Does a Currency Union Need a Capital Market Union? Risk Sharing via Banks and Markets

Joseba Martinez, Thomas Philippon and Markus Sihvonen

LBS NYU Stern, NBER, CEPR Bank of Finland

September 2019

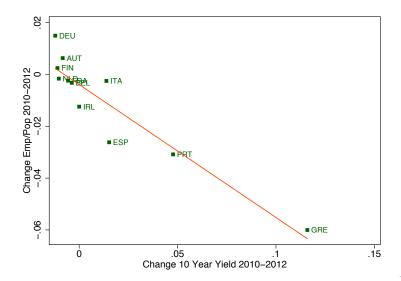
Risk Sharing and Currency Unions

- Members of a currency union forfeit the possibility of exchange rate adjustments
- Adapting to asymmetric shocks more difficult
- What institutions do we need to compensate?
- The old OCA literature recognized the importance of a risk sharing mechanism
- But these models are not microfounded
- Hard to map into current policy debates about banking and capital market union

Case Eurozone

- Little risk sharing compared to that between US states
- Demonstrated saliently during the eurozone crisis
- Largest difference is the role of capital markets (Astrubali et al. 96, Afonso & Furceri 12)
- Eurozone obtains some risk sharing through the credit market
- But market segmentation hampers this risk sharing in crisis periods (Martin & Philippon 17)
- Spread differences and sudden stops

Market Segmentation in the Eurozone Crisis



Research Question

- How much can a banking union (BU) improve risk sharing?
- What does a capital market union (CMU) add to a BU?
- How big are the welfare gains?

Banking Union: A Definition

- An ideal banking union is an arrangement that equalizes the basic funding rate (risk-free rate) in each country
- Focus on the macroeconomics of BU
- How big are the potential welfare gains?

Capital Market Union: A Definition

- An ideal capital market union is an arrangement with a (ideal)
 BU + optimal cross-border holdings of capital
- Again focus on the macroeconomics of CMU
- Only one type of capital (equity), abstract away from security details

This Paper

Table: Summary of Results

	Definition	Demand Shocks	Supply Shocks
Segmented	$R_{j,t} eq ar{R}_t$	< BU	< BU
BU	$R_{j,t} = ar{R}_t$	= COMP	< CMU
CMU	Equity	= COMP	= COMP
Complete	Backus-Smith	Agg. D.	Pecuniary
Pareto	Planner	See Farhi and Werning 2017.	

Model

• Two types of households i = b, s, borrower and saver, $\beta_b < \beta_s$, fraction χ of borrowers

$$\mathbb{E}_{t} \sum_{t=0}^{\infty} \beta_{i}^{t} \left[\log C_{i,t} - \nu \left(N_{i,t} \right) \right], \text{ for } i = b, s$$

$$\log C_{i,t} = (1 - \alpha) \log \left(\frac{C_{h,i,t}}{1 - \alpha} \right) + \alpha \log \left(\frac{C_{f,i,t}}{\alpha} \right)$$

Borrowers

$$\frac{B_{t+1}}{R_t} + W_t N_t - T_t^b = P_t C_{b,t} + B_t$$

and

$$B_{t+1} \leq \bar{B}_{t+1}$$

Consider both small open economy and two country model

Model: Supply Side

Intermediate Producers

$$\Pi_t = (AP_{h,t} - W_t) N_t = (\mu - 1) W_t N_t.$$

Final Good Producer

$$Y_t = \left(\int_0^1 Y_{j,t}^{\frac{\epsilon-1}{\epsilon}} dj\right)^{\frac{\epsilon}{\epsilon-1}}$$

Sticky wages

$$W_t = W_{t-1} \left(1 + \kappa \left(N_t - N_{ss} \right) \right)$$

Model: Monetary and Fiscal Policy

Taylor rule

$$\bar{R}_t = R_{ss} \left(\left(\frac{Y_t}{Y_{ss}} \right) \left(\frac{Y_t^*}{Y_{ss}^*} \right) \right)^{\phi_Y} \left(\left(\frac{\pi_t}{\pi_{ss}} \right) \left(\frac{\pi_t^*}{\pi_{ss}^*} \right) \right)^{\phi_{\pi}}$$

