Migration, Trade, and Structural Change

Tomás Budí-Ors* Josep Pijoan-Mas[⋄]

*CEMFI

[♦]CEMFI and CEPR

Banco de España - CEMFI 9th Research Workshop

November 2021

Motivation

Economic development shifts relative demand away from agriculture

- Potential asymmetric impact across different regions
- → Industrialization typically begins only in a few regions within a country (Northeast in US; Basque Country, Catalonia in Spain; Guangdong, Jiangsu, Shangai in China)
- Two different things can happen to the initially agrarian regions
 - a) They may catch up and industrialize
 - Agrarian workers move to industry in the same region
 US between 1880 and 1940 (Eckert and Peters, 2018)
 - b) They may fail to industrialize and there is a rural expodus
 - Agrarian workers help industrialization elsewhere
 Spain between 1940 and 2000 (this paper)

Motivation

Economic development shifts relative demand away from agriculture

- Potential asymmetric impact across different regions
 - ightarrow Industrialization typically begins only in a few regions within a country (Northeast in US; Basque Country, Catalonia in Spain; Guangdong, Jiangsu, Shangai in China)
- Two different things can happen to the initially agrarian regions
 - a) They may catch up and industrialize
 - Agrarian workers move to industry in the same region
 US between 1880 and 1940 (Eckert and Peters, 2018)
 - b) They may fail to industrialize and there is a rural expodus
 - Agrarian workers help industrialization elsewhere
 Spain between 1940 and 2000 (this paper)
- → We want to understand the causes and economic consequences of these different patterns of development

What we do

- Look at the recent process of economic development in Spain (1950-2000)
 - 1) Fast economic growth
 - 2) Structural change (reallocation of employment across sectors)
 - 3) Rural exodus (reallocation of employment across space)
 - 4) Industrialization failure in many regions
 - 5) Hump-shaped evolution of spatial inequality (Kuznets-Williamson curve)

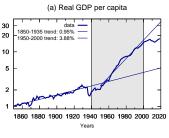
What we do

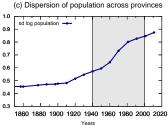
Look at the recent process of economic development in Spain (1950-2000)

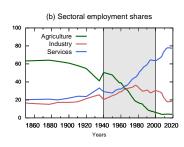
- 1) Fast economic growth
- 2) Structural change (reallocation of employment across sectors)
- 3) Rural exodus (reallocation of employment across space)
- 4) Industrialization failure in many regions
- 5) Hump-shaped evolution of spatial inequality (Kuznets-Williamson curve)
- Model of structural change w/ internal migration and internal trade
 - To account for these facts
 - To understand role of migration and trade costs on
 - a) Speed of aggregate growth and structural change
 - b) Spatial location of population and economic activity
 - To think about heterogeneity of development experiences

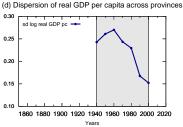
Related Literature

- 1 Structural change and migration frictions
 Caselli, Coleman (2001), Michaels *et al* (2012), Eckert, Peters (2018)
 Ngai, Pissarides (2019), Garriga *et al* (2020)
- Structural change and internal trade frictions Adamopoulos (2011), Herrendorf, Schmitz, Teixeira (2012), Gollin, Rogerson (2014)
- Structural change with both migration and internal trade frictions Tombe, Zhu (2019), Hao et al (2020)
- 4 Structural change and international trade
 Uy, Yi, Zhang (2014), Swiecki (2017), Sposi (2019), Lewis et al (2021)
- Short run local labor market effects of aggregate shocks Artuç, Chaudhuri, McLaren (2010) Caliendo, Parro (2014), Caliendo, Dvorkin, Parro (2019) Morten, Oliveira (2018), Bryan, Morten (2019) Heblich, Redding, Zylberberg (2021)




Data

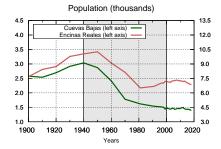

- Sector-province level data (decennial from 1940 to 2000)
 - Employment (Spanish Population Census)
 - Value added at current prices (BBVA Research)
 - Price indices (BBVA Research)
 - \Rightarrow regional price levels from micro data on a common basket of goods in 1930 (Gómez-Tello *et al*, 2019)
 - Productivity as value added at constant prices relative to employment
- Migration flows across provinces (decennial from 1960 to 2000)
 (Spanish Population Census)
- Trade flows across provinces for goods (2000)
 (C-Intereg dataset, Llano et al, 2010)


