Optimal Progressivity with Age-Dependent Taxation

Jonathan Heathcote

Federal Reserve Bank of Minneapolis

Kjetil Storesletten

University of Oslo

Gianluca Violante

Princeton University

Research Conference on Taxes and Transfers – Bank of Spain, September 4 2018

How progressive should labor income taxation be?

- Arguments in favor of progressivity: missing markets
 - Unequal initial conditions
 - Labor market shocks
 - Rising wage-experience profile

How progressive should labor income taxation be?

- Arguments in favor of progressivity: missing markets
 - Unequal initial conditions
 - Labor market shocks
 - Rising wage-experience profile
- Arguments against progressivity: distortions
 - Labor supply choice
 - Human capital investment

How progressive should labor income taxation be?

- Arguments in favor of progressivity: missing markets
 - Unequal initial conditions
 - Labor market shocks
 - Rising wage-experience profile
- Arguments against progressivity: distortions
 - Labor supply choice
 - Human capital investment
- Q: Life-cycle → should optimal progressivity vary with age?

This paper

- OLG equilibrium model with:
 - differential disutility of work & learning ability [ex-ante heter.]
 - uninsurable labor earnings risk [ex-post uncertainty]
 - age profile for productivity and disutility of work [life cycle]
 - ► flexible labor supply [static choice]
 - skill investment [dynamic choice]

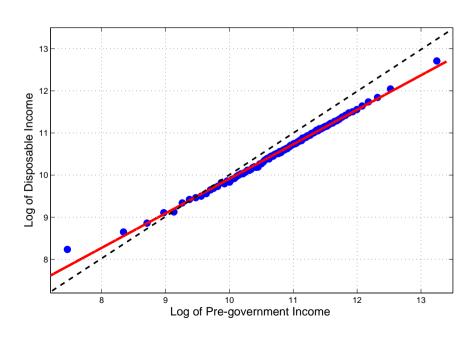
This paper

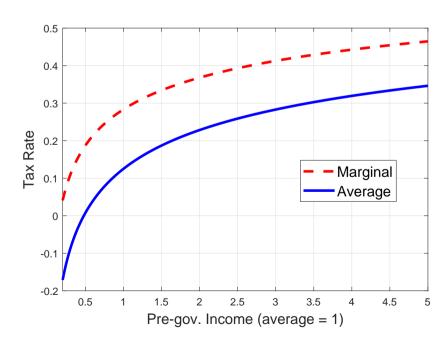
- OLG equilibrium model with:
 - differential disutility of work & learning ability [ex-ante heter.]
 - uninsurable labor earnings risk [ex-post uncertainty]
 - age profile for productivity and disutility of work [life cycle]
 - ► flexible labor supply [static choice]
 - skill investment [dynamic choice]
- Baseline: analytical model to isolate forces at work
- Extension: numerically solved model with borrowing and saving

$$T(y) = y - \lambda y^{1-\tau}$$

$$T(y) = y - \lambda y^{1 - \tau}$$

- It preserves analytical tractability
- It closely approximates U.S. ($\tau^{US}=0.181$)





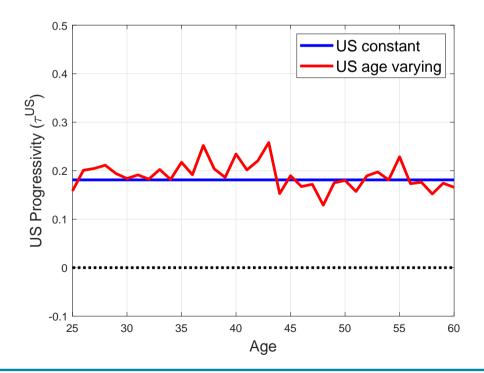
• We generalize tax/transfer system to allow for age variation:

$$T_a(y) = y - \lambda_a y^{1 - \tau_a}$$

We generalize tax/transfer system to allow for age variation:

$$T_a(y) = y - \lambda_a y^{1 - \tau_a}$$

- Does the US tax/transfer system display age dependence?
- Estimate $\{\tau_a\}$ by household age



Related Literature

- Human capital: Best and Kleven (2013), Guvenen, Kuruscu, and Ozkan (2014), Kapicka and Neira (2016), Stantcheva (2017)
- Labor supply: Erosa and Gervais (2002), Karabarbounis (2016),
 Ndiaye (2017)
- Efficiency profile: Weinzierl (2009), Gorry and Oberfield (2012)
- Uninsurable risk: Farhi and Werning (2013), Golosov, Troshkin, and Tsyvinski (2016)

Preferences

• Preferences over consumption (c), hours (h), publicly-provided goods (G), and skill-investment (s) effort:

$$U_{i} = -v_{i}(s_{i}) + \mathbb{E}_{0} \sum_{a=0}^{A} \beta^{a} u_{i}(c_{ia}, h_{ia}, G)$$

