Discussion on:

Government Procurement and Access to Credit: Firm Dynamics and Aggregate Implications

(by Julian di Giovanni, Manuel García-Santana, Priit Jenas, Enrique Moral-Benito, and Josep Pijoan-Mas)

Eduardo Morales

Princeton University

July 7, 2022

Central Result in di Giovanni et al. (2022)

Complex interdependencies in firms' sales in private & public markets:

Static substitutabilities (for credit-constrained firms) across markets:

Public market sales today $\uparrow \implies$ Private market sales today \downarrow

Dynamic complementarities within and across markets:

Public market sales today $\uparrow \implies \text{Public market sales tomorrow } \uparrow$

Public market sales today ↑ ⇒ Private market sales tomorrow ↑

Importance of Studying Interdependencies Across Markets

- These interdependencies mediate how changes in procurement policies affect firms' behavior in the private market.
- The careful modeling of such interdependencies thus makes di Giovanni et al. (2022) a very important contribution towards understanding the implications of procurement policies in the economy in general equilibrium.

Single Market Assumption

- However, there is not a single public market nor a single procurement policy: private and public markets are themselves aggregates of a myriad of markets.
- Prior work has documented static & dynamic interdependencies across many private markets; e.g., work on firm dynamics within & across export markets.
- This work shows how changes in trade policy in a country (e.g., the US) may impact some markets (e.g., Mexico) differently from others (e.g., Australia).
- No work measuring static & dynamic interdependencies across many public markets: no work on firm dynamics within & across procurement markets.
- No tools, e.g., to determine how changes in procurement policies in a region will affect subsequent procurement outcomes in the same and other regions.

Many Market Reality

 Jointly with Pietro Buri and Manuel García-Santana, we have done a (very preliminary) descriptive analysis of the procurement market in Spain.

Main Conclusions

Large number of very heterogeneous procurement markets.

- Firms participating in procurement markets are also heterogeneous.
- Firms

Participation in procurement suffers from high attrition rate.

- Attrition
- Firms' participation in procurement grows with age in the market.
- Selection
- Oplitical parties in power correlate with which firms earn contracts.
- Elections

Conclusion

- Di Giovanni et al. (2022) is an excellent first study of how aspects of public procurement affect the macroeconomy.
- The world of public procurement at the national level is very complex, with many heterogeneous buyers and sellers, and relatively understudied.
- Modeling the dynamics of firms within and across specific public markets has
 the potential to be of a first-order importance when evaluating the impact of
 changes in procurement rules in any of these markets.

Procurement Data: Tender Electronic Daily (TED)

- Same data used as in García-Santana and Santamaría (2022)
- Tenders above a threshold must be published in Official Journal of the EU.
- Threshold currently determined in by the EU Directive 2014/24/EU.
 - e.g., threshold for supplies and services contracts is 139,000 euros.
- Information provided for each tender:
 - Good or service provided (approx. 6,000 different codes).
 - Agency awarding the contract (approx. 10,000 agencies in Spain).
 - Estimated and final price of the contract.
 - Firm to which contract is awarded.
- Information available for all EU countries.

Heterogenous Markets

Agency Type	Agencies		Contracts		Value	9	Products		
	Num.	%	Num.	%	Billions %		Num.		
Local Ayto. Valladolid	2,289	40	26,371	16	26	19	1,857 cleaning services		
Provincial Soc. Prov. Desarrollo	332	5	7,550	5	4,2	3	790 road passenger-transport		
Regional - C.A. Gerencia Reg. Salud	1,756	30	60,387	36	49	35	2,391 pharmaceutical products		
Hospital Hosp. Clinico Valladolid	349	6	31,659	19	1	7	835 medical consumables		
University Rectorado UVa	140	2	6,520	4	3,2	2	708 laboratory equipment		
National Delegación Agencia Trib.	804	14	32,700	20	45	32	2,020 food and beverage		