- Fixed exchange rate constraints monetary policy
- Also consider a ZLB constraint
- Monetary policy rule matters only quantitatively
- Government budget constraint

$$\frac{B_{t+1}^{g}}{R_{t}} = P_{h,t}G_{t} - T_{t} + B_{t}^{g},$$

- Consider various simple taxation rules like flat tax rate
- Obtaining risk sharing through fiscal transfers between countries possible
- Not the focus of this paper

Model: Savers' Budget Constraints

Savers under BU

$$W_t N_t - T_t^s + S_t + \frac{\Pi_t}{1 - \chi} = \frac{S_{t+1}}{R_t} + P_t C_{s,t}$$

Savers under CMU

...
$$S_t + \varphi_t \left(V_t + \frac{\Pi_t}{1 - \chi} \right) + (1 - \varphi_t^*) \left(V_t + \frac{\Pi_t}{1 - \chi} \right)$$

= $\varphi_{t+1} V_t + (1 - \varphi_{t+1}^*) V_t^* + \frac{S_{t+1}}{R_t}$...

Savers under complete markets

.. +
$$\int_{s_{t+1}} Q_t (s_{t+1}, s^t) D_{t+1} (s_{t+1}, s^t) = D_t (s^t) + ...$$

Complete Markets

Backus-Smith condition with log preferences

$$\frac{C_{s,t}^*}{C_{s,t}} \sim \frac{P_t}{P_t^*}$$

or

$$P_t^* C_{s,t}^* \sim P_t C_{s,t}$$

• Note: complete markets only within savers

Efficiency of Banking Union

• **Proposition 1**: For a small open economy subject to private and public leveraging and deleveraging shocks $(\bar{B}_{t+1}, \beta_{b,t}, G_t, T_t)$, the Banking Union achieves the Complete Markets allocation.

Why?

- **Lemma.** Spending by savers does not react to private credit shocks $(\bar{B}_{t+1}, \beta_{b,t})$ or to fiscal policy (neither G_t nor T_t), but only to interest rate and foreign demand shocks.
 - Proof

$$\begin{aligned} \max \mathbb{E}_t \sum_{t \geq 0} \beta^t \log \left(P_t C_{s,t} \right) \\ P_t C_{s,t} + \frac{S_{t+1}}{R_t} &= S_t + \tilde{Y}_t^s \end{aligned}$$

Inter-temporal budget constraint of the savers

$$\mathbb{E}_t \sum_{k=0}^{\infty} \frac{P_{t+k} C_{s,t+k}}{R_{t,k}} = S_t + \mathbb{E}_t \sum_{k=0}^{\infty} \frac{\tilde{Y}_{t+k}^s}{R_{t,k}}$$

Inter-temporal Current Account of the Country

$$\alpha \mathbb{E}_{t} \sum_{k=0}^{\infty} \frac{\tilde{Y}_{t+k}}{R_{t,k}} = (1-\alpha) \left((1-\chi) S_{t} - \chi B_{t} \right) - B_{t}^{g} + \mathbb{E}_{t} \sum_{k=0}^{\infty} \frac{F_{t+k}}{R_{t,k}}.$$

Why $P_tC_{s,t}$ is constant?

- Direct effect of deleveraging: debt repayments
- Clearly does not change PV of income
- Indirect effect: deleveraging creates a bust and initially lowers savers' income
- But lower debt level increases borrowers' future demand which then increases savers' income
- · Surprising: these two forces exactly offset each other

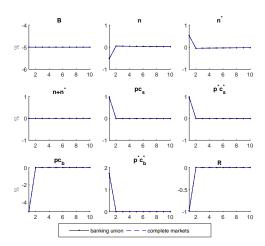
Why $P_t C_{s,t}$ is constant?