Preferences

• Preferences over consumption (c), hours (h), publicly-provided goods (G), and skill-investment (s) effort:

$$U_{i} = -v_{i}(s_{i}) + \mathbb{E}_{0} \sum_{a=0}^{A} \beta^{a} u_{i}(c_{ia}, h_{ia}, G)$$

$$v_{i}(s_{i}) = \frac{1}{(\kappa_{i})^{1/\psi}} \cdot \frac{s_{i}^{1+1/\psi}}{1+1/\psi}$$

$$\kappa_{i} \sim Exp(1)$$

Preferences

• Preferences over consumption (c), hours (h), publicly-provided goods (G), and skill-investment (s) effort:

$$U_{i} = -v_{i}(s_{i}) + \mathbb{E}_{0} \sum_{a=0}^{A} \beta^{a} u_{i}(c_{ia}, h_{ia}, G)$$

$$v_{i}(s_{i}) = \frac{1}{(\kappa_{i})^{1/\psi}} \cdot \frac{s_{i}^{1+1/\psi}}{1+1/\psi}$$

$$\kappa_{i} \sim Exp(1)$$

$$u_{i}\left(c_{ia}, h_{ia}, G\right) = \log c_{ia} - \frac{\exp\left[\left(1 + \sigma\right)\left(\varphi_{i} + \bar{\varphi}_{a}\right)\right]}{1 + \sigma} \left(h_{ia}\right)^{1 + \sigma} + \chi \log G$$

$$\varphi_{i} \sim \mathcal{N}\left(\frac{v_{\varphi}}{2}, v_{\varphi}\right)$$

Technology

Output is a CES aggregator over continuum of skill types s:

$$Y = \left[\int_0^\infty N(s)^{\frac{\theta - 1}{\theta}} ds \right]^{\frac{\theta}{\theta - 1}}, \quad \theta \in [1, \infty)$$

- ightharpoonup N(s): effective hours of type s
- Aggregate resource constraint:

$$Y = \sum_{a=0}^{A} \int_{i=0}^{1} c_{i,a} \, di + G$$

▶ WLOG: G = gY

Individual Wages and Earnings

• Hourly wages:

$$\log w_{ia} = \log p(s_i) + x_a + \alpha_{ia}$$

- ightharpoonup p(s): skill price = marginal product of labor of type s
- $ightharpoonup x_a$: deterministic age-productivity profile

- Autarky: no insurance against ω and no inter-temporal trade
- Gross earnings:

$$y_{ia} = \underbrace{p(s_i)}_{\text{skill investment}} \times \underbrace{\exp(x_a)}_{\text{life-cycle}} \times \underbrace{\exp(\alpha_{ia})}_{\text{shocks}} \times \underbrace{h_{ia}}_{\text{labor supply}}$$

Government

Government budget constraint (no government debt):

$$gY = \sum_{a=0}^{A} \int_0^1 \left[y_i - \lambda_a y_i^{1-\tau_a} \right] di$$

• Government chooses vector $\{\lambda_a^*, \tau_a^*\}_{a=0}^A$ and g^*

Government

Government budget constraint (no government debt):

$$gY = \sum_{a=0}^{A} \int_{0}^{1} \left[y_{i} - \lambda_{a} y_{i}^{1-\tau_{a}} \right] di$$

- Government chooses vector $\{\lambda_a^*, \tau_a^*\}_{a=0}^A$ and g^*
 - ▶ Optimal public good provision: $g^* = \frac{\chi}{1+\chi}$
 - ► Samuelson condition: $MRS_{C,G} = MRT_{C,G} = 1$

Skill Prices and Skill Investment

Skill price has the Mincerian form:

$$\log p(s) = \pi_0(\bar{\tau}) + \pi_1(\bar{\tau})s(\kappa; \bar{\tau})$$

- Closed form expressions for $\pi_0(\bar{\tau})$ and $\pi_1(\bar{\tau})$
- Optimal skill investment is linear in κ :

$$s(\kappa; \bar{\tau}) = \left[(1 - \bar{\tau}) \pi_1(\bar{\tau}) \right]^{\psi} \cdot \kappa$$

where:
$$\bar{\tau} = \frac{1-\beta}{1-\beta^{A+1}} \sum_{a=0}^{A} \beta^a \tau_a$$

• Distribution of p(s) is Pareto with parameter θ

Consumption and Hours

$$\log c_a = \log \lambda_a + (1 - \tau_a) \left[\frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \log p(s) + x_a + \alpha \right]$$

Progressivity determines the pass-through of shocks/inequality

Consumption and Hours

$$\log c_a = \log \lambda_a + (1 - \tau_a) \left[\frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \log p(s) + x_a + \alpha \right]$$