The Spanish development experience

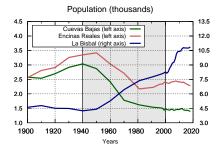
1. Main facts

The Spanish development experience

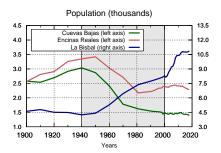
The Spanish development experience

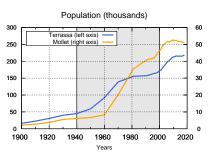

Cuevas Bajas (Málaga)

The Spanish development experience

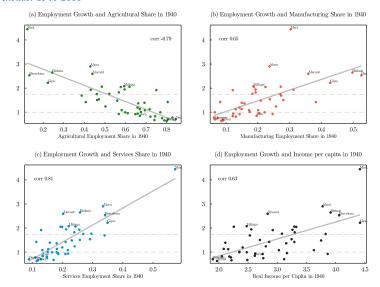


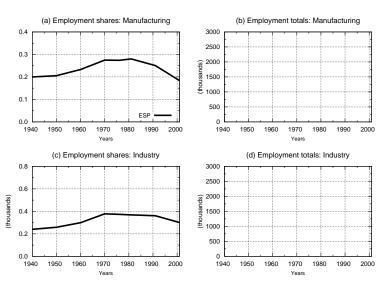
Encinas Reales (Córdoba)


The Spanish development experience

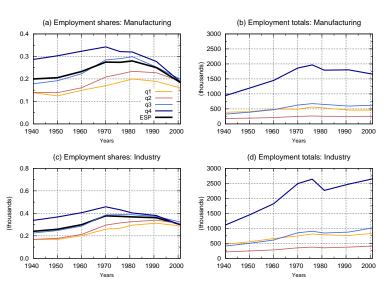


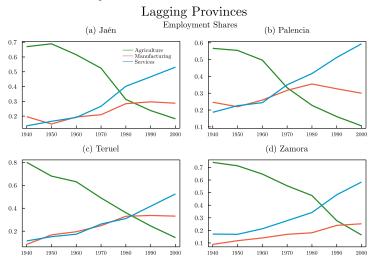
The Spanish development experience

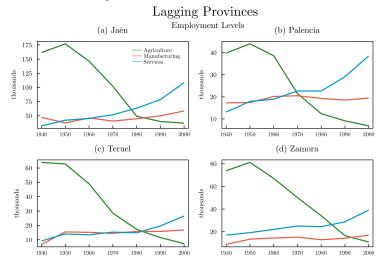

The Spanish development experience

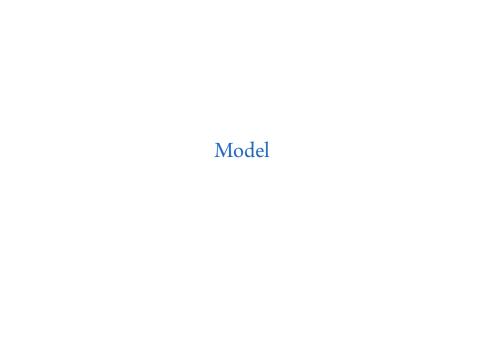


The Spanish development experience


2. Rural exodus: 1940-2000


The Spanish development experience


The Spanish development experience



The Spanish development experience

The Spanish development experience

Environment

- 1 Growth and structural change a la Duarte, Restuccia (2010)
 - Closed economy w/ many regions $r=1,2,\ldots,R$ and 3 sectors j=a,m,s
 - Sector-region specific productivity
 - 1 production factor (labor)
 - Household preferences with non-unitary income and price elasticities
 - \Rightarrow Usual two forces of structural change

Environment

1 Growth and structural change a la Duarte, Restuccia (2010)

- Closed economy w/ many regions $r=1,2,\ldots,R$ and 3 sectors j=a,m,s
- Sector-region specific productivity
- 1 production factor (labor)
- Household preferences with non-unitary income and price elasticities
- ⇒ Usual two forces of structural change
- 2 Migration frictions a la Artuç, Chaudhuri, McLaren (2010)
 - Idiosyncratic taste shocks for locations
 - Route-specific migration costs (across regions, not sectors)
 - ⇒ Migration due to economic and taste reasons

