Uncertainty and Economic Activity: A Multi-Country Perspective

A. Cesa-Bianchi¹ M.H. Pesaran² A. Rebucci³

 $^{\rm 1}$ Bank of England $^{\rm 2}$ University of Southern California and Trinity College, Cambridge $^{\rm 3}$ Johns Hopkins University Carey Business School, CEPR and NBER

2nd Annual CEBRA Intl. Finance and Macroeconomics Meeting November 29-30, 2018

*The views expressed in this paper do not necessarily reflect the position of the Bank of England.

Strong and robust association between measures of uncertainty and economic activity

- ▶ Data for 32 countries, covering about 90 percent of world GDP
 - * Uncertainty proxy: Quarterly realized equity market volatility computed from daily returns.
 - Economic activity proxy: Quarterly real GDP growth.

But difficult to interpret

- ▶ Theory is ambiguous about the direction of causation.
 - Uncertainty dampens activity (precautionary savings, irreversible investments, financial frictions,...).
 - * Recessions can also increase uncertainty (financial and information frictions).
- Question of whether uncertainty causes GDP to contract (and by how much) is important for policy makers.

But difficult to interpret

- ▶ Theory is ambiguous about the direction of causation.
 - Uncertainty dampens activity (precautionary savings, irreversible investments, financial frictions,...).
 - * Recessions can also increase uncertainty (financial and information frictions).
- Question of whether uncertainty causes GDP to contract (and by how much) is important for policy makers.
- Identification problem typically tackled in a single-country framework.

► Proposes a novel <u>common factor</u> approach in a <u>multi-country setting</u> to analyze the relation between uncertainty and economic activity.

► Proposes a novel <u>common factor</u> approach in a <u>multi-country setting</u> to analyze the relation between uncertainty and economic activity.

 Proposes a novel <u>common factor</u> approach in a <u>multi-country setting</u> to analyze the relation between uncertainty and economic activity.

- ▶ Proposes a novel <u>common factor</u> approach in a <u>multi-country setting</u> to analyze the relation between uncertainty and economic activity.
- Empirically, there are two identification problems:
 - [1] Identification of the common factors.
 - [2] Identification of the country-specific shocks.

- ► Proposes a novel <u>common factor</u> approach in a <u>multi-country setting</u> to analyze the relation between uncertainty and economic activity.
- Empirically, there are two identification problems:
 - [1] Identification of the common factors.
 - [2] Identification of the country-specific shocks.
- This paper contributes to [1]
 - * Identification of a **growth** and a **financial** factors exploiting different patterns of cross-country correlations of volatility and GDP growth rates.

This paper: Main Findings

► The **growth factor** accounts for the bulk of the (unconditional) negative correlation between volatility and GDP growth for most countries.

This paper: Main Findings

- ► The **growth factor** accounts for the bulk of the (unconditional) negative correlation between volatility and GDP growth for most countries.
- ightharpoonup Shocks to the **financial factor** (common to volatility only) explain a non-trivial ($\sim 10\%$) share of GDP growth forecast error variance, and can have strong and persistent contractionary effects.

This paper: Main Findings

- ▶ The growth factor accounts for the bulk of the (unconditional) negative correlation between volatility and GDP growth for most countries.
- Shocks to the financial factor (common to volatility only) explain a non-trivial ($\sim 10\%$) share of GDP growth forecast error variance, and can have strong and persistent contractionary effects.
- ► Country-specific volatility shocks play a negligible role, i.e. explain $\sim 2\%$ of GDP growth forecast error variance (irrespective of within-country identification scheme used).

Related literature

- Uncertainty can respond to the business cycle [Ludvigson, Ma, Ng (2017), Berger, Dew-Becker and Giglio (2017), Berger and Vavra (2017)]
 - We impose restrictions on the cross-section rather than on individual countries.
 - Restrictions consistent with observable properties of the data.
 - * We obtain similar results with very different approach.

#8

Related literature

- ► Uncertainty can respond to the business cycle [Ludvigson, Ma, Ng (2017), Berger, Dew-Becker and Giglio (2017), Berger and Vavra (2017)]
 - We impose restrictions on the cross-section rather than on individual countries.
 - * Restrictions consistent with observable properties of the data.
 - * We obtain similar results with very different approach.
- ▶ International dimension [Carriere-Swallow and Cespedes (2013), Baker and Bloom (2013), Hirata, Kose, Otrok and Terrones (2012), Carriero, Clark and Marcellino (2017), Mumtaz and Musso (2018)]
 - Multi-country framework, as opposed to a set of countries considered in isolation.
 - * We do not assume volatility is exogenous.

Outline

- [1] **Theoretical model** Equity returns and volatility in a multi-country business cycle model.
- [2] **Empirical framework**A multi-country factor model for volatility and the business cycle.
- [3] Data & Empirical results
- [4] Conclusions

Theoretical model: Multi-country Lucas tree model with stochastic volatility

- Multi-country version of the Lucas (1978) tree model where country-specific output growth is driven by two processes:
 - Persistent global growth factor with stochastic volatility and heterogeneous loadings.
 - * Country-specific business cycle component with stochastic volatility.