Progressivity determines the pass-through of shocks/inequality

$$\log h_a = \frac{\log(1-\tau_a)}{1+\sigma} - (\varphi + \bar{\varphi}_a)$$

• Log-utility \rightarrow hours unaffected by $\{\lambda_a, p(s), x_a, \alpha\}$

Consumption and Hours

$$\log c_a = \log \lambda_a + (1 - \tau_a) \left[\frac{\log(1 - \tau_a)}{1 + \sigma} - (\varphi + \bar{\varphi}_a) + \log p(s) + x_a + \alpha \right]$$

Progressivity determines the pass-through of shocks/inequality

$$\log h_a = \frac{\log(1-\tau_a)}{1+\sigma} - (\varphi + \bar{\varphi}_a)$$

- Log-utility \rightarrow hours unaffected by $\{\lambda_a, p(s), x_a, \alpha\}$
- Note: insurable productivity shocks enters h but not c

Social Welfare Function

- Utilitarian: equal weight on welfare of all currently alive agents, discounts welfare of future cohorts at rate β
- Start with policy that maximizes steady state welfare
- Then consider policy that maximizes welfare including transition
 - ▶ Initial condition: steady-state under τ^{US}
 - ► Transition driven by irreversible skill choice of existing cohorts
 - Allow $\{\lambda_{at}\}$ to balance budget every period t along transition
- Easy to optimize over large vector of $\{\lambda_a^*, \tau_a^*\}_{a=0}^A$ because social welfare has a closed-form

Social Welfare Function

$$\mathcal{W}^{ss}(\{\tau_a\}) = -\frac{1}{A} \sum_{a=0}^{A-1} \underbrace{\frac{1-\tau_a}{1+\sigma}}_{\text{Disutility of labor}}$$

$$+ (1+\chi) \log \left[\sum_{a=0}^{A-1} (1-\tau_a)^{\frac{1}{1+\sigma}} \cdot \exp(x_a - \bar{\varphi}_a) \right]$$

Effective hours
$$N_a$$

$$+ (1+\chi)\frac{1}{(1+\psi)(\theta-1)} \left[\psi \log(1-\bar{\tau}) + \log\left(\frac{1}{\eta\theta^{\psi}} \left(\frac{\theta}{\theta-1}\right)^{\theta(1+\psi)}\right) \right]$$

Productivity: $\log(\text{average skill price}) = \log(E[p(s)])$

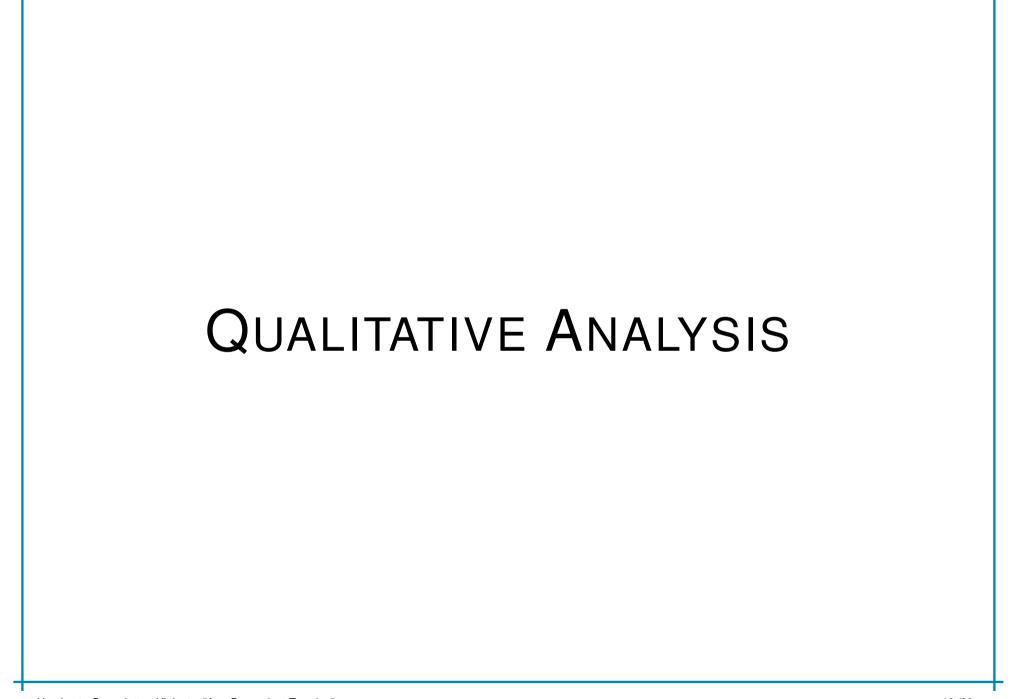
$$- \underbrace{\frac{\psi}{1+\psi} \frac{1-\bar{\tau}}{\theta}}_{1+\psi} + \frac{1}{A} \sum_{a=0}^{A-1} \left[\log\left(1-\left(\frac{1-\tau_a}{\theta}\right)\right) + \left(\frac{1-\tau_a}{\theta}\right) \right]$$

Avg. education cost

Cost of consumption dispersion across skills

$$- \frac{1}{A} \sum_{a=0}^{A-1} \frac{1}{2} (1 - \tau_a)^2 (v_{\varphi} + av_{\omega})$$

Cons. dispersion due to unins. risk and pref. heter.