Model

Environment

1 Growth and structural change a la Duarte, Restuccia (2010)

- Closed economy w/ many regions $r = 1, 2, \dots, R$ and 3 sectors j = a, m, s
- Sector-region specific productivity
- 1 production factor (labor)
- Household preferences with non-unitary income and price elasticities
- ⇒ Usual two forces of structural change
- 2 Migration frictions a la Artuç, Chaudhuri, McLaren (2010)
 - Idiosyncratic taste shocks for locations
 - Route-specific migration costs (across regions, not sectors)
 - ⇒ Migration due to economic and taste reasons
- 3 Trade frictions a la Eaton and Kortum (2002)
 - Continuum of tradable varieties within each sector.
 - Variety-specific productivity in each region
 - Route-specific iceberg trade costs
 - ⇒ Regional trade driven by comparative advantage
 - a) Intra-sectoral trade (share of imported sectoral value added)
 - b) Inter-sectoral trade (difference between sectoral expenditure and employment shares)

Equilibrium

 \bullet The economy is a sequence of static equilibria (conditional on population distribution L^0_r across provinces in previous period)

Equilibrium

- The economy is a sequence of static equilibria (conditional on population distribution L^0_r across provinces in previous period)
- ullet Each period: solve for the vector of regional wages w_r ensuring labor market clearing in each location

$$\underbrace{L_r}_{\text{labor supply}} = \underbrace{L_{ra} + L_{rm} + L_{rs}}_{\text{labor demand}} \quad \forall \ r$$

Equilibrium

- The economy is a sequence of static equilibria (conditional on population distribution L^0_r across provinces in previous period)
- ullet Each period: solve for the vector of regional wages w_r ensuring labor market clearing in each location

$$\underbrace{L_r}_{\text{labor supply}} = \underbrace{L_{ra} + L_{rm} + L_{rs}}_{\text{labor demand}} \quad \forall \ r$$

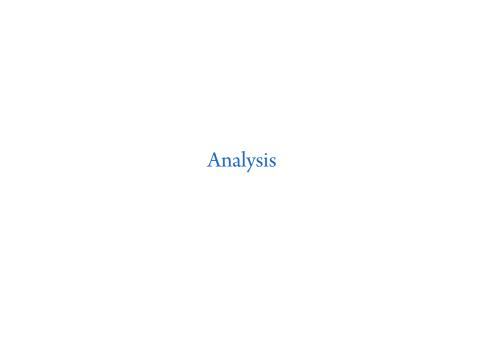
 Labor supply: affected by <u>migration costs</u> and <u>real wage differences</u> across regions (hidden inside migration flows ρ_{ξr})

$$L_r = (1+n) \sum_{\ell=1}^R \rho_{\ell r} L_\ell^0$$

Equilibrium

• The economy is a sequence of static equilibria (conditional on population distribution L^0_r across provinces in previous period)

ullet Each period: solve for the vector of regional wages w_r ensuring labor market clearing in each location


$$\underbrace{L_r}_{\text{labor supply}} = \underbrace{L_{ra} + L_{rm} + L_{rs}}_{\text{labor demand}} \quad \forall \ r$$

 Labor supply: affected by migration costs and real wage differences across regions (hidden inside migration flows ρ_{ℓr})

$$L_r = (1+n)\sum_{\ell=1}^R \frac{\rho_{\ell r}}{\ell} L_\ell^0$$

Labor demand: affected by trade costs and wage and productivity differences
across regions (hidden inside trade flows π_{rēj})

$$\underbrace{w_r L_{rj}}_{P_{r,i}Y_{r,i}} = \sum_{\ell=1}^{R} \frac{\pi_{r\ell j} P_{\ell j} C_{\ell j}}{\nabla r, j} \quad \forall r, j$$

Analysis

- The model has three exogenous drivers of development
 - Changes in migration costs
 - Changes in trade costs
 - Changes in productivity
 - → Each of them has different effects on outcomes
 - → Important interactions