Heterogenous Markets

Agency Type	Agend	cies	Contracts		Value	e	Products
	Num.	%	Num.	%	Billions	%	Num.
Local Ayto. Valladolid	2,289	40	26,371	16	26	19	1,857 trash-collection services
Provincial Soc. Prov. Desarrollo	332	5	7,550	5	4,2	3	790 road construction
Regional - C.A. Gerencia Reg. Salud	1,756	30	60,387	36	49	35	2,391 road construction
Hospital Hosp. Clinico Valladolid	349	6	31,659	19	1	7	835 pharmaceutical products
University Rectorado UVa	140	2	6,520	4	3,2	2	708 cleaning services
National Delegación Agencia Trib.	804	14	32,700	20	45	32	2,020 electricity and energy

Heterogenous Firms

- 27,395 different establishments selling at least once between 2009-2019
 - E.g. "Fruta Hermanos Ruiz Gómez" sells one product (fruit) to a few of hospitals
 - E.g. "Abbott" sells 80+ products (chemicals) to 177 agencies in 70 cities
- Skewed distrib. (across establishments) in extensive and intensive margins

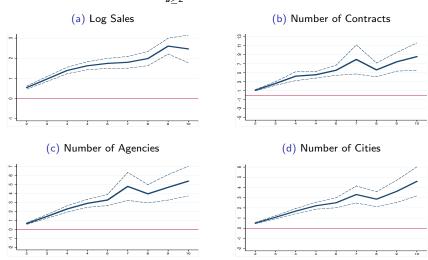
	Mean	P50	P75	P90	P95	P99	P99.9
agencies	3.34	1	2	5	11	44	135
contracts	6.34	1	4	10	21	82	459
cities	2.21	1	2	4	7	24	62
products	2.48	1	2	5	8	22	68
sales (milllions)	5	0.3	1	5	14	79	560
sales to different C.A (%)	11	0	0	50	72	89	97

- Strong positive sorting: 10% Δ in buyer's size \rightarrow 4.4% Δ in seller's size
 - similar when computed within agency types

Attrition

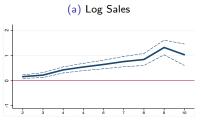
	Entry Cohort										
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	total
2010	3,032	-						-			5,645
2011	512	2,295			-			-			4,208
2012	186	399	2,113		-		-			-	3,617
2013	107	190	476	2,540					•	•	4,062
2014	75	116	256	654	2,704				•	•	4,442
2015	53	84	166	315	643	2,684	-			-	4,518
2016	41	66	116	199	321	606	3,321		•	•	5,169
2017	32	58	88	143	210	321	838	3,945	•	•	6,088
2018	26	47	71	105	156	210	430	836	4,002	-	6,296
2019	24	45	59	85	128	155	256	407	818	4,070	6,429

Approx. 80% attrition rate after the first year

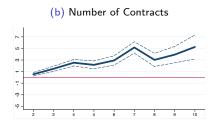

Attrition

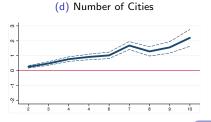
	Entry Cohort										
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	total
2010	3,032							÷			5,645
2011	512	2,295	•		•		•			•	4,208
2012	186	399	2,113			-		-	-		3,617
2013	107	190	476	2,540		-	-		-	-	4,062
2014	75	116	256	654	2,704	•	•			•	4,442
2015	53	84	166	315	643	2,684	•			•	4,518
2016	41	66	116	199	321	606	3,321		-	-	5,169
2017	32	58	88	143	210	321	838	3,945	-	-	6,088
2018	26	47	71	105	156	210	430	836	4,002	-	6,296
2019	24	45	59	85	128	155	256	407	818	4,070	6,429

Approx. 90% attrition rate after the second year


Selection - Regressions on Age Fixed Effects

$$y_{it} = \sum_{a \geq 2} \beta_a \mathbb{1}\{\mathsf{age}_{it} = a\} + \varepsilon_{it}$$




Selection - Regressions Controlling for Firm Fixed Effects

$$y_{it} = \sum_{a \geq 2} \beta_a \mathbb{1}\{\mathsf{age}_{it} = a\} + \mathit{FE}_i + \varepsilon_{it}$$

Define two periods on either side of 2011 local elections:

$$t=1$$
: $\{2009,2010\}$ and $t=2$: $\{2012,2013\}$.