Optimal Policy: Conditions for Age Invariance of au_a

- 1. Optimal $\{\tau_a^*, \lambda_a^*\}$ are age-invariant if:
 - (a) $\beta = 1$: no discounting
 - (b) $v_{\omega} = 0$: flat profile of uninsurable productivity dispersion
 - (c) flat age profile of efficiency net of disutility $\{x_a \bar{\varphi}_a\}$

Optimal Policy: Conditions for Age Invariance of au_a

- 1. Optimal $\{\tau_a^*, \lambda_a^*\}$ are age-invariant if:
 - (a) $\beta = 1$: no discounting
 - (b) $v_{\omega} = 0$: flat profile of uninsurable productivity dispersion
 - (c) flat age profile of efficiency net of disutility $\{x_a \bar{\varphi}_a\}$
- 2. If, in addition, $\theta=\infty$ and $v_{\varphi}=0$, the economy \to RA and $\tau_a^*=-\chi$
 - Regressivity corrects the externality linked to valued G

Optimal Policy: Conditions for Age Invariance of au_a

- 1. Optimal $\{\tau_a^*, \lambda_a^*\}$ are age-invariant if:
 - (a) $\beta = 1$: no discounting
 - (b) $v_{\omega} = 0$: flat profile of uninsurable productivity dispersion
 - (c) flat age profile of efficiency net of disutility $\{x_a \bar{\varphi}_a\}$
- 2. If, in addition, $\theta=\infty$ and $v_{\varphi}=0$, the economy \to RA and $\tau_a^*=-\chi$
 - Regressivity corrects the externality linked to valued G
- 3. Given any profile for $\{\tau_a\}$, the optimal profile for $\{\lambda_a^*\}$ equates average consumption by age

Optimal Age-Varying Progressivity

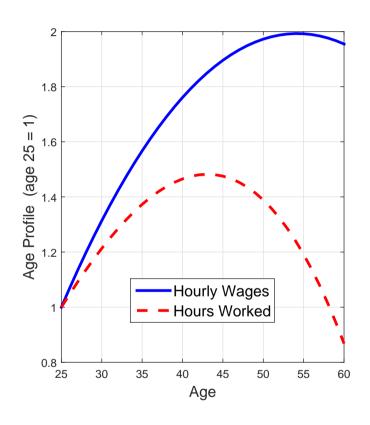
- Three separate channels that shape age profile of progressivity:
 - (a) Discounting Channel $\beta < 1$ implies an optimal profile for $\{\tau_a^*\}$ increasing in age
 - (b) Uninsurable Risk Channel Permanent uninsurable risk $(v_{\omega} > 0)$ implies an optimal profile for $\{\tau_a^*\}$ is increasing in age
 - (c) Life-Cycle Channel Introducing an age profile in $\{x_a \overline{\varphi}_a\}$ implies an optimal profile for $\{\tau_a^*\}$ which is its mirror image.

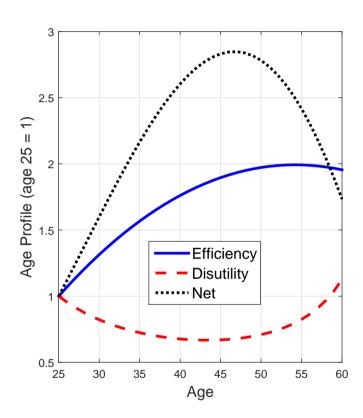
Optimal Age-Varying Progressivity

- Three separate channels that shape age profile of progressivity:
 - (a) Discounting Channel $\beta < 1$ implies an optimal profile for $\{\tau_a^*\}$ increasing in age
 - (b) Uninsurable Risk Channel Permanent uninsurable risk $(v_{\omega} > 0)$ implies an optimal profile for $\{\tau_a^*\}$ is increasing in age
 - (c) Life-Cycle Channel Introducing an age profile in $\{x_a \bar{\varphi}_a\}$ implies an optimal profile for $\{\tau_a^*\}$ which is its mirror image.
 - The optimal $\{\lambda_a^*, \tau_a^*\}$ equate labor wedge, i.e. $1 MTR_a$ and the MUC_a , i.e. consumption, by age