Theoretical model: Multi-country Lucas tree model with stochastic volatility

- Multi-country version of the Lucas (1978) tree model where country-specific output growth is driven by two processes:
 - Persistent global growth factor with stochastic volatility and heterogeneous loadings.
 - * Country-specific business cycle component with stochastic volatility.
- ► Two steps:
 - [1] Solve for the risk free rate as a function of global growth shocks and their volatility.
 - [2] Solve for the country-specific equity returns using Campbell and Shiller (1989) approximation and Bansal and Yaron (2004) approach.

Model details

Theoretical model: Multi-country Lucas tree model with stochastic volatility

- Multi-country version of the Lucas (1978) tree model where country-specific output growth is driven by two processes:
 - Persistent global growth factor with stochastic volatility and heterogeneous loadings.
 - * Country-specific business cycle component with stochastic volatility.
- Main insights:
 - * Global growth shock is sufficient to explain cross-country differences in output growth.
 - At least one additional common shock (a composite of second and higher-order moment shocks) is required to explain the cross-country differences of realized volatility.

Empirical Framework

troduction Theoretical model **Empirical framework** Data & Empirical Results Conclusions

#12

First-order panel vector autoregressive (PVAR) model in Δy_{it} and v_{it} for i=1,2,...,N:

$$\begin{array}{rcl} \Delta y_{it} & = & a_{iy} + \phi_{i,11} v_{i,t-1} + \phi_{i,12} \Delta y_{i,t-1} + e_{iy,t}, \\ v_{it} & = & a_{iv} + \phi_{i,21} v_{i,t-1} + \phi_{i,22} \Delta y_{i,t-1} + e_{iv,t}. \end{array}$$

First-order panel vector autoregressive (PVAR) model in Δy_{it} and v_{it} for i=1,2,...,N:

$$\begin{array}{rcl} \Delta y_{it} & = & a_{iy} + \phi_{i,11} v_{i,t-1} + \phi_{i,12} \Delta y_{i,t-1} + e_{iy,t}, \\ v_{it} & = & a_{iv} + \phi_{i,21} v_{i,t-1} + \phi_{i,22} \Delta y_{i,t-1} + e_{iv,t}. \end{array}$$

ightharpoonup Consistent with the theoretical model and the stylized facts, we posit the following unobservable common-factor representation for $e_{iy,t}$ and $e_{iv,t}$:

$$e_{iy,t} = \gamma_i \zeta_t + \varepsilon_{it},$$

$$e_{iv,t} = \lambda_i \zeta_t + \theta_i \xi_t + \eta_{it}.$$

▶ **Objective** Identification of factors (ζ_t , ξ_t) and loadings (λ_i , γ_i , θ_i).

First-order panel vector autoregressive (PVAR) model in Δy_{it} and v_{it} for i=1,2,...,N:

$$\begin{array}{rcl} \Delta y_{it} & = & a_{iy} + \phi_{i,11} v_{i,t-1} + \phi_{i,12} \Delta y_{i,t-1} + e_{iy,t}, \\ v_{it} & = & a_{iv} + \phi_{i,21} v_{i,t-1} + \phi_{i,22} \Delta y_{i,t-1} + e_{iv,t}. \end{array}$$

▶ Consistent with the theoretical model and the stylized facts, we posit the following unobservable common-factor representation for $e_{iy,t}$ and $e_{iv,t}$:

$$\begin{array}{rcl} e_{iy,t} & = & \gamma_i \zeta_t + \varepsilon_{it}, \\ e_{iv,t} & = & \lambda_i \zeta_t + \theta_i \xi_t + \eta_{it}. \end{array}$$

▶ **Our approach** Identification is achieved by placing restrictions on the *cross-country* correlations of the country-specific innovations, $Corr(\varepsilon_{it}, \varepsilon_{jt})$ and $Corr(\eta_{it}, \eta_{jt}) \ \forall i, j$

First-order panel vector autoregressive (PVAR) model in Δy_{it} and v_{it} for i=1,2,...,N:

$$\begin{array}{rcl} \Delta y_{it} & = & a_{iy} + \phi_{i,11} v_{i,t-1} + \phi_{i,12} \Delta y_{i,t-1} + e_{iy,t}, \\ v_{it} & = & a_{iv} + \phi_{i,21} v_{i,t-1} + \phi_{i,22} \Delta y_{i,t-1} + e_{iv,t}. \end{array}$$

▶ Consistent with the theoretical model and the stylized facts, we posit the following unobservable common-factor representation for $e_{iy,t}$ and $e_{iv,t}$:

$$\begin{array}{rcl} e_{iy,t} & = & \gamma_i \zeta_t + \varepsilon_{it}, \\ e_{iv,t} & = & \lambda_i \zeta_t + \theta_i \xi_t + \eta_{it}. \end{array}$$

▶ Note #1 Within-country correlation $Corr(\varepsilon_{it},\eta_{it})$ for i=1,2,...,N is left unrestricted. To identify the country-specific shocks we will use auxiliary assumptions typically used in the literature.