- Restrict sample to municipalities with procurement contracts in either period whose mayor before and after 2011 elections belongs to either PP or PSOE.
- Use information on t = 2 and an OLS estimator to estimate

$$y_{ijt} = \beta y_{ijt-1} + \gamma y_{ijt-1} \mathbb{1}\{\mathsf{party}_{jt} = \mathsf{party}_{jt-1}\} + \mathsf{FE}_{it} + \mathsf{FE}_{jt} + \varepsilon_{ijt},$$

and

$$\begin{split} y_{ijt} &= \beta y_{ijt-1} + \gamma_1 y_{ijt-1} \mathbb{1} \big\{ PP_{jt-1}, PP_{jt} \big\} \\ &+ \gamma_2 y_{ijt-1} \mathbb{1} \big\{ PP_{jt-1}, PSOE_{jt} \big\} \\ &+ \gamma_3 y_{ijt-1} \mathbb{1} \big\{ PSOE_{jt-1}, PP_{jt} \big\} + FE_{it} + FE_{jt} + \varepsilon_{ijt}. \end{split}$$

• Define two periods on either side of 2011 local elections:

$$t = 1$$
: {2009, 2010} and $t = 2$: {2012, 2013}.

- Restrict sample to municipalities with procurement contracts in either period whose mayor before and after 2011 elections belongs to either PP or PSOE.
- Use information on t = 2 and an OLS estimator to estimate

$$\begin{aligned} y_{ijt} &= \underbrace{0.07}_{(0.009)} y_{ijt-1} + \underbrace{0.03}_{(0.012)} y_{ijt-1} \mathbb{1} \{ \mathsf{party}_{jt} = \mathsf{party}_{jt-1} \} + \mathit{FE}_{it} + \mathit{FE}_{jt} + \varepsilon_{ijt}, \\ y_{ijt} &= \underbrace{0.07}_{(0.011)} y_{ijt-1} + \underbrace{0.05}_{(0.015)} y_{ijt-1} \mathbb{1} \{ \mathit{PP}_{jt-1}, \mathit{PP}_{jt} \} \\ &- \underbrace{0.07}_{(0.011)} y_{ijt-1} \mathbb{1} \{ \mathit{PP}_{jt-1}, \mathit{PSOE}_{jt} \} \\ &+ \underbrace{0.01}_{(0.015)} y_{ijt-1} \mathbb{1} \{ \mathit{PSOE}_{jt-1}, \mathit{PP}_{jt} \} + \mathit{FE}_{it} + \mathit{FE}_{jt} + \varepsilon_{ijt}. \end{aligned}$$

Split sample period into two periods:

[2009, 2014] and [2015, 2019].

 Using information on all regional contracts between 2009 and 2014, classify firms as PP affiliated if they have more than n contracts and, at least, 75% of their contracts are with governments of PP.

Split sample period into two periods:

[2009, 2014] and [2015, 2019].

 Using information on all regional contracts between 2009 and 2014, classify firms as PSOE affiliated if they have more than n contracts and, at least, 75% of their contracts are with governments of PSOE.

• Split sample period into two periods:

 $[2009, 2014] \hspace{1.5cm} \text{and} \hspace{1.5cm} [2015, 2019].$

 Using information on all regional contracts between 2009 and 2014, classify firms as independent if they are neither PP affiliated nor PSOE affiliated.

Split sample period into two periods:

[2009, 2014] and [2015, 2019].

- Using information on all regional contracts between 2009 and 2014, classify firms as independent if they are neither PP affiliated nor PSOE affiliated.
- Using information on all years in the period 2015-2019 and all regions with a government belonging to either PP or PSOE, use OLS to estimate

$$\begin{aligned} y_{ijt} &= \beta y_{ij0914} + \gamma_1 \mathbb{1} \{PP_{jt}, PP_{it}\} \\ &+ \gamma_2 \mathbb{1} \{PP_{jt}, PSOE_{it}\} \\ &+ \gamma_3 \mathbb{1} \{PSOE_{jt}, PP_{it}\} \\ &+ \gamma_4 \mathbb{1} \{PSOE_{jt}, PSOE_{it}\} + FE_{it} + FE_{jt} + \varepsilon_{ijt}. \end{aligned}$$

Split sample period into two periods:

$$[2009, 2014]$$
 and $[2015, 2019]$.