Analysis

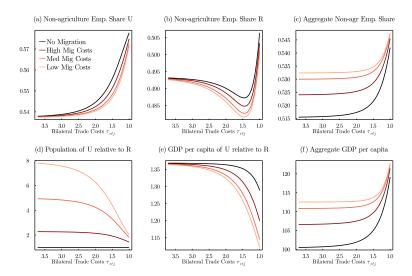
- The model has three exogenous drivers of development
 - Changes in migration costs
 - Changes in trade costs
 - Changes in productivity
 - → Each of them has different effects on outcomes
 - → Important interactions
- We analyse a simpler model
 - <u>Two regions</u> (U and R), <u>two sectors</u> (A and NA)
 - Region U is more productive in both A and NA, but more so in NA (region U is richer and has comparative advantage in NA)
 - Same population in each region, symmetric trade and migration costs
 - Arbitrary parameter values

Analysis

- A decline in migration costs
 - ✓ Promotes a rural exodus
 - Reduces spatial inequality and de-industrializes region U (income effects)

Analysis

- A decline in migration costs
 - ✓ Promotes a rural exodus
 - X Reduces spatial inequality and de-industrializes region U (income effects)
- A decline in trade costs
 - ✓ Can de-industrialize region R (sectoral comparative advantage)
 - X Reduces spatial inequality and stops a rural exodus


Analysis

- A decline in migration costs
 - ✓ Promotes a rural exodus
 - X Reduces spatial inequality and de-industrializes region U (income effects)
- A decline in trade costs
 - ✓ Can de-industrialize region R (sectoral comparative advantage)
 - Reduces spatial inequality and stops a rural exodus
- Productivity increase in U
 - ✓ It generates a rural exodus
 - X But:
 - If symmetric across sectors, it industrializes region R (income effects)
 - If in NA, it de-industrializes whole country (price effects)
 - If in A, it industrializes region R (sectoral comparative advantage)

Analysis

- A decline in migration costs
 - ✓ Promotes a rural exodus
 - X Reduces spatial inequality and de-industrializes region U (income effects)
- A decline in trade costs
 - ✓ Can de-industrialize region R (sectoral comparative advantage)
 - Reduces spatial inequality and stops a rural exodus
- Productivity increase in U
 - ✓ It generates a rural exodus
 - X But:
 - If symmetric across sectors, it industrializes region R (income effects)
 - If in NA, it de-industrializes whole country (price effects)
 - If in A, it industrializes region R (sectoral comparative advantage)
- → No silver bullet to explain all facts

Decline in migration and trade costs

The Spanish Development Episode

Overview

- We want the model to account for the Spanish development episode
 - → Allow for time-changing parameters
 - → Match data every ten years in the period 1940-2000

Overview

- We want the model to account for the Spanish development episode
 - → Allow for time-changing parameters
 - → Match data every ten years in the period 1940-2000
- ullet Large parameter space for R=47 (provinces within the Iberian Peninsula)
 - Preferences (common across time and space)
 - Productivity: the region-sector specific T_{rjt} and the sector specific $heta_j$
 - Trade costs: the route-sector specific iceberg costs $au_{r\ell jt}$
 - Migration costs: route specific costs $mc_{r\ell t}$ and elasticity κ

Overview

We want the model to account for the Spanish development episode

- → Allow for time-changing parameters
- ightarrow Match data every ten years in the period 1940-2000
- ullet Large parameter space for R=47 (provinces within the Iberian Peninsula)
 - Preferences (common across time and space)
 - Productivity: the region-sector specific T_{rjt} and the sector specific $heta_j$
 - Trade costs: the route-sector specific iceberg costs $au_{r\ell jt}$
 - Migration costs: route specific costs $mc_{r\ell t}$ and elasticity κ
- ⇒ Four engines of development
 - \rightarrow Change in productivities T_{rjt}
 - ightarrow Change in trade costs $au_{r\ell jt}$
 - \rightarrow Change in migration costs $mc_{r\ell t}$
 - + Initial spatial distribution of workers (transitional dynamics)

Three Steps

- 1 Preference parameters (details)
 - Estimate them w/ demand system by NLS
 - ightarrow Match aggregate evolution of sectoral employment 1940-2000 (closed economy: expenditure and value added shares equalize)