First-order panel vector autoregressive (PVAR) model in Δy_{it} and v_{it} for i=1,2,...,N:

$$\begin{array}{rcl} \Delta y_{it} & = & a_{iy} + \phi_{i,11} v_{i,t-1} + \phi_{i,12} \Delta y_{i,t-1} + e_{iy,t}, \\ v_{it} & = & a_{iv} + \phi_{i,21} v_{i,t-1} + \phi_{i,22} \Delta y_{i,t-1} + e_{iv,t}. \end{array}$$

▶ Consistent with the theoretical model and the stylized facts, we posit the following unobservable common-factor representation for $e_{iy,t}$ and $e_{iv,t}$:

$$\begin{array}{rcl} e_{iy,t} & = & \gamma_i \zeta_t + \varepsilon_{it}, \\ e_{iv,t} & = & \lambda_i \zeta_t + \theta_i \xi_t + \eta_{it}. \end{array}$$

▶ **Note #2** In a single-country model, the common factors (ζ_t , ξ_t) or their loadings (λ_i , γ_i , θ_i) cannot be identified even if it is assumed that $Corr(\varepsilon_{it}, \eta_{it}) = 0$.

Definitions & Identifying assumptions

Definitions

▶ Define global GDP growth ($\Delta \bar{y}_{\omega,t}$) and global volatility ($\bar{v}_{\omega,t}$) as weighted (w_i) averages over a large number of countries:

$$\Delta \bar{y}_{\omega,t} = \sum_{i=1}^{N} w_i \Delta y_{it}, \quad \bar{v}_{\omega,t} = \sum_{i=1}^{N} w_i v_{it}$$

Definitions & Identifying assumptions

Definitions

▶ Define global GDP growth ($\Delta \bar{y}_{\omega,t}$) and global volatility ($\bar{v}_{\omega,t}$) as weighted (w_i) averages over a large number of countries:

$$\Delta \bar{y}_{\omega,t} = \sum_{i=1}^{N} w_i \Delta y_{it}, \quad \bar{v}_{\omega,t} = \sum_{i=1}^{N} w_i v_{it}$$

Identifying assumptions

- 1. Common shocks & Loadings: pervasive factors (ζ_{+} for both volatility and activity, ξ_t for volatility only).
- 2. Weights: granularity (weights w_i are not dominated by a few cross-section units).
- 3. Cross-sectional correlations: weak dependence of country-specific innovations (pairwise correlations of ε_{it} and η_{it} tend to zero).

The common growth shock (ζ_t): Identification by aggregation

For simplicity, and to focus on our novel approach, consider first a 'static' case:

$$\begin{array}{rcl} \Delta y_{it} & = & \gamma_i \zeta_t + \varepsilon_{it}, \\ v_{it} & = & \lambda_i \zeta_t + \theta_i \xi_t + \eta_{it}. \end{array}$$

The common growth shock (ζ_t): Identification by aggregation

For simplicity, and to focus on our novel approach, consider first a 'static' case:

$$\begin{array}{rcl} \Delta y_{it} & = & \gamma_i \zeta_t + \varepsilon_{it}, \\ v_{it} & = & \lambda_i \zeta_t + \theta_i \xi_t + \eta_{it}. \end{array}$$

In this simple case, the factor ζ_t can be identified by $\bar{y}_{\omega,t}$ (up to a constant):

$$\zeta_t = \gamma^{-1} \Delta \bar{y}_{\omega,t} + O_p \left(N^{-1/2} \right).$$

▶ **Intuition** The GDP growth innovations ε_{it} only include idiosyncratic risk that wash out when N is large.

Introduction

The common growth shock (ζ_t): Identification by aggregation

▶ **Proof** Consider the weighted average of the country-specific systems:

$$\begin{array}{rcl} \Delta \bar{y}_{\omega,t} & = & \gamma \zeta_t + \bar{\varepsilon}_{\omega,t}, \\ & \bar{v}_{\omega,t} & = & \lambda \zeta_t + \theta \xi_t + \bar{\eta}_{\omega,t}. \end{array}$$

where $\bar{\eta}_{\omega,t} = \mathbf{w}' \boldsymbol{\eta}_t$ and $\bar{\varepsilon}_{\omega,t} = \mathbf{w}' \boldsymbol{\varepsilon}_t$. Under the above assumptions it now readily follows that:

$$\zeta_t = \frac{\Delta \bar{y}_{\omega,t}}{\gamma} + \underbrace{\frac{\bar{\varepsilon}_{\omega,t}}{\gamma}}_{O_p(N^{-1/2})}.$$

and for N sufficiently large ζ_t can be approximated by $\Delta \bar{y}_{\omega,t}$ (up to a constant), as

$$Var\left(\bar{\varepsilon}_{\omega,t}\right) = \mathbf{w}' \mathbf{\Sigma}_{\varepsilon} \mathbf{w} \leq \left(\mathbf{w}' \mathbf{w}\right) \varrho_{\max}\left(\mathbf{\Sigma}_{\varepsilon}\right)$$
 and so $Var\left(\bar{\varepsilon}_{\omega,t}\right) = O\left(\mathbf{w}' \mathbf{w}\right) = O\left(N^{-1}\right)$.

The common growth shock (ζ_t): Remarks

Remark Interpretation of ζ_t

Because ζ_t is the same as world growth rescaled, we label it a common "growth" shock, in line with our theoretical derivations.

The common growth shock (ζ_t): Remarks

Remark Interpretation of ζ_t

Because ζ_t is the same as world growth rescaled, we label it a common "growth" shock, in line with our theoretical derivations.

Remark Cross-sectional average of volatility

The cross-sectional average of the volatilities series v_{it} does not identify ζ_t , because we would not be able to disentangle ζ_t from ξ_t .