For firms with a number of contracts between 2009 and 2014 above

$$n=3$$

$$\begin{aligned} y_{ijt} &= \underbrace{0.067}_{(0.001)} y_{ij0914} + \underbrace{0.006}_{(0.004)} \mathbb{1} \{PP_{jt}, PP_{it}\} \\ &+ \underbrace{0.001}_{(0.003)} \mathbb{1} \{PP_{jt}, PSOE_{it}\} \\ &+ \underbrace{0.001}_{(0.004)} \mathbb{1} \{PSOE_{jt}, PP_{it}\} \\ &+ \underbrace{0.017}_{(0.004)} \mathbb{1} \{PSOE_{jt}, PSOE_{it}\} + FE_{it} + FE_{jt} + \varepsilon_{ijt}. \end{aligned}$$

• Split sample period into two periods:

[2009, 2014] and [2015, 2019].

• For firms with a number of contracts between 2009 and 2014 above

$$n = 5$$

$$\begin{aligned} y_{ijt} &= \underbrace{0.067}_{(0.001)} y_{ij0914} + \underbrace{0.017}_{(0.007)} \mathbb{1} \{PP_{jt}, PP_{it}\} \\ &+ \underbrace{0.003}_{(0.006)} \mathbb{1} \{PP_{jt}, PSOE_{it}\} \\ &+ \underbrace{0.008}_{(0.007)} \mathbb{1} \{PSOE_{jt}, PP_{it}\} \\ &+ \underbrace{0.019}_{(0.006)} \mathbb{1} \{PSOE_{jt}, PSOE_{it}\} + FE_{it} + FE_{jt} + \varepsilon_{ijt}. \end{aligned}$$

• Split sample period into two periods:

[2009, 2014] and [2015, 2019].

• For firms with a number of contracts between 2009 and 2014 above

$$n = 7$$

$$y_{ijt} = \underbrace{0.067}_{(0.001)} y_{ij0914} + \underbrace{0.020}_{(0.008)} \mathbb{1} \{PP_{jt}, PP_{it}\}$$

$$+ \underbrace{0.012}_{(0.008)} \mathbb{1} \{PP_{jt}, PSOE_{it}\}$$

$$+ \underbrace{0.013}_{(0.009)} \mathbb{1} \{PSOE_{jt}, PP_{it}\}$$

$$+ \underbrace{0.028}_{(0.009)} \mathbb{1} \{PSOE_{jt}, PSOE_{it}\} + FE_{it} + FE_{jt} + \varepsilon_{ijt}.$$

• Split sample period into two periods:

[2009, 2014] and [2015, 2019].

For firms with a number of contracts between 2009 and 2014 above

$$n = 9$$

$$y_{ijt} = \underbrace{0.067}_{(0.001)} y_{ij0914} + \underbrace{0.024}_{(0.010)} \mathbb{1} \{PP_{jt}, PP_{it}\}$$

$$+ \underbrace{0.021}_{(0.010)} \mathbb{1} \{PP_{jt}, PSOE_{it}\}$$

$$+ \underbrace{0.015}_{(0.011)} \mathbb{1} \{PSOE_{jt}, PP_{it}\}$$

$$+ \underbrace{0.032}_{(0.011)} \mathbb{1} \{PSOE_{jt}, PSOE_{it}\} + FE_{it} + FE_{jt} + \varepsilon_{ijt}.$$

Taking Stock

Facts:

- Obtaining contracts in a municipality is correlated with obtaining contracts in the same municipality in the future, more so if the same party stays in power.
- Firms that obtain regional contracts mostly from one political party are more likely to subsequently obtain contracts from regions governed by that party.

Possible Explanations:

- Heterogeneity across parties in the goods or services they buy.
- Information on firm performance is shared more often within parties.
- Olitical parties arbitrarily grant contracts to certain firms.

Note: The evidence presented is consistent with any of these three explanations.

