Mobility within Currency Unions

Emmanuel Farhi, Harvard Iván Werning, MIT

Mobility and Adjustment

- Regions in a currency union suffer shocks
 - US states
 - Eurozone countries

- Q: Mobility helps macroeconomic adjustment?
- A: Mundell (61), OCA literature: YES!

Mundell and OCA

 Broader question of macroeconomic stabilization of a currency union with nominal rigidities

- Optimal Currency Areas (OCA):
 - mobility (Mundell 61)
 - openness (McKinnon 63)
 - fiscal integration (Kennen 69)

wage rigidities

Meade (57)

This Paper

Formal model with nominal rigidities

revisit Mundell's positive results

provide normative benchmark

This Paper

- Migration out of depressed regions
 - movers improve...
 - ... but regions? macroeconomic stabilization?
- Effect on stayers?
- Too much or too little migration? Where?

- Key insight: workers take not only their labor, but also their demand
- Key dimension: internal vs. external imbalances

Related Literature

• OCA: Mundell, McKinnon

• Currency Unions: Farhi-Werning

• <u>Island models</u>: Lucas-Prescott, Alvarez-Veracierto, Shimer, Alvarez-Shimer, ...

• Trade models: Dornbusch, Fischer, Samuelson

Mobility Gains: Kennan

The Model

Price or Wage Rigidity?

- Wage rigidity prime suspect
- Are wages rigid?
- Bewley...
 - firms don't cut wages
 - wouldn't help anyway!
 - sales...

- Price rigidity? Real rigidities? Interactions?
- In our models: wage and price rigidity similar!

Outline

Model 1: Internal Demand Imbalances

Model 2: External Demand Imbalances

Model 1

- Regions $i \in I$
- Agent types $j \in J$
- Homogenous traded good
 - competitive
 - endowment
 - flexible price
- Non-traded goods
 - monopolistically competitive
 - produced from local labor
 - rigid price

Model 1

- One period model
 - Price fixed
 - Ex post asymmetric shocks
 - preferences
 - technology
 - endowments (wealth)

- Either
 - Unanticipated shocks
 - Anticipated but prices set before realization

Agents

- Agents types j
 - total mass μ^j
 - lacksquare mass $\mu^{i,j}$ in region i

$$\left(\mu^j = \sum_{i \in I} \mu^{i,j}\right)$$

$$U^{i,j} = \max_{C_T^{i,j}, C_{NT}^{i,j}, N^{i,j}} U^{i,j}(C_T^{i,j}, C_{NT}^{i,j}, N^{i,j})$$

$$P_T C_T^{i,j} + P_{NT,i} C_{NT}^{i,j} \le W_i N^{i,j} + E_T^j + T_i + \sum_{k \in I} \pi^{j,k} \Pi_k$$

Agents

• Rich location preference and mobility costs embedded in utility $U^{i,j}$

Example

 $I = \{ Spain, Germany \}$

previous residence...

 $J = \{Spaniard, German\}$

... plus mobility costs...

 $J = \{$ Mobile Spaniard, Immobile Spaniard, Mobile German, Immobile German $\}$

Firms

Final non-traded good produced competitively

$$Y_{NT,i} = \left(\int_0^1 Y_{NT,i,l}^{1-\frac{1}{\varepsilon}} dl\right)^{\frac{1}{1-\frac{1}{\varepsilon}}}$$

- Each variety
 - produced monopolistically
 - technology $Y_{NT,i,l} = A_i N_{i,l}$
 - fixed price $P_{NT,i,l} = P_{NT,i}$
- Symmetry...

$$Y_{NT,i,l} = Y_{NT,i} = A_i N_i$$

$$\Pi_{i} = (1 - \tau_{\pi,i}) \left(P_{NT,i} - \frac{1 + \tau_{L,i}}{A_{i}} W_{i} \right) Y_{NT,i}$$

Government

Regional budget balance

$$\sum_{j \in J} \mu^{i,j} T_i = \tau_{L,i} W_i N_i + \tau_{\pi,i} \left(P_{NT,i} - \frac{1 + \tau_{L,i}}{A_i} W_i \right) Y_{NT,i}$$

- Alternative
 - transfers across regions
 - fiscal unions (Farhi-Werning 2012)

Equilibrium Without Free Mobility

- Households optimize
- Firms meet demand
- Government budget constraints hold
- Markets clear

Equilibrium With Free Mobility

- Households optimize
- Firms meet demand
- Government budget constraints hold
- Markets clear