The common growth shock (ζ_t): Remarks

Remark Interpretation of ζ_t

Because ζ_t is the same as world growth rescaled, we label it a common "growth" shock, in line with our theoretical derivations.

Remark Cross-sectional average of volatility

The cross-sectional average of the volatilities series v_{it} does not identify ζ_t , because we would not be able to disentangle ζ_t from ξ_t .

Remark The role of N

The triangular factor structure alone does not identify ζ_t . To get identification we need large N, otherwise we would not be able to disentangle ζ_t from $\bar{\varepsilon}_{\omega,t}$.

The common financial shock (ξ_t)

- ▶ The main empirical result of the paper does not require identification of the financial factor ξ_t .
- ▶ But doing so permits exploring other properties of the data.

The common financial shock (ξ_t)

- ▶ The main empirical result of the paper does not require identification of the financial factor ξ_t .
- ▶ But doing so permits exploring other properties of the data.
- ▶ Conditional on ζ_t , for N large enough, ξ_t is determined by:

$$\xi_t = \frac{\bar{v}_{\omega,t}}{\theta} - \frac{\lambda}{\theta \gamma} \Delta \bar{y}_{\omega,t} + \underbrace{\frac{\bar{\eta}_{\omega,t}}{\theta}}_{O_p(N^{-1/2})}.$$

▶ **Proof** Same logic as above applied to η_{it} . Factor ξ_t can be identified from the data as a liner combination of $\Delta \bar{y}_{\omega,t}$ and $\bar{v}_{\omega,t}$ (up to an orthonormal transformation).

The common financial shock (ξ_t): Remarks

Remark We label ξ_t a global 'financial' shock to highlight its role in capturing all higher-order terms present in our theoretical derivations once we account for the common growth factor shock, ζ_t , as well as any bubble component, financial friction, or time-varying risk preference component that might be present in the volatility data.

A dynamic multi-country heterogeneous model

Consider the following first-order dynamic version of the above static model:

$$\begin{array}{rcl} \Delta y_{it} & = & a_{iy} + \phi_{i,11} v_{i,t-1} + \phi_{i,12} \Delta y_{i,t-1} + \gamma_i \zeta_t + \varepsilon_{it} \\ v_{it} & = & a_{iv} + \phi_{i,21} v_{i,t-1} + \phi_{i,22} \Delta y_{i,t-1} + \lambda_i \zeta_t + \theta_i \xi_t + \eta_{it} \end{array}$$

- Identification of the common factors in this dynamic and heterogeneous setting is sensibly more challenging.
- ▶ Stronger assumptions on PVAR coefficients ($\phi_{i,rs}$) and higher order lags of $(\bar{v}_{\omega,t},\Delta\bar{y}_{\omega,t})$ are needed.

Dynamic model: Assumptions

▶ **Factor loadings** The factor loadings λ_i , θ_i , and γ_i (i.e., the non-zero elements of Γ_i) are independently distributed across i, and of the common factors, \mathbf{f}_t , for all i and t, with non-zero means λ , θ , and γ , and second-order moments. Furthermore:

$$\Gamma = \mathbb{E}(\Gamma_i) = \begin{pmatrix} \gamma & 0 \\ \lambda & \theta \end{pmatrix}$$

▶ **Coefficients** The constants \mathbf{a}_i are bounded, $\mathbf{\Phi}_i$ and $\mathbf{\Gamma}_i$ are independently distributed for all i, the support of $\varrho\left(\mathbf{\Phi}_i\right)$ lies strictly inside the unit circle, for i=1,2,...,N, and the inverse of the polynomial $\mathbf{\Lambda}\left(L\right)=\sum_{\ell=0}^{\infty}\mathbf{\Lambda}_{\ell}L^{\ell}$, where $\mathbf{\Lambda}_{\ell}=\mathbb{E}\left(\mathbf{\Phi}_i^{\ell}\right)$ exists and has exponentially decaying coefficients, namely $\|\mathbf{\Lambda}_{\ell}\| \leq K\rho^{\ell}$, where K is a fixed constant and $0<\rho<1$.

Dynamic model: Identification of the factors

▶ **Proposition** Common factors ζ_t and ξ_t are given by:

$$\zeta_{t} = b_{\zeta} + \gamma^{-1} \Delta \bar{y}_{\omega,t} + \sum_{\ell=1}^{\infty} \mathbf{c}_{1,\ell}^{\prime} \bar{\mathbf{z}}_{\omega,t-\ell} + O_{p} \left(N^{-1/2} \right),$$

$$\xi_{t} = b_{\xi} + \theta^{-1} \left(\bar{v}_{\omega,t} - \frac{\lambda}{\gamma} \Delta \bar{y}_{\omega,t} \right) + \sum_{\ell=1}^{\infty} \mathbf{c}_{2,\ell}^{\prime} \bar{\mathbf{z}}_{\omega,t-\ell} + O_{p} \left(N^{-1/2} \right),$$

where $\mathbf{z}_{it} = (\Delta y_{it}, v_{it})'$.