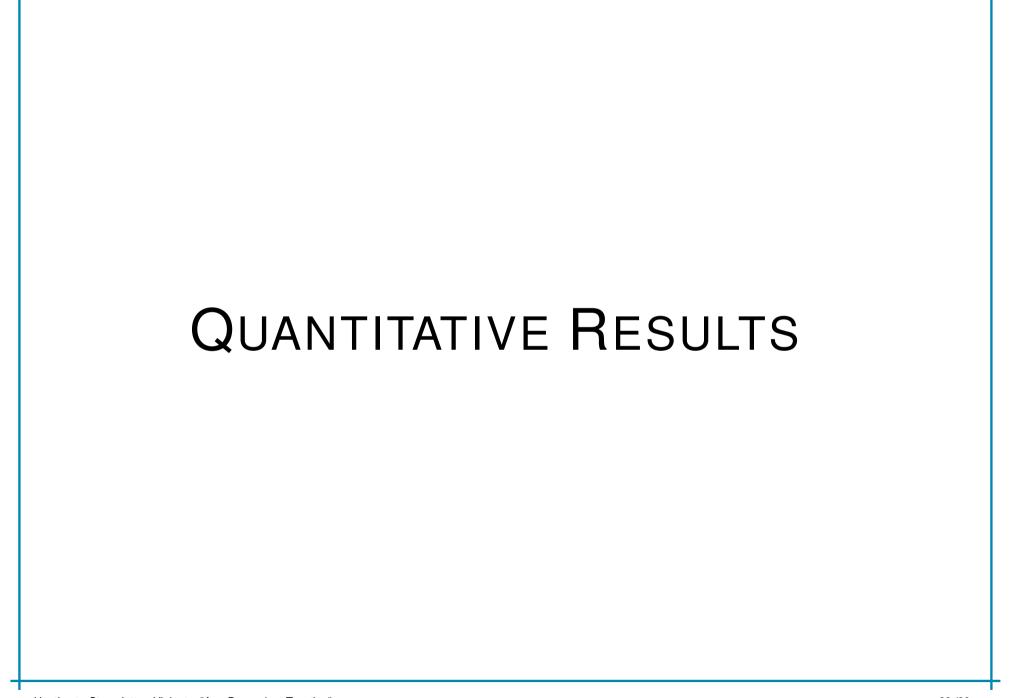


Age Profile for Efficiency and Disutility of Work

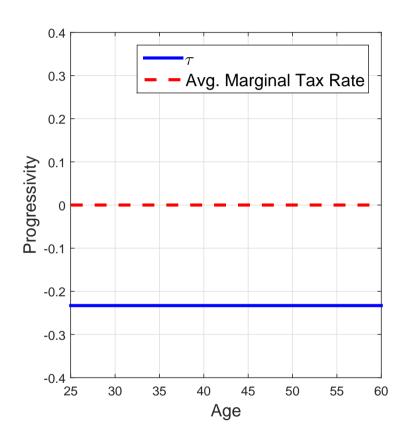


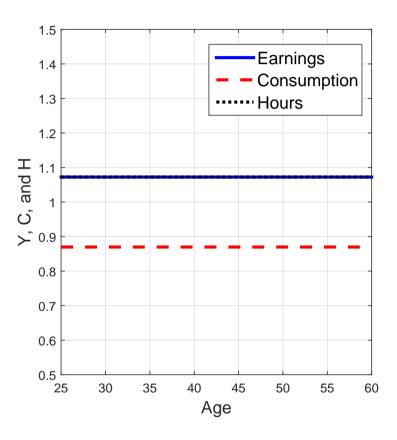


• Important: $\{x_a - \bar{\varphi}_a\}$ is strongly hump-shaped



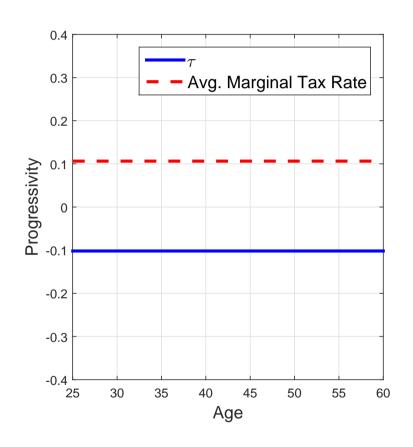
Representative Agent

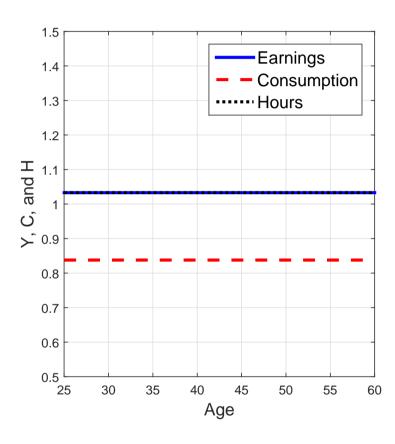




• Optimality: $\tau_a^* = -\chi$

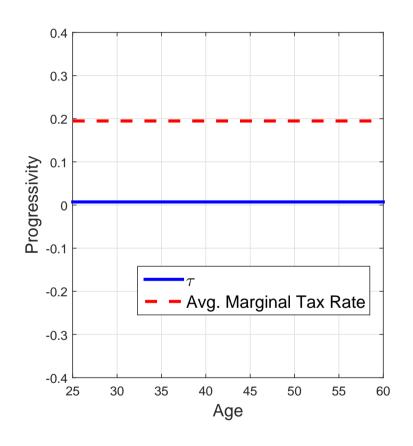
Add Heterogeneity in Disutility of Work (φ)