Three Steps

- 1 Preference parameters (details)
 - Estimate them w/ demand system by NLS
 - ightarrow Match aggregate evolution of sectoral employment 1940-2000 (closed economy: expenditure and value added shares equalize)
- 2 Trade costs $\tau_{r\ell jt}$ and productivity T_{rjt}
 - Estimate them w/ equilibrium conditions by SMM
 - → Match regional evolution of sectoral employment and sectoral productivity

Three Steps

- 1 Preference parameters (details)
 - Estimate them w/ demand system by NLS
 - ightarrow Match aggregate evolution of sectoral employment 1940-2000 (closed economy: expenditure and value added shares equalize)
- 2 Trade costs $\tau_{r\ell jt}$ and productivity T_{rjt}
 - Estimate them w/ equilibrium conditions by SMM
 - ightarrow Match regional evolution of sectoral employment and sectoral productivity
- 3 Migration parameters (details)
 - Migration elasticity κ : structural equation relating regional migration flows with regional value functions
 - Migration costs $mc_{r\ell t}$: estimation residuals
 - → Match (exactly) migration flows across provinces

Second Step

Trade Costs

- Challenge: data on regional trade flows available only for year 2000
 - Cannot invert the model to recover bilateral trade costs from bilateral trade

Second Step

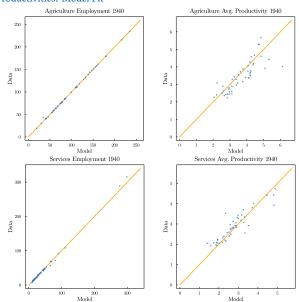
Trade Costs

- <u>Challenge</u>: data on regional trade flows available only for year 2000
 - Cannot invert the model to recover bilateral trade costs from bilateral trade
- Solution: In multi-sector models
 - Inter-sectoral trade (differences in sectoral composition of employment vs expenditure) informative about the magnitude of trade costs

(Insight from Gervais and Jensen, 2019)

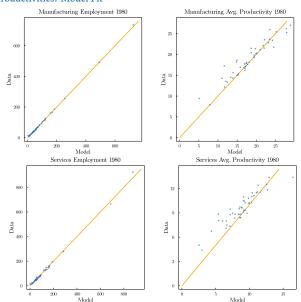
Second Step

Trade Costs


- <u>Challenge</u>: data on regional trade flows available only for year 2000
 - Cannot invert the model to recover bilateral trade costs from bilateral trade
- Solution: In multi-sector models
 - Inter-sectoral trade (differences in sectoral composition of employment vs expenditure) informative about the magnitude of trade costs

```
(Insight from Gervais and Jensen, 2019)
```

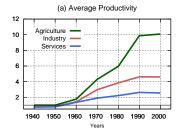
- ullet But full matrix of bilateral trade costs $au_{r\ell jt}$ cannot be recovered
 - Simplify: $\log \tau_{r\ell jt} = (\hat{\tau}_{jt} + \hat{\tau}_{rt} + \hat{\tau}_{\ell t}) d_{r\ell}$
 - Measure $d_{r\ell}$ directly from the data
 - Estimate $\hat{\tau}_{jt}$, $\hat{\tau}_{rt}$, $\hat{\tau}_{\ell t}$ (together with T_{rjt} by SMM)
 - Alternative: enrol trade data for 2000 to estimate $d_{r\ell}$ within the SMM


Second Step

Trade Costs and Productivities: Model Fit

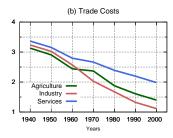
Second Step

Trade Costs and Productivities: Model Fit



Calibration results

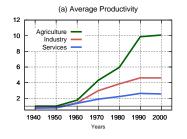
Three Main Patterns


a) Increase in sectoral productivities

- Mostly between 1950 and 1990
- Largest in agric, smallest in services
- Divergence across provinces until 1980, convergence afterwards

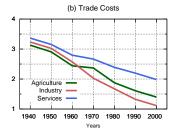
b) Decline in trade costs

- More apparent for agriculture and manufactures, than services
- → Related to large road and transport equipment investment



Calibration results

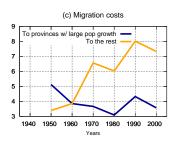
Three Main Patterns


a) Increase in sectoral productivities

- Mostly between 1950 and 1990
- Largest in agric, smallest in services
- Divergence across provinces until 1980, convergence afterwards

b) Decline in trade costs

- More apparent for agriculture and manufactures, than services
- → Related to large road and transport equipment investment