Dynamic model: Consistent estimation of orthogonal factors

Proposition Consistent estimators of the common shocks, denoted by $\hat{\zeta}$ and $\hat{\xi}$, can be obtained as residuals from the following OLS regressions:

$$\begin{aligned} \hat{\boldsymbol{\zeta}} &= & \Delta \bar{\mathbf{y}}_{\omega} - \bar{\mathbf{Z}}_{\omega} \hat{\mathbf{C}}_{1}, \\ \hat{\boldsymbol{\xi}} &= & \bar{\mathbf{v}}_{\omega} - \hat{\lambda} \hat{\boldsymbol{\zeta}} - \bar{\mathbf{Z}}_{\omega} \hat{\mathbf{C}}_{2}, \end{aligned}$$

where
$$\boldsymbol{\zeta}=(\zeta_1,\zeta_2,...,\zeta_T)'$$
, $\boldsymbol{\xi}=(\xi_1,\xi_2,...,\xi_T)'$, $\bar{\mathbf{Z}}_{\omega}=(\boldsymbol{\tau}_T,\bar{\mathbf{z}}_{\omega,-1},\bar{\mathbf{z}}_{\omega,-2},...,\bar{\mathbf{z}}_{\omega,-p})$, $\bar{\mathbf{z}}_{\omega,-l}=(\Delta\bar{\mathbf{y}}_{\omega,-l}\bar{v}_{\omega,-l})$, $\Delta\bar{\mathbf{y}}_{\omega,-l}=(\Delta\bar{\mathbf{y}}_{\omega,1-l},\Delta\bar{\mathbf{y}}_{\omega,2-l},...,\Delta\bar{y}_{\omega,T-l})'$, $\Delta\bar{\mathbf{y}}_{\omega}=\Delta\bar{\mathbf{y}}_{\omega,0}$, $\bar{\mathbf{v}}_{\omega,-l}=(\bar{v}_{\omega,1-l},\bar{v}_{\omega,2-l},...,\bar{v}_{\omega,T-l})'$, $\bar{\mathbf{v}}_{\omega}=\bar{\mathbf{v}}_{\omega,0}$, and p denotes a suitable number of lags (or truncation order).

Dynamic model: Factor-augmented large VAR

- Theoretical results carry through a fully heterogeneous dynamic version of the model.
- ► Country-specific model with orthonormal factors:

$$\begin{split} \Delta y_{it} &= \phi_{i,11} v_{i,t-1} + \phi_{i,12} \Delta y_{i,t-1} + \beta_{i,11} \hat{\zeta}_t + \sum_{\ell=1}^p \psi'_{\Delta y,i\ell} \overline{\mathbf{z}}_{\omega,t-\ell} + \varepsilon_{it} \\ v_{it} &= \phi_{i,21} v_{i,t-1} + \phi_{i,22} \Delta y_{i,t-1} + \beta_{i,21} \hat{\zeta}_t + \beta_{i,22} \hat{\xi}_t + \sum_{\ell=1}^p \psi'_{v,i\ell} \overline{\mathbf{z}}_{\omega,t-\ell} + \eta_{it} \end{split}$$

where $\bar{\mathbf{z}}_{\omega,t} = (\bar{v}_{\omega,t}, \Delta \bar{y}_{\omega,t})$.

► Country-specific models can be combined in a large model of the global economy.

Volatility measurement

ightharpoonup We compute the realized volatility for country i in quarter t as:

$$\sigma_{it}^2 = \sum_{\tau=1}^{D_t} (r_{it}(\tau) - \bar{r}_{it})^2$$

where $r_{it}(\tau) = \Delta \ln P_{it}(\tau)$, and $\bar{r}_{it} = D_t^{-1} \sum_{\tau=1}^{D_t} r_{it}(\tau)$ is the average daily price changes in the quarter t, and D_t is the number of trading days in quarter t.

- ▶ We work with log of σ_{it} .
- In recent literature focus has shifted to implied volatility measures from option prices (e.g., VIX). But:
 - * Not available for a large number of countries over a long period of time.
 - * Berger, Dew-Becker, Giglio (2017): conditional on realized volatility, VIX is not associated with indicators of economic activity.

Data & Empirical Results

troduction Theoretical model Empirical framework **Data & Empirical Results** Conclusions

Data & Empirical results

Data

▶ Balanced panel data for 32 countries from 1993:Q1 to 2016:Q4.

Empirical results

- Factors estimates.
- Within-country conditional correlation of volatility and GDP growth.
- IRFs and FEVDs to factors and country-specific shocks.
- Evidence in support of identifying assumptions (cross-country correlations).

The common growth shock $(\hat{\zeta})$

► Common growth shock:

The common growth shock $(\hat{\zeta})$

► Common growth shock:

- Correlated with:
 - * Proxy for the world natural rate (0.5) from Holston, Laubach, Williams (2017).

The common growth shock $(\hat{\zeta})$

► Common growth shock:

- Correlated with:
 - * Proxy for the world natural rate (0.5) from Holston, Laubach, Williams (2017).
 - * Proxy for global TFP (0.65) and global utilization adjusted TFP (0.33) from Huo, Levchenko, Pandalai-Nayar (2018).
 - * Proxy for global long-run risk (0.29) from Colacito, Croce, Gavazzoni, Ready (2018).

The common financial shock $(\hat{\xi})$

Common financial shock:

The common financial shock $(\hat{\xi})$

Common financial shock:

- Correlated with:
 - * Financial uncertainty measure (0.43) from Ludvigson, Ma and Ng (2017).