Agents locate optimally

$$\mu^{i,j} = 0$$
 if $U^{i,j} < \max_{i' \in I} U^{i',j}$

Additional Assumptions

• Profits fully taxed $\tau_{\pi,i} = 1$

$$T_i = \frac{P_{NT,i}Y_{NT,i} - W_iN_i}{\mu_i}$$

- Preferences over consumption and labor
 - region specific, not agent specific
 - separable between consumption and leisure
 - homothetic over consumption

$$U^{i,j} = f^{i,j} \left(\hat{U}^i(\tilde{u}^i(C_T^{i,j}, C_{NT}^{i,j}), N^{i,j}) \right)$$

Equilibrium

• Per capita allocation...

$$C_T^{i,j} = E_T$$

$$C_{NT}^{i,j} = \alpha^i(p_i)E_T$$

$$N^{i,j} = \alpha^i(p_i)\frac{E_T}{A_i}$$

Labor wedge

$$au_i = 1 + rac{1}{A_i} rac{U_N^{i,j}}{U_{C_{NT}}^{i,j}}$$
 Boom $au_i < 0$

Bust $au_i = 0$

Equilibrium

Proposition (Per-capita allocations). Given P_T , per-capita allocation of agents of type j in region i is independent of location decisions.

- Movers out of depressed region
 - better off...
 - ... aggregate economic activity in currency union increases...
 - ... partial vindication of Mundell (1961)...
 - ... qualification: no impact on stayers
- Intuition: move with your demand

Social Optimum

Indirect utility function

$$V^{i,j}(C_T^{i,j}, p_i) = U^{i,j} \left(C_T^{i,j}, \alpha^i(p_i) C_T^{i,j}, \frac{\alpha^i(p)}{A_i} C_T \right)$$

• Restricted social planning problem given P_T

$$W(P_T) = \max_{\mu^{i,j}} \sum_{i \in I, j \in J} \lambda^j \mu^{i,j} V^{i,j} \left(E_T, \frac{P_T}{P_{NT,i}} \right)$$

$$\sum_{i \in I} \mu^{i,j} = \mu^j \quad \text{constrained efficient given monetary policy}$$

• Full social planning problem

$$\max_{P_T} W(P_T)$$
 constrained-efficient

Optimal Mobility

Proposition (Optimal mobility).

Constrained efficient allocation given monetary policy P_T are consistent with free mobility.

- Intuition
 - no spillovers from mobility decisions
 - no need for government intervention

Optimal Monetary Policy

Proposition (Optimal monetary policy). Constrained-efficient allocations satisfy

$$\sum_{i \in I, j \in J} \lambda^j \mu^{i,j} \alpha_p^i E_T U_{C_T}^{i,j} \ \tau_i = 0$$

- Monetary policy
 - stabilizes currency union on average
 - both depressed and booming regions

Sticky Wages

- Sticky wages instead of sticky prices
 - Take W_i as given (fixed)
 - Either
 - rationing: equal sharing of labor within region
 - monopolistic suppliers
- All results go through unchanged!

Model 2

- Each region produces different traded good
 - all goods tradable...
 - ... but allow home bias

- Each traded good
 - produced from local labor
 - rigid price

Agents

 \bullet Problem of agent of type j living in region i

$$U^{i,j} = \max_{C_k^{i,j}, N^{i,j}} U^{i,j}(\{C_k^{i,j}\}, N^{i,j})$$

$$\sum_{k \in I} P_k C_k^{i,j} + \leq W_i N^{i,j} + T_i + \sum_{k \in I} \pi^{j,k} \Pi_k$$

Rest of Model

- Key differences
 - structure of demand
 - no endowment good
- Rest, same as before...
 - firms
 - government
 - equilibrium
 - additional assumptions: profit tax,
 preferences

Equilibrium

Income in country i

$$P_iY_i$$

Country i spending on k

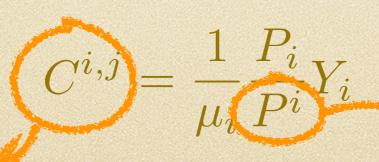
$$\alpha_k^i P_i Y_i$$

• ... total income for k

$$\sum_{i \in I} \alpha_k^i P_i Y_i = P_k Y_k$$

$$N^{i,j} = \frac{1}{\mu_i} \frac{Y_i}{A_i}$$

$$C_k^{i,j} = \frac{1}{\mu_i} \alpha_k^i \frac{P_i}{P_k} Y_i$$



price index

consumption index

Structure of Demand

Proposition (Structure of demand).