\Rightarrow a) + b) contribute to

- Income growth \rightarrow structural change due to non-unitary income elasticity
- Decline in p_m/p_s and $p_a/p_m \to s$. ch. due to non-unitary price elasticity

Calibration results

Three Main Patterns

- c) Decline in migration costs towards locations w/ most population gains
 - Mostly between 1950 and 1980 (period of largest migrations)
 - But increase everywhere afterwards
 - ightarrow Rural exodus partly fuelled by decline in migration costs (Increase in housing supply in richest provinces)
 - ightarrow Unexploited economic opportunities of migration in the 1980's and beyond (Increase in migration costs due to development of welfare state in the 1980's)

Counterfactual Exercises

Counterfactual Exercises

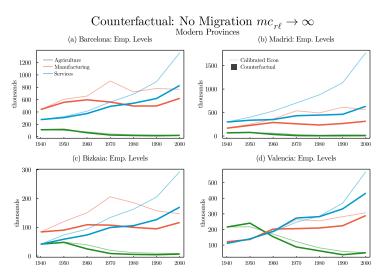
- Engines of development:
 - a) Fix spatial frictions to 1940 level, let productivity change (as estimated)
 - b) Fix productivity to 1940 level, let spatial frictions change (as estimated)
- 2 Role of rural exodus
 - Set migration cost to infinity, let other things change (as estimated)
- Industrial policy to avoid a rural exodus
 - a) How should manufacturing productivity in laggard regions have evolved?
 - b) How should aggregate productivity in laggard regions have evolved?

- $\bullet \ \ {\it Population dynamics} \ L^{1940}_r \\$
 - People move away from poor and agrarian areas: rural exodus
 - Small action in GDP growth (3% increase) and structural change
 - Reduce spatial income inequality

- Population dynamics L_r^{1940}
 - People move away from poor and agrarian areas: rural exodus
 - Small action in GDP growth (3% increase) and structural change
 - Reduce spatial income inequality
- Productivity growth T_{rjt} (asymmetric between sectors and regions)
 - Most of GDP growth
 - Big chunk of structural change (through standard income and price effects)
 - Some but small rural exodus
 - Engine of hump-shaped curve of spatial inequality

- ullet Population dynamics L_r^{1940}
 - People move away from poor and agrarian areas: rural exodus
 - Small action in GDP growth (3% increase) and structural change
 - Reduce spatial income inequality
- Productivity growth T_{rjt} (asymmetric between sectors and regions)
 - Most of GDP growth
 - Big chunk of structural change (through standard income and price effects)
 - Some but small rural exodus
 - Engine of hump-shaped curve of spatial inequality
- ullet Change in spatial frictions $(au_{r\ell jt}$ and $mc_{r\ell t})$
 - Sizeable GDP growth (20%)
 - Sizeable structural change (△ services: 6%, ▽ agriculture: 6%)
 - Large effect on rural exodus

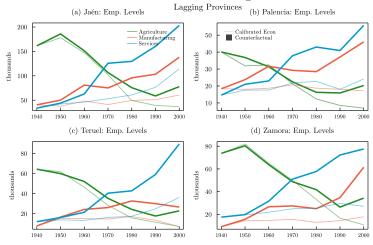
- Importance of interactions
 - 1) Engine of de-industrialization
 - $\triangle T_{rjt}$, $\nabla \tau_{r\ell jt}$, $\nabla mc_{r\ell t}$ alone do not generate de-industrialization
 - → <u>Premature de-industrialization</u> with lower spatial frictions
 - 2) 11% reduction in GDP
 - $\triangle T_{rjt}$, $\nabla \tau_{r\ell jt}$ alone overpredict $\triangle GDPpc$
 - 3) Help produce larger migrations, but in a direction against rural exodus
 - $\triangle T_{rjt}$, $\nabla mc_{r\ell t}$ alone overpredict rural exodus
 - 4) Diminish both intra-sectoral and inter-sectoral trade
 - $\nabla \tau_{r\ell it}$ increases trade
 - $\triangle T_{rjt}$ diminishes trade 1940-2000
 - Interaction further decreases trade