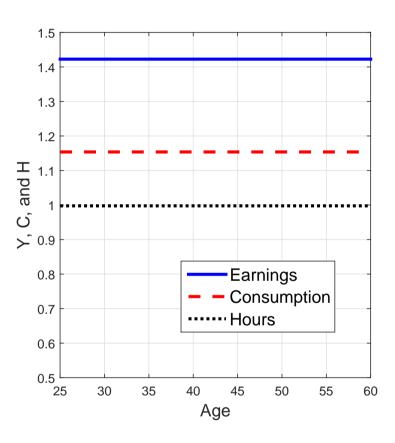




• τ_a^* still flat but shifted up (redistribution) \Rightarrow lower labor supply

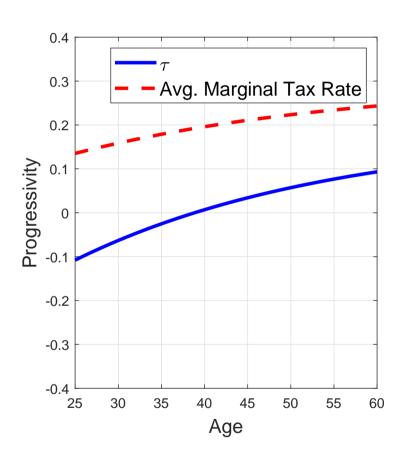
Add Heterogeneity in Ability (θ finite)

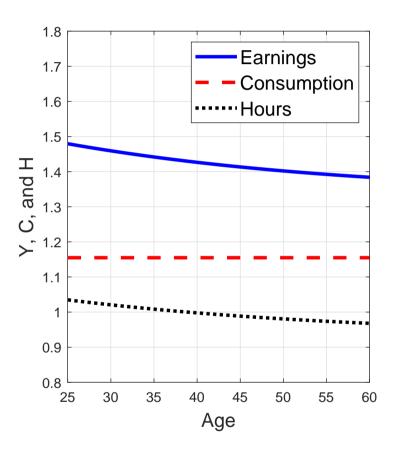




• τ_a^* still flat but shifted further up (redistribution > distortion)

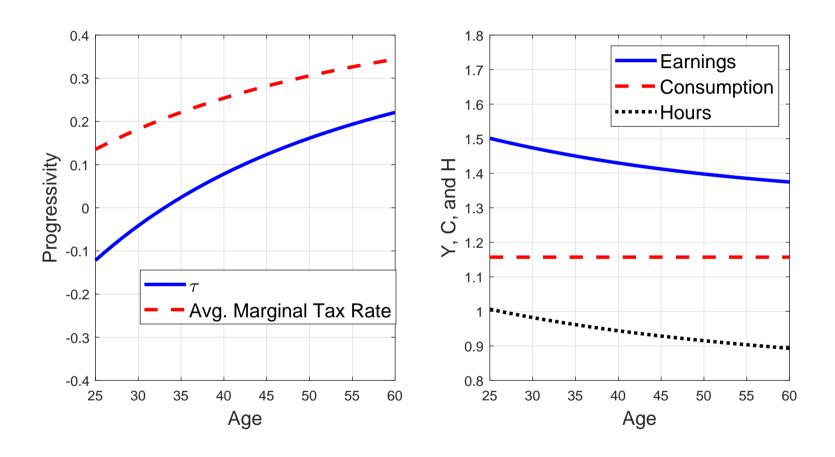
Add Discounting ($\beta < 1$)





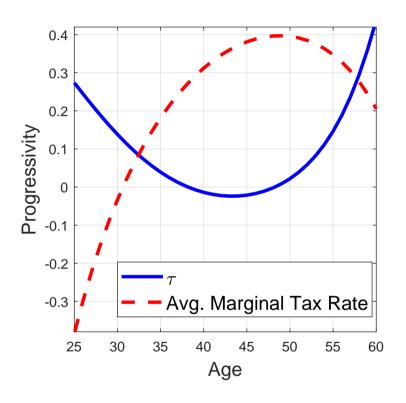
• Skill choice depends on $\bar{\tau}^* = \frac{1-\beta}{1-\beta^{A+1}} \sum_{a=0}^{A} \beta^a \tau_a^*$