The common financial shock $(\hat{\xi})$

Common financial shock:

- Correlated with:
 - * Financial uncertainty measure (0.43) from Ludvigson, Ma and Ng (2017).
 - * Excess Bond Premium (0.35) Gilchrist and Zakrajsek (2012).

ntroduction Th

Within-country correlation of volatility and growth: unconditional

▶ Unconditional correlation between Δy_{it} and v_{it} (same as Figure shown in introduction).

Within-country correlation of volatility and growth: conditioning on common growth shock only

▶ Correlation between ε_{it} and u_{it} conditional on growth common shock $(\hat{\zeta}_t)$ only.

$$\begin{array}{rcl} \Delta y_{it} & = & \beta_{i,21} \hat{\zeta}_t + \text{cross-section averages and lagged values} + \varepsilon_{it} \\ v_{it} & = & \beta_{i,11} \hat{\zeta}_t + \text{cross-section averages and lagged values} + u_{it} \end{array}$$

Within-country correlation of volatility and growth: conditioning on both common shocks

▶ Correlation between ε_{it} and η_{it} conditional on growth $(\hat{\zeta}_t)$ and financial $(\hat{\xi}_t)$ common shocks

$$\begin{array}{lll} \Delta y_{it} &=& \beta_{i,21} \hat{\zeta}_t + \text{cross-section averages and lagged values} + \varepsilon_{it} \\ \\ v_{it} &=& \beta_{i,11} \hat{\zeta}_t + \beta_{i,12} \hat{\xi}_t + \text{cross-section averages and lagged values} + \eta_{it} \end{array}$$

Forecast error variance decomposition

▶ Growth factor ($\hat{\zeta}_t$, **purple areas**) and country-specific growth innovations (ε_{it} , **green areas**) jointly explain less than <5% of volatility forecast error variance .

Forecast error variance decomposition

Financial factor ($\hat{\xi}_t$, dark blue areas) explains a significant share of growth forecast error variance (about $\sim 10\%$).

Forecast error variance decomposition

- Financial factor ($\hat{\xi}_t$, dark blue areas) explains a significant share of growth forecast error variance (about $\sim 10\%$).
- ▶ But country-specific volatility shocks (η_{it} , red areas) diversified away.

Growth common shocks ($\hat{\zeta}_t$) lead to endogenous movements in volatility

- ▶ Positive growth shock $(\hat{\zeta}_t)$ leads to an increase in world GDP growth...
- ... and to a countercyclical fall in volatility.

Financial common shocks ($\hat{\xi}_t$) lead to sharp recessions

- lacksquare Adverse financial shock $(\hat{\xi}_t)$ leads to an increase in world volatility...
- ... and to a sharp and persistent contraction of world GDP growth.

Country-specific volatility shocks ($\hat{\eta}_t$): Omitted variable bias

► Compare IRFs from a single-country VAR (with recursive identification) with those obtained from our multi-country model.

 Single-country model largely overestimates the impact of domestic shocks. growth.

Are the identifying assumptions on cross-sectional dependence consistent with the data?

- Estimate country models with growth shock ($\hat{\zeta}_t$) only:

$$\begin{array}{lcl} \Delta y_{it} & = & \beta_{i,21} \hat{\zeta}_t + \text{cross-section averages and lagged values} + \varepsilon_{it} \\ v_{it} & = & \beta_{i,11} \hat{\zeta}_t + \text{cross-section averages and lagged values} + u_{it} \end{array}$$

Are the identifying assumptions on cross-sectional dependence consistent with the data?

Estimate country models with growth shock ($\hat{\zeta}_t$) only:

$$\begin{array}{rcl} \Delta y_{it} & = & \beta_{i,21} \hat{\zeta}_t + \text{cross-section averages and lagged values} + \varepsilon_{it} \\ v_{it} & = & \beta_{i,11} \hat{\zeta}_t + \text{cross-section averages and lagged values} + u_{it} \end{array}$$

NOTE. Average pairwise correlation of the u_{it} (yellow bars) and the ε_{it} (blue bars).

Are the identifying assumptions on cross-sectional dependence consistent with the data?

► Estimate country models with growth $(\hat{\zeta}_t)$ and financial $(\hat{\xi}_t)$ shocks:

$$\begin{array}{rcl} \Delta y_{it} &=& \beta_{i,21} \hat{\zeta}_t + \text{cross-section averages and lagged values} + \varepsilon_{it} \\ \\ v_{it} &=& \beta_{i,11} \hat{\zeta}_t + \beta_{i,12} \hat{\xi}_t + \text{cross-section averages and lagged values} + \eta_{it} \end{array}$$

Note. Average pairwise correlation of the η_{it} (yellow bars) and the ε_{it} (blue bars).

Tests of cross-sectional dependence don't reject identifying assumptions

- CD and Exponent of cross-sectional dependence tests [Pesaran (2015), Bailey et al. (2016)].
- Results in accordance with assumptions of:
 - * Weak/strong cross-sectional dependence of ε_{it}/u_{it} , respectively.
 - * Weak cross-sectional dependence of both ε_{it} and η_{it} .