2. Role of rural exodus

Without any population movement since 1940:

- 1) Spain in 2000 would have been a slightly poorer and more agrarian country (8% poorer, 50% more employment in agriculture)
- 2) All provinces would have industrialized
 - → Industrial provinces would have lacked cheap labor to lever up their advantage
 - ightarrow Agrarian provinces would have needed to produce their own manufactures
- 4) No de-industrialization at country level
 - Leading provinces cannot lever up industrial comparative advantage
 - Lower increase in industrial productivity at the aggregate
 - → Slower industrialization
- More spatial inequality over the first half of development
 - → Migration from poor to rich provinces equalizes wages across space

2. Role of rural exodus

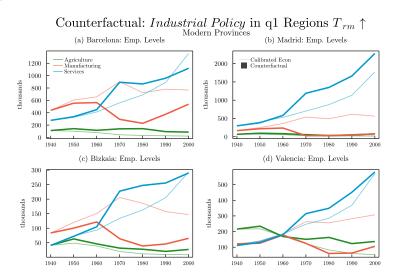

Leading provinces

2. Role of rural exodus

Lagging provinces

Counterfactual: No Migration

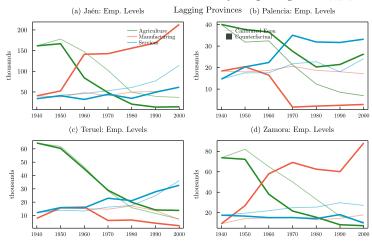
3. Industrial Policy

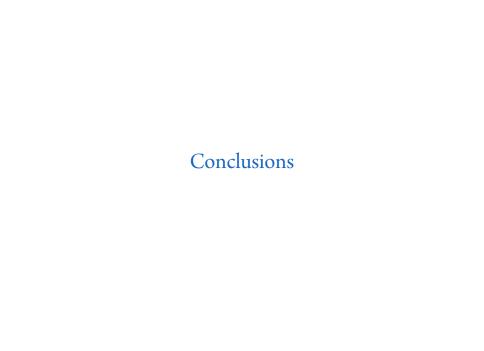

• Which path of productivity growth could have avoided the rural exodus?

- a) Industrial policy ightarrow A productivity increase in manufacturing in q1
 - Could have avoided the rural exodus in 1950 and 1960
 - But not in 1970+
 - ⇒ It induces structural change away from manufacturing
- b) All sectors \rightarrow A productivity increase in all sectors in q1
 - Small productivity increases would have stopped migration in 1950 and 1960
 - But required productivity increase in 1970+ was huge
 - ⇒ Gains from trade spread productivity gains across all provinces

Decade	Annual productiv Industrial Policy	rity increase (%) All Sectors		
1940's	2.8	0.6		
1950's	9.4	3.8		
1960's	18.9	18.0		
1970's	18.5	10.7		
1980's	18.0	8.6		
1990's	17.1	12.4		

3. Industrial Policy

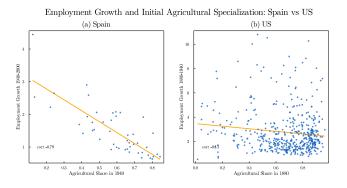

Leading provinces



3. Industrial Policy

Lagging provinces

Counterfactual: Industrial Policy in q1 Regions $T_{rm} \uparrow$

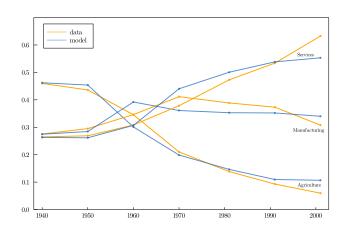

Conclusions

Concluding remarks

- Macroeconomic development shifts demand away from agriculture
 - → A challenge for regions specialized in agriculture
- In Spain
 - More agrarian (and poorer) regions failed to industrialize
 - Farmers in those regions migrated and helped industrialization elsewhere
- Model of structural change w/ internal trade and internal migration costs
 - Calibrated to Spanish development episode (1940-2000 for 47 provinces)
- We find
 - Large role of productivity growth and decline in trade costs for GDP growth and structural change
 - Large role of migration costs for industrial failure in laggard regions
 - Important interactions between productivity gains and changes in spatial $frictions \rightarrow hump-shaped industrialization$
 - Promoting industry in laggard regions could not have prevented rural exodus

Is rural exodus a necessary condition of development?