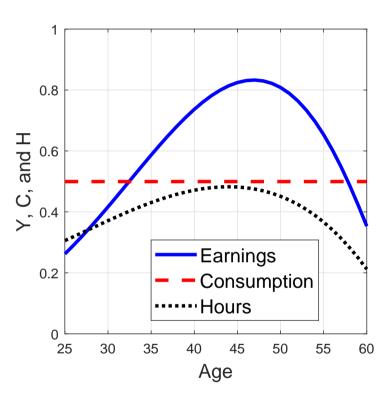
Add Labor Market Risk ($v_{\omega} > 0$)



• Profile for τ_a^* steeper: more redistribution needed later in life since uninsurable risk cumulates

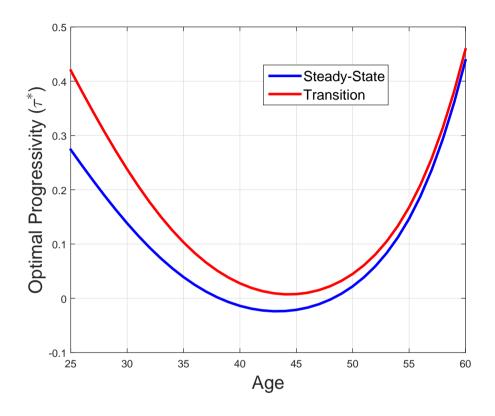
Add Life Cycle $\{x_a, \bar{\varphi}_a\}$





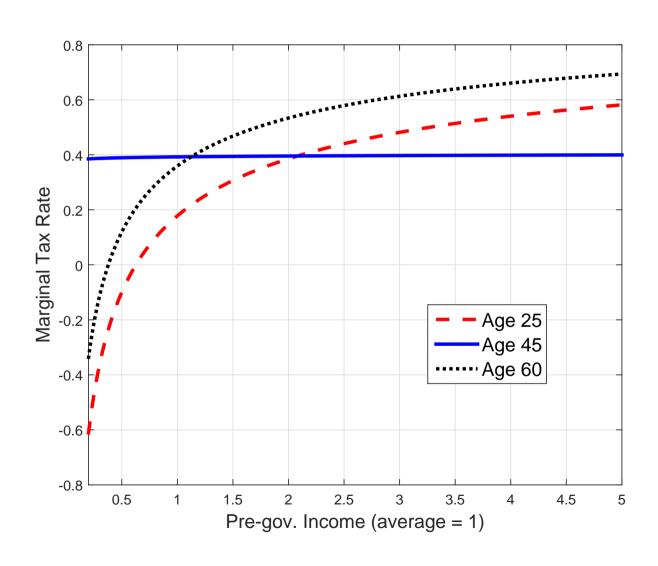
• $x_a - \bar{\varphi}_a$ hump-shaped + τ_a distorts labor supply $\Rightarrow \tau_a^*$ U-shaped

Transitional Dynamics: All Channels

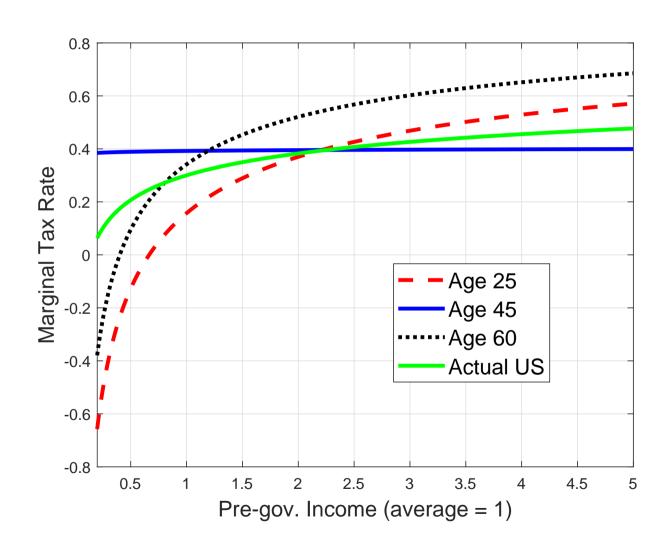


- Sunk skill investment channel: $\Rightarrow \tau_a^*$ higher at all ages
- Discounting channel weaker: \Rightarrow profile for τ_a^* flatter