	CD	Lower 5%	\hat{lpha}	Upper 95%
Data				
v_{it}	104.57	0.94	0.99	1.05
Δy_{it}	55.73	0.87	1.00	1.14
Innovations (conditional on $\hat{\zeta}_t$)				
u_{it}	110.89	0.96	1.00	1.04
$arepsilon_{it}$	-2.90	0.56	0.62	0.67
Innovations (conditional on $\hat{\zeta}_t$ and $\hat{\xi}_t$)				
η_{it}	-5.12	0.58	0.64	0.70

- Granularity assumption:
 - * Results are robust when dropping (i) the US, (ii) China, and (iii) both the US and China. (50)
 - * Results are <u>not</u> robust when replacing the global factors with US GDP growth and US realized volatility. GDP

- Granularity assumption:
 - * Results are robust when dropping (i) the US, (ii) China, and (iii) both the US and China. (50)
 - * Results are <u>not</u> robust when replacing the global factors with US GDP growth and US realized volatility. GDP
- Sample period:
 - * Results are robust to dropping the period of the global financial crisis.
 - * Results are robust to a longer (unbalanced) sample period. 600

- Granularity assumption:
 - * Results are robust when dropping (i) the US, (ii) China, and (iii) both the US and China. (60)
 - * Results are <u>not</u> robust when replacing the global factors with US GDP growth and US realized volatility. 60
- ► Sample period:
 - * Results are robust to dropping the period of the global financial crisis. 600
 - Results are robust to a longer (unbalanced) sample period. 💿
- Realized versus implied volatility:
 - * Results are robust when using the VIX Index as a measure of volatility for the United States.

- Granularity assumption:
 - * Results are robust when dropping (i) the US, (ii) China, and (iii) both the US and China. (50)
 - * Results are <u>not</u> robust when replacing the global factors with US GDP growth and US realized volatility. Go
- ► Sample period:
 - * Results are robust to dropping the period of the global financial crisis. 600
 - Results are robust to a longer (unbalanced) sample period. 60
- Realized versus implied volatility:
 - * Results are robust when using the VIX Index as a measure of volatility for the United States. (6)
- ► Alternative assumptions for identification of country-specific shocks:
 - * Results are robust to block-diagonal covariance matrix with recursive (within-country) identification.

 Go
 - * Unrestricted covariance matrix. Go

▶ Paper takes a new common-factor approach in a multi-country model to the relation between volatility and growth without imposing restrictions on the direction of causation at the level of individual country.

- Paper takes a new common-factor approach in a multi-country model to the relation between volatility and growth without imposing restrictions on the direction of causation at the level of individual country.
 - Paper exploits the different cross-country correlation structure of volatility and growth innovations to identify a 'growth' factor and a 'financial' factor.

- Paper takes a new common-factor approach in a multi-country model to the relation between volatility and growth without imposing restrictions on the direction of causation at the level of individual country.
 - * Paper exploits the different cross-country correlation structure of volatility and growth innovations to identify a 'growth' factor and a 'financial' factor.
 - * Common factors are important to understand relation between volatility and economic activity.

- Paper takes a new common-factor approach in a multi-country model to the relation between volatility and growth without imposing restrictions on the direction of causation at the level of individual country.
 - * Paper exploits the different cross-country correlation structure of volatility and growth innovations to identify a 'growth' factor and a 'financial' factor.
 - * Common factors are important to understand relation between volatility and economic activity.
- Key implication is that part of explanatory power typically attributed to country-specific uncertainty shocks is due to omitted common factors.

Uncertainty and Economic Activity: A Multi-Country Perspective

A. Cesa-Bianchi¹ M.H. Pesaran² A. Rebucci³

 2 University of Southern California and Trinity College, Cambridge 3 Johns Hopkins University Carey Business School, CEPR and NBER

2nd Annual CEBRA Intl. Finance and Macroeconomics Meeting November 29-30, 2018

*The views expressed in this paper do not necessarily reflect the position of the Bank of England.

Appendix

At::Model Az::Assumptions Az::Econometric model Az::Additional results #49

A1::Model

A2::Assumptions

Assumptions

▶ **Assumption 1: Common factors and their loadings** The common unobservable factors, ζ_t and ξ_t , have zero means and unit variances, and are serially uncorrelated. The factor loadings, λ_i , γ_i , and θ_i , are distributed independently across i and from the common factors f_t and g_t for all i and t, with non-zero means λ , γ , and θ ($\lambda \neq 0$, $\gamma \neq 0$, and $\theta \neq 0$), and satisfy the following conditions, for a finite N and as $N \to \infty$:

$$\begin{split} N^{-1} \sum_{i=1}^{N} \lambda_i^2 &= \mathcal{O}(1) \qquad \lambda = \sum_{i=1}^{N} \mathring{w}_i \lambda_i \neq 0 \\ N^{-1} \sum_{i=1}^{N} \gamma_i^2 &= \mathcal{O}(1) \qquad \gamma = \sum_{i=1}^{N} w_i \gamma_i \neq 0 \\ N^{-1} \sum_{i=1}^{N} \theta_i^2 &= \mathcal{O}(1) \qquad \theta = \sum_{i=1}^{N} w_i \theta_i \neq 0 \end{split}$$

Assumptions (Cont.)