Not present in the US according to Eckert, Peters (2018)


Source: right panel quoted from Eckert, Peters (2018)

First Step

Preferences: Parameters and Model Fit

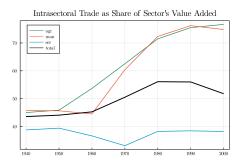
ω_a	ω_m	ω_s	ν	\bar{c}_a	\bar{c}_m	\bar{c}_s	$\frac{\sum_{r} P_{ra_{40}} \bar{c}_{a}}{V A_{40} / L_{r_{40}}}$	$rac{\sum_{r} P_{rm_{40}} ar{c}_{m}}{V A_{40} / L_{r_{40}}}$	$\frac{\sum_{T} P_{TS40} \bar{c}_{S}}{V A_{40} / L_{T40}}$
0.16	0.50	0.35	1.0e-6	-0.0007	0.0022	0.0014	-0.188	0.667	0.465

Third Step

Migration Costs

Start from the structural equation

$$\rho_{r\ell t} = \frac{\exp\left\{\frac{1}{\kappa} \left(\mathcal{V}(w_{\ell t}, P_{\ell a t}, P_{\ell m t}, P_{\ell s t}) - m c_{r\ell t} \right) \right\}}{\sum_{k}^{R} \exp\left\{\frac{1}{\kappa} \left(\mathcal{V}(w_{k t}, P_{k a t}, P_{k m t}, P_{k s t}) - m c_{rk t} \right) \right\}} \quad \forall r, \ell, t$$


Obtain:

$$\log \rho_{r\ell t} - \log \rho_{rrt} = \frac{1}{\kappa} \left(\mathcal{V}(w_{\ell t}, P_{\ell at}, P_{\ell mt}, P_{\ell st}) - \mathcal{V}(w_{rt}, P_{rat}, P_{rmt}, P_{rst}) \right) - \frac{mc_{r\ell t}}{\kappa}$$

- Use this equation to
 - Estimate κ by OLS $\rightarrow \kappa = 0.153$ ($\Delta w_\ell/p_\ell = 50\% \Rightarrow \rho_{r\ell t}$ increases from 10% to 16.5%)
 - Recover migration costs from regression residuals
- ⇒ We match the migration flows exactly

Implied Trade Volumes

- Intra-sectoral trade $\left(\sum_{r}\left(1-\pi_{rrjt}\right)P_{rjt}C_{rjt}\right)$
 - Increases between 1950 and 1990 (but not for services)
- Inter-sectoral trade $\left(\sum_{r} \frac{1}{2} |P_{rjt}C_{rjt} P_{rjt}Y_{rjt}|\right)$
 - Agr: large increase (increasing concentration of agriculture production)
 - Man and Ser: starts to decline in 1970
 (as provinces start to converge in production structure)

	Benchmark	Pop. dynamics	T_{rj}	$ au_{r\ell j}$	$mc_{r\ell}$	Interaction
GDP pc	5.30	1.03	4.78	1.14	1.06	0.89
Agr share	-45.3	-0.9	-39.4	-6.3	-0.1	1.4
Man share	6.5	-0.2	15.0	0.3	0.5	-9.1
40-70	14.1	-0.2	12.1	-1.8	0.4	3.6
70-00	-7.6	-0.0	2.9	2.1	0.1	-12.7
Ser share $\operatorname{Sd}(\operatorname{log}\ \operatorname{emp})$ $\hat{eta}_{\Delta\operatorname{emp}}$ - Agrsh40	38.8	1.1	24.4	6.0	-0.4	7.7
	0.40	0.16	0.06	0.00	0.11	0.08
	-2.26	-0.15	-1.03	-0.13	-1.56	0.61
Sd(log inc): 40-60	0.10	0.00	0.14	-0.02	-0.01	-0.01
Sd(log inc): 60-00	-0.11	0.00	-0.13	0.02	-0.02	0.02
Intra-sectoral trade	8.2	2.4	-4.4	16.6	1.8	-8.2
Inter-sectoral trade	-6.5	2.8	-4.8	6.5	0.5	-11.5