Need

$$\mathbb{E}_t \sum_{k=0}^{\infty} \frac{\tilde{Y}_{t+k}^s}{R_{t,k}} \sim \mathbb{E}_t \sum_{k=0}^{\infty} \frac{\tilde{Y}_{t+k}}{R_{t,k}}$$

- As in e.g. Cole & Obstfeld 91, requires a unit elasticity of substitution
- Otherwise e.g. foreign expenditures would change
- Small open economy assumption required but not important quantitatively
- Some similarities with Ricardian equivalence

Private Domestic Deleveraging Shock

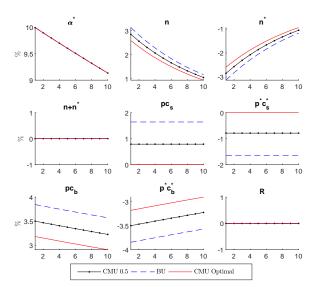


Efficiency of Capital Market Union

- **Proposition 2**: Using static equity positions and no-cross country borrowing, it is possible to replicate the complete market allocation in a capital market union subject to quality (α_t, α_t^*) , TFP (A_t, A_t^*) , monetary policy $(\phi_{\pi,t}, \phi_{\pi,t}^*, \phi_{Y,t}, \phi_{Y,t}^*)$ and various preferences shocks.
- Optimal home stock position

$$\varphi = \frac{1}{2} - \frac{1}{2} \frac{1-\chi}{\mu-1}$$

Quality Shock



Efficiency of Capital Market Union

• **Proposition 3**: When each country is small, using static equity positions and dynamic cross-country borrowing it is possible to replicate the complete markets allocation in a capital market union subject to (idiosyncratic) deleveraging as well as arbitrary foreign quality, productivity, monetary policy, and various preference shocks.

A Numerical Model

- Baseline model does not include capital
- Intermediate producers production function

$$Y_{j,t} = A_t N_{j,t}^{1-\eta} K_{j,t}^{\eta}$$

- Firms choose prices and investment level
- Their problem is

$$\max \mathbb{E}_t \sum_{s=0}^{\infty} m_{t,t+s} d_{j,t+s}$$

A Numerical Model

• The dividend is given by

$$d_{j,t} = P_{j,t}Y_{j,t} - W_tN_{j,t} - P_tI_{j,t} - P_tf(I_{j,t})$$

Firm j's capital evolves according to:

$$K_{j,t+1} = (1 - \delta)K_{j,t} + I_{j,t}$$

• The adjustment cost is given by

$$f(I_{j,t}) = \frac{\theta}{2} \left(\frac{I_{t,j}}{I_{t-1,j}} - 1 \right)^2$$

Solve optimal portfolios numerically

A Numerical Model

- Adding capital does not directly change the results
- But adding investment reduces $Corr(d_{t,}, I_{t})$
- Firms invest in good times which lowers dividends
- Slightly reduces the benefit of a CMU relative to a model without capital

Calibration

- Most parameters take standard values
- Match spreads and deleveraging shocks to data from eurozone
- Banks not explicitly in the model
- But can write down a banking model that implies the processes used
- When spreads go up, leverage goes down
- Use Bayesian methods to estimate quality and productivity shocks

Welfare analysis

- Calculate welfare for SM \Rightarrow BU and BU \Rightarrow CMU
- Calculations not directly comparable
- Benefits of BU come during a crisis period

Benefits of BU

Consumption Volatility	Segmented Markets	Banking Union
Savers	7.5%	2.7%
Borrowers	6.3%	3.7%
Aggregate	7.0%	2.9%

Benefits of CMU

Consumption Volatility	Banking Union	Capital Market Union
Savers	1.5%	0.9%
Borrowers	3.5%	3.0%
Aggregate	2.0%	0.85%

Positive Externalities of CMU

	Uninternalized	Share of Total
	Volatility Reduction	Volatility Reduction
Savers	0.06%	10%
Borrowers	0.5%	100%

Conclusion

- BU efficient at sharing demand shocks (esp. deleveraging)
- CMU efficient at sharing supply shocks
- Both can clearly lower consumption volatility
- A lot of the gains of CMU due to GE effects