▶ Assumption 2: Aggregation weights Let $\mathbf{w} = (w_1, w_2, ..., w_N)'$ and $\mathring{\mathbf{w}} = (\mathring{w}_1, \mathring{w}_2, ..., \mathring{w}_N)'$ be the $N \times 1$ vectors of non-stochastic weights with $w_i, \mathring{w}_i > 0$, $\sum_{i=1}^N w_i = 1$ and $\sum_{i=1}^N \mathring{w}_i = 1$, such that the following "granularity" conditions are met:

$$||\mathbf{w}|| = O(N^{-1}), \ \frac{w_i}{||\mathbf{w}||} = O(N^{-1/2})$$

and

$$||\mathbf{\mathring{w}}|| = O(N^{-1}), \ \frac{\mathring{w}_i}{||\mathbf{\mathring{w}}||} = O(N^{-1/2})$$

for all i.

Assumptions (Cont.)

▶ **Assumption 3: Cross-section correlations** The country-specific innovations, η_{it} and ε_{it} , have zero means and finite variances, and are serially uncorrelated, but can be correlated with each other both within and between countries. Furthermore, denoting the covariance matrices of the $N \times 1$ innovation vectors $\boldsymbol{\varepsilon}_t = (\varepsilon_{1t}, \varepsilon_{2t}, ..., \varepsilon_{Nt})'$ and $\boldsymbol{\eta}_t = (\eta_{1t}, \eta_{2t}, ..., \eta_{Nt})'$ by $\boldsymbol{\Sigma}_{\varepsilon\varepsilon} = Var\left(\varepsilon_t\right)$ and $\boldsymbol{\Sigma}_{\eta\eta} = Var\left(\boldsymbol{\eta}_t\right)$, respectively, it is assumed that:

$$\varrho_{\max}\left(\Sigma_{\varepsilon\varepsilon}\right) = O(1)$$

$$\varrho_{\max}\left(\Sigma_{\eta\eta}\right) = O(1)$$

A3::Econometric model

Estimating observable and orthogonal factors

- ▶ **Issue** Factors f_t and g_t are unobservable, and even if known, would be correlated with each other
- ► For ease of interpretation it is standard to work with the orthogonalized version of the factors
 - * This task is simplified due to the triangular way the factors affect the global variables, $\Delta \bar{y}_{\omega,t}$ and $\bar{v}_{\omega,t}$
- Proceed recursively
 - * Factor f_t can be identified up to a constant

$$f_t = \frac{\Delta \bar{y}_{\omega,t}}{\gamma} \Rightarrow \hat{\zeta}_t = \Delta \bar{y}_{\omega,t}$$

* Factor g_t can then be approximated by the residuals of a regression of world volatility $\bar{v}_{\omega,t}$ on world growth

$$g_t = \frac{\bar{v}_{\omega,t}}{\theta} - \frac{\lambda}{\theta \gamma} \Delta \bar{y}_{\omega,t} \ \Rightarrow \ \bar{v}_{\omega,t} = \hat{\beta} \Delta \bar{y}_{\omega,t} + \hat{\xi}_t$$

Consistent estimation of orthogonal factors

- ▶ **Proposition 3** Let $\hat{\zeta}_t$ and $\hat{\xi}_t$ be consistent, orthonormalized estimators of f_t and g_t , respectively, where f_t and g_t are defined by (??) and (??). Then, $\hat{\zeta}_t$ can be obtained by re-scaling $\Delta \bar{y}_{\omega,t}$ so that its variance is 1, while $\hat{\xi}_t$ can be obtained as the standardized residual of a least squares regression of $\bar{v}_{\omega,t}$ on $\Delta \bar{y}_{\omega,t}$.
- ▶ **Proof** Consider equation (??) and (??) and set the coefficients $\alpha_g = (\alpha_{1g}, \alpha_{2g})'$, such that $T^{-1} \sum_{t=1}^T \hat{\zeta}_t \hat{\xi}_t = 0$. This yields:

$$\frac{\hat{\alpha}_{2g}}{\hat{\alpha}_{1g}} = \frac{\sum_{t=1}^{T} \Delta \bar{y}_{\omega,t} \bar{v}_{\omega,t}}{\sum_{t=1}^{T} \Delta \bar{y}_{\omega,t}^2},$$

which is the OLS estimate of the coefficient on $\Delta \bar{y}_{\omega,t}$ in a regression of \bar{v}_t on $\Delta \bar{y}_{\omega,t}$. Next, set α_f and α_{1g} so that ζ_t and ξ_t have unit in-sample standard deviations.

A3::Additional results

Granularity: No US

Granularity: No China

Granularity: No US & No China

Granularity: US as the global factor

Comparison between VIX and US realized volatility:Data

#63

Comparison between VIX and US realized volatility: IRF

Back

#64

Excluding the global financial crisis: FEVDs

Excluding the global financial crisis: IRFs

#66

20

20

Longer sample period: Common Shocks

#67

Average FEVD: Block-diagonal covariance matrix

- ▶ Allow for within-country correlation of the innovations (ε_{it} and η_{it}).
- Orthogonalize with Cholesky decomposition, with volatility ordered first (block-diagonal covariance matrix)

Average GFEVD: Threshold covariance matrix

- ▶ Allow for within- and across-country correlation of the innovations (ε_{it} and η_{it}).
- Compute Generalized FEVD with threshold covariance matrix.

Country-specific response to the factors

#70