	No
Firm×year FE	Yes	Yes	Yes	Yes	Yes	Yes
Quarter FE	No	No	Yes	Yes	Yes	Yes
Auction FE	No	No	Yes	Yes	Yes	Yes

Fact 3: Probability of a new loan and procurement

	All firms		
	(1)	(2)	
$PROC_{it}$	0.024^a (0.008)	0.023^b (0.011)	
Observations	36,857	26,924	
R-squares	0.395	0.628	
Firm×bank FE	Yes	Yes	
Bank×quarter FE	No	Yes	
Sector×quarter FE	No	Yes	



Fact 4: Credit growth and procurement, given future sales growth

	(-)	All firms	(-)
	(1)	(2)	(3)
$PROC_{it}$	0.053^{a}	0.043^{a}	0.041^{a}
	(0.006)	(0.006)	(0.006)
Sales growth $_{it+1}$	0.107^{a}	0.027^{b}	0.024^{c}
•	(0.020)	(0.011)	(0.011)
Observations	86,537	86,096	83,652
R-squared	0.051	0.282	0.330
Year FE	Yes	Yes	No
Firm FE	No	Yes	Yes
Sector×Year FE	No	No	Yes

Timing in the model

Preferences and constraints

Re-formulation

• Let $a_{it} \equiv k_{it} - l_{it}$ be the firm's net worth. We can re-write the constraints as:

$$c_{it} + b_{it} + a_{it+1} \leq (1+r)a_{it} + (1-\tau)\underbrace{\left[p_{ipt}y_{ipt} + p_{igt}y_{igt} - (r+\delta)k_{it}\right]}_{\pi_{it}}$$

$$k_{it} \leq \phi_a a_{it} + \phi_p p_{ipt}y_{ipt} + \phi_g p_{igt}y_{igt}$$

Preferences and constraints

Re-formulation

• Let $a_{it} \equiv k_{it} - l_{it}$ be the firm's net worth. We can re-write the constraints as:

$$c_{it} + b_{it} + a_{it+1} \leq (1+r)a_{it} + (1-\tau)\underbrace{\left[p_{ipt}y_{ipt} + p_{igt}y_{igt} - (r+\delta)k_{it}\right]}_{\pi_{it}}$$
$$k_{it} \leq \phi_a a_{it} + \phi_p p_{ipt}y_{ipt} + \phi_g p_{igt}y_{igt}$$

• The parameters in the borrowing constraint are re-defined as:

$$\phi_a \equiv \frac{1}{1 - \varphi_k}, \quad \phi_p \equiv \frac{\varphi_p}{1 - \varphi_k}, \quad \phi_g \equiv \frac{\varphi_g}{1 - \varphi_k}$$

Preferences and constraints

Re-formulation

• Let $a_{it} \equiv k_{it} - l_{it}$ be the firm's net worth. We can re-write the constraints as:

$$c_{it} + b_{it} + a_{it+1} \leq (1+r)a_{it} + (1-\tau)\underbrace{\left[p_{ipt}y_{ipt} + p_{igt}y_{igt} - (r+\delta)k_{it}\right]}_{\pi_{it}}$$

$$k_{it} \leq \phi_a a_{it} + \phi_p p_{ipt}y_{ipt} + \phi_g p_{igt}y_{igt}$$

• The parameters in the borrowing constraint are re-defined as:

$$\phi_a \equiv \frac{1}{1 - \varphi_k}, \quad \phi_p \equiv \frac{\varphi_p}{1 - \varphi_k}, \quad \phi_g \equiv \frac{\varphi_g}{1 - \varphi_k}$$

- The problem can be split into:
 - Static production problem
 - Dynamic saving problem

Static production problem

Set up

• The entrepreneur of type (s, a, d) chooses sizes $k_p(s, a, d)$ and $k_g(s, a, d)$:

$$\begin{split} \pi\left(s,a,d\right) &= \max_{k_p,k_g \geq 0} \left\{ p_p y_p + p_g y_g - (r+\delta) \left(k_p + k_g\right) \right\} \\ \text{subject to:} \\ &p_p y_p = B_p \left[s k_p \right]^{\frac{\sigma-1}{\sigma}} \\ &p_g y_g = B_g \left[s k_g \right]^{\frac{\sigma-1}{\sigma}} \times d \\ &k_p + k_g \leq \phi_k a + \phi_p p_p y_p + \phi_g p_g y_g \end{split}$$

• There will be a multiplier $\lambda\left(s,a,d\right)$ associated to the financial constraint