All Channels: Marginal Tax Rates by Age



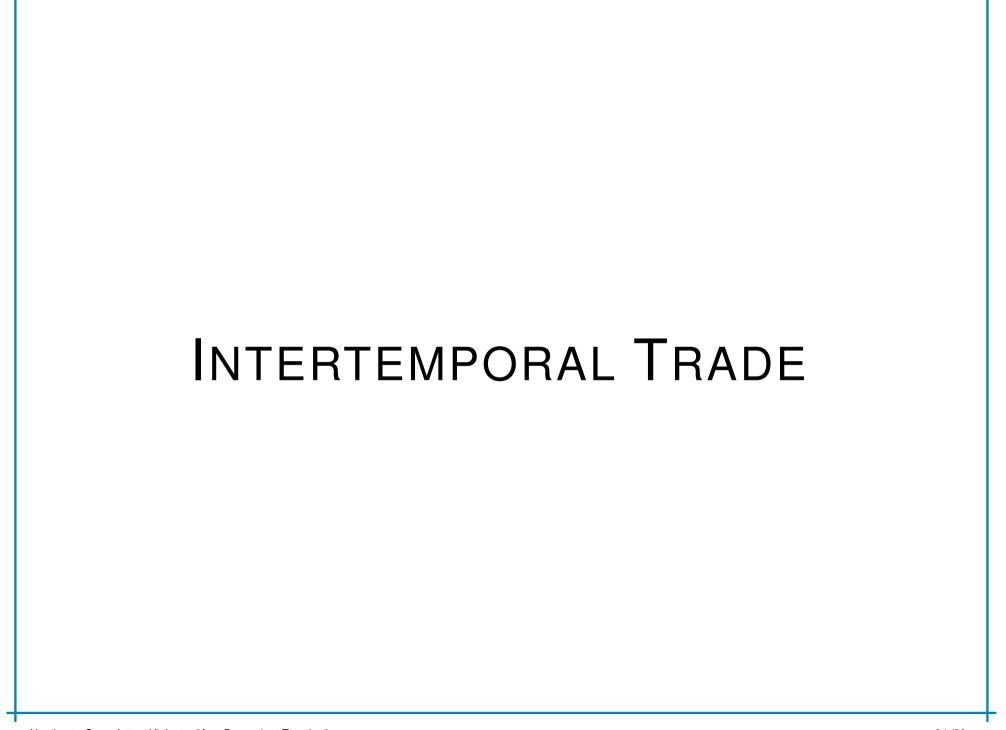
All Channels: Marginal Tax Rates by Age



Welfare Gains

- Equivalent variation: % of lifetime consumption
- Computed relative to the US tax/transfer system

	Benchmark	U.S. BL	Natural BL
(λ^*, au^*) constant	0.04		
λ^* age-varying, $ au^*$ constant	3.00		
(λ^*, au^*) age-varying	3.70		



Introducing Borrowing and Lending

- Modification to baseline model:
 - Non-contingent bonds in zero net supply s.t. credit limit

Introducing Borrowing and Lending

- Modification to baseline model:
 - Non-contingent bonds in zero net supply s.t. credit limit
- Numerical solution:
 - Skill investment decision rules unchanged
 - Solve numerically for hours worked, savings, interest rate
 - ightharpoonup Search for optimal $\{\tau_a\}$ as 3rd order polynomial of age

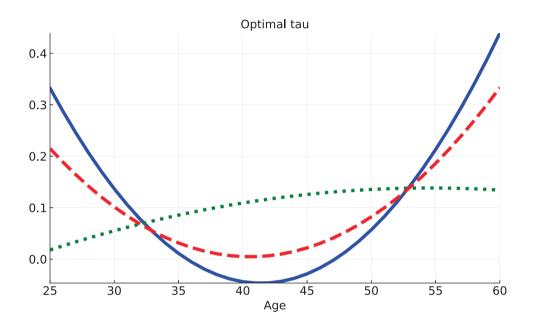
Estimation of Consumer Credit Limit

- SCF 2013 data, households 25-60. We sum four components:
 - (a) Limit on credit cards
 - (b) Limit on HELOCs
 - (c) Installment loans for durables
 - (d) Other debt (e.g., short-term loans from IRA)
- We set it to 2 × annual income (95th pct conditional on borrowing)

Estimation of Consumer Credit Limit

- SCF 2013 data, households 25-60. We sum four components:
 - (a) Limit on credit cards
 - (b) Limit on HELOCs
 - (c) Installment loans for durables
 - (d) Other debt (e.g., short-term loans from IRA)
- We set it to 2 × annual income (95th pct conditional on borrowing)
- Zero BL (tightest) ⇒ autarky
- Natural BL (loosest): max 30 times annual income

Optimal Progressivity with Borrowing/Saving



- Zero BL: $\{\tau_a^*\}$ identical to benchmark model
- Natural BL: $\{\tau_a^*\}$ close to model with flat profile for $\{x_a \bar{\varphi}_a\}$
- U.S. BL: $\{\tau_a^*\}$ closer to autarky/benchmark case

Welfare Gains

- Equivalent variation: % of lifetime consumption
- Computed relative to the US tax/transfer system

	Benchmark	U.S. BL	Natural BL
(λ^*, au^*) constant	0.04	0.15	0.15
λ^* age-varying, $ au^*$ constant	3.00	1.88	1.43
(λ^*, au^*) age-varying	3.70	2.12	1.47