Exists
$$\{Y_i^*\}$$
 such that
$$Y_i = \lambda Y_i^*$$

- λ positive constant
 - union-wide aggregate demand
 - pinned down by monetary policy

Equilibrium

Proposition (Per-capita allocations).

Given λ per-capita consumption and labor allocation of agents of type j in region i depends on the equilibrium only through the sufficient statistic μ_i , to which it is inversely proportional.

- As before...
 - movers better off
- Now...
 - stayers also improve!
- Simplest case: no home bias

Social Optimum

 \bullet Restricted social planning problem given λ

$$W(\lambda) = \max_{\mu_i, \mu^{i,j}} \sum_{i \in I, j \in J} \lambda^j \mu^{i,j} U^{i,j} \left(\lambda \frac{P_i}{P^i} \frac{Y_i^*}{\mu_i}, \lambda \frac{Y_i^*}{A_i \mu_i} \right)$$

$$\sum_{i \in I} \mu^{i,j} = \mu^j$$

$$\sum_{i=1}^{n} \mu^{i,j} = \mu_i$$

• Full social planning problem

$$\max_{\lambda} W(\lambda)$$

constrained-efficient

constrained efficient given

aggregate demand management

Optimal Mobility

Proposition (Optimal mobility).

Constrained efficient allocation given union-wide aggregate demand management λ are inconsistent with free mobility.

Optimality condition for mobility

$$\mu^{i,j} = 0 \quad \text{if} \quad U^{i,j} - \frac{\gamma_i}{\lambda^j} < \max_{i' \in I} U^{i',j} - \frac{\gamma_{i'}}{\lambda^j}$$

$$\gamma_i = \gamma + \sum_{j \in J} \lambda^j \frac{\mu^{i,j}}{\mu_i} \lambda \frac{P_i}{P^i} \frac{Y_i^*}{\mu_i} U_C^{i,j} \tau_i$$

Inconsistent with free mobility

$$\mu^{i,j} = 0$$
 if $U^{i,j} < \max_{i' \in I} U^{i',j}$

Optimal Mobility

- Impact on stayers' welfare
- Labor wedge is sufficient statistic au_i
- Not internalized by private agents
- Government intervention required
 - not enough migrations out of depressed regions
 - potentially wrong destinations too

Optimal Monetary Policy

Proposition (Optimal monetary policy). Constrained-efficient allocations satisfy

$$\sum_{i \in I, j \in J} \lambda^{j} \mu^{i,j} \frac{P_{i}}{P^{i}} \frac{Y_{i}^{*}}{\mu_{i}} U_{C}^{i,j} \tau_{i} = 0$$

 Union-wide aggregate demand management stabilizes currency union on average

Sticky Wages

• Once again, here...

Sticky price = Sticky wage

Looking ahead

- Model 3...
 - endowment and home bias
 - nests model 1 and 2
- Other extensions...
 - heterogeneity: negative spillover on stayers?
 - fixed factors: capital
 - price/wage adjustments
 - dynamics
 - other rationing rules?

Conclusion

- Model
 - costly mobility
 - price/wage rigidities
- Key insight
 - movers take demand for goods, not just labor supply
 - possible inefficiencies
- Key dimension
 - structure of demand

Appendix Slides

Firms

Final non-traded good produced competitively

$$Y_i = \left(\int_0^1 Y_{i,l}^{1-\frac{1}{\varepsilon}} dl\right)^{\frac{1}{1-\frac{1}{\varepsilon}}}$$

- Each variety
 - produced monopolistically
 - technology $Y_{i,l} = A_i N_{i,l}$
 - fixed price $P_{i,l} = P_i$
- Implies
 - output $Y_{i,l} = Y_i = A_i N_i$
 - total profits

$$\Pi_i = (1 - \tau_{\pi,i}) \left(P_i - \frac{1 + \tau_{L,i}}{A_i} W_i \right) Y_i$$

Government

Each region must balance its budget

$$\sum_{j \in J} \mu^{i,j} T_i = \tau_{L,i} W_i N_i + \tau_{\pi,i} \left(P_i - \frac{1 + \tau_{L,i}}{A_i} W_i \right) Y_i$$

Equilibrium

• As in model 1...

- Two notions of equilibrium:
 - equilibrium without free mobility
 - equilibrium with free mobility

Additional Assumptions

• Profits fully taxed $\tau_{\pi,i} = 1$ and redistributed to local agents

$$T_i = \frac{P_i Y_i - W_i N_i}{\mu_i}$$

- Preferences of different agent types in a given region represent the same preference ordering
 - separable between consumption and leisure
 - homothetic over consumption