Back

Dynamic problem

Set up

- Entrepreneur chooses consumption c(s, a, d), savings a'(s, a, d) and investment in proc. b(s, a, d)
- The dynamic saving problem can be written in recursive form,

$$\begin{split} V\left(s,a,d\right) &= \max_{c,b,a'} \left\{ u\left(c\right) + \beta\theta \, \mathbb{E}_{s',d'\mid s,b} \left[V\left(s',a',d'\right) \right] \right\} \\ \text{subject to:} \\ c+b+a' &= \left(1+r\right)a + \left(1-\tau\right)\pi \left(s,a,d\right) \\ a' &\geq 0 \\ \mathbb{E}_{s',d'\mid s,b} \left[V\left(s',a',d'\right) \right] &= \Pr\left(d'=1|b\right)\mathbb{E}_{s'\mid s} V\left(s',a',1\right) + \Pr\left(d'=0|b\right)\mathbb{E}_{s'\mid s} V\left(s',a',0\right) \end{split}$$

Back

Equilibrium conditions I

- a) Entrepreneurs solve their optimization problem
- b) The probability measure Γ is stationary
- c) The market for the private good clears:

$$\int_{\mathbf{X}} p_p(a, s, d) u(a, s, d) y(s, a, d) d\Gamma = Y_p = \int_{\mathbf{X}} \left[b(s, a, d) + c(s, a, d) + \delta k(s, a, d) \right] d\Gamma$$

d) The market for the public good clears:

$$\int_{\mathbf{X}_{1}} p_{g}(a, s, 1) [1 - u(a, s, 1)] y(s, a, 1) d\Gamma = P_{g} Y_{g}$$

 The probability of obtaining procurement projects is consistent with the measure of goods bought by the public sector,

$$\int_{\mathbf{X}} Pr(d'=1 \mid b(s,a,d)) d\Gamma = \int_{\mathbf{X}_1} d\Gamma = m_g$$

f) The budget constraint of the government holds

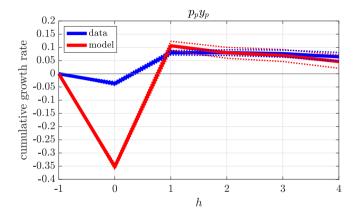
$$PgYg = rD + \tau \int_{\mathbf{X}} \pi(s, a, d) d\Gamma + (1 - \theta) \left[\int_{\mathbf{X}} a'(s, a, d) d\Gamma - \int_{\mathbf{X}} a d\Gamma_0 \right]$$

g) By Walras law, the debt market clears.

$$D = \int_{\mathbf{X}} \left[k(s, a, d) - a(s, a, d) \right] d\Gamma$$

Structural leverage regressions

	(1)	(2)	(3)
$\Delta p_{it} y_{it} / k_{it}$ $\Delta p_{igt} y_{igt} / k_{it}$	0.425^{c} (0.227) 0.682^{c} (0.391)	0.543^{b} (0.257) 0.797^{c} (0.478)	0.419^{c} (0.229) 1.047^{c} (0.588)
Observations R-squared Sector×year FE Sample by age	579 0.391 Yes ≤ 10 yrs	403 0.437 Yes ≤ 9 yrs	282 0.421 Yes ≤ 8 yrs


Calibration parameter values

	Panel A: parameters			Panel B: Moments	
		(1)	(2)		
		Baseline	$\phi_p = \phi_g$		
Block 1					
μ	CRRA coefficient	2.00	2.00		
σ_p	CES private sector	3.00	3.00		
σ_p	CES government	3.00	3.00	extscpredetermined	
β	Discount factor	0.94	0.94		
δ	Depreciation rate	0.10	0.10		
ρ_s	AR(1) correlation	0.80	0.80		
σ_s	AR(1) variance	0.30	0.30		
Block 2					Data = Model
ϕ_a	borrowing const. (a)	2.17	2.34	Credit/K	0.55
ϕ_p	borrowing const. $(p_p y_p)$	0.92	0.99	reg. coefficient (φ_p)	0.42
ϕ_g	borrowing const. $(p_g y_g)$	2.40	0.99	reg. coefficient $(\varphi_g - \varphi_p)$	0.68
Block 3					
η_0	probability function (level)	0.21	0.21	Consistency of $g(b)$ with m_g	-
η_1	probability function (slope)	0.53	0.55	Procurement premium	0.72
Y_g	demand shifter	0.83	0.63	Share of procurement in GDP	0.12
m_g	measure of procurement goods	0.038	0.038	Percentage of procurement firms	3.8%
Block 4					
D	Government lending	0.86	0.84	Interest rate	5%
\bar{s}	Productivity shifter	-6.51	-6.53	K/Y (aggregate)	3.88
heta	Survival probability	0.95	0.95	Exit rate	5%

Treatment in benchmark economy Back

Crowding out of private sales: model vs. data (local projection)

- Small/constrained firm cuts private sales initially when receiving procurement
- As firm constraints become less binding expands sales to private sector