Mirrlees meets Diamond-Mirrlees

Simplifying Nonlinear Income Taxation

Florian Scheuer Iván Werning

Motivation

- Two workhorse models of Public Finance
 - Linear commodity taxation
 Diamond-Mirrlees (1971)
 - Nonlinear income taxation
 Mirrlees (1971)
- Widely used formulas

Very different approaches

Motivation

- Two workhorse models of Public Finance
 - Linear commodity taxation
 Diamond-Mirrlees (1971)
 - Nonlinear income taxation
 Mirrlees (1971)
- Widely used formulas

Very different approaches

--> Connection?

This Paper

- Show that Mirrlees is an application of DM
 - DM: only linear taxation, but...
 - ... can treat each income level as different good

This Paper

- Show that Mirrlees is an application of DM
 - DM: only linear taxation, but...
 - ... can treat each income level as different good
- Derive Mirrlees formula from DM formula
 - Simpler than standard approach, once...
 - extension to continuum of goods

This Paper

- Show that Mirrlees is an application of DM
 - DM: only linear taxation, but...
 - ... can treat each income level as different good
- Derive Mirrlees formula from DM formula
 - Simpler than standard approach, once...
 - extension to continuum of goods
- Benefits
 - Greater generality Technology, Heterogeneity
 - Common economic interpretation "Inverse Elasticity Rule"
 - Can easily tackle richer problems Dynamics, Behavioral Margins

Related Literature

Variational approach
 Piketty (1997), Saez (2001), Golosov et al. (2015)

Variations

Linear Tax Nonlinear
Formulas Tax Formulas

Related Literature

Variational approach
 Piketty (1997), Saez (2001), Golosov et al. (2015)

(Variations)

Linear Tax Nonlinear

Formulas Tax Formulas

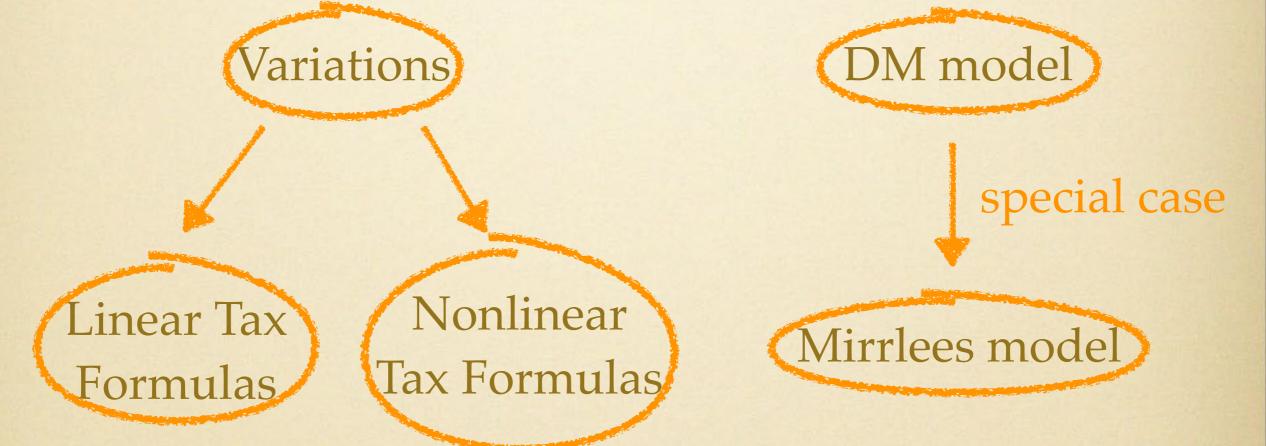
DM model

special case

Mirrlees model

Related Literature

Variational approach
 Piketty (1997), Saez (2001), Golosov et al. (2015)



• Mirrleesian taxation with GE effects
Rothschild-Scheuer (2013, 2016), Ales et al. (2015),
Scheuer-Werning (2017), Sachs et al. (2017), Costinot-Werning (2018)

Outline

- 1. DM and Mirrlees models
- 2. Mirrlees as special case of DM
- 3. Optimal tax formulas
- 4. Mirrlees formula derived from DM formula
- 5. Applications and extensions

DM and Mirrlees Models

- Agents $h \in H$
 - utility $u^h(x^h)$
 - net demands $x \in X$
- Technology $G(\overline{x}) \leq 0$
 - lacktriangle aggregate net demands \overline{x}
- Budget constraints $B(x^h, q) = I$
 - lump-sum tax I
 - consumer prices q
- Social welfare function $W(\{u^h\})$

DIVI Model

- Agents $h \in H$
 - utility $u^h(x^h)$
 - net demands $x \in X$
- Technology $G(\overline{x}) \leq 0$
 - \bullet aggregate net demands \overline{x}
- Budget constraints $B(x^h, q) = I$

 - lump-sum tax I or consumer prices q DM: I=0
- Social welfare function $W(\{u^h\})$

Policy problem

$$\max_{q,\{x^h\}} W\left(\left\{u^h(x^h)\right\}\right)$$

s.t.

$$G(\overline{x}) \leq 0$$

and
$$x^h \in \arg\max_{x} u^h(x)$$
 s.t. $B(x,q) = 0$

Policy problem

$$\max_{q,\{x^h\}} W\left(\{u^h(x^h)\}\right)$$

s.t.

$$G(\overline{x}) \leq 0$$

and
$$x^h \in \arg\max_{x} u^h(x)$$
 s.t. $B(x,q) = 0$

- If G is convex and has CRS, can decentralize
 - firms max profits at prices $p \neq q$
 - taxes t = q p

- Finite agents and goods
 - finite population
 - aggregate demands
 - finite set of goods
 - individual demands
 - budget constraints

- Finite agents and goods
 - finite population $H = \{1, 2, ..., M\}$
 - aggregate demands
 - finite set of goods
 - individual demands
 - budget constraints

- Finite agents and goods
 - finite population $H = \{1, 2, ..., M\}$
 - aggregate demands $\overline{x} = \sum_{h=1}^{M} x^h$
 - finite set of goods
 - individual demands
 - budget constraints

- Finite agents and goods
 - finite population $H = \{1, 2, ..., M\}$
 - aggregate demands $\overline{x} = \sum_{h=1}^{M} x^h$
 - finite set of goods $i \in \{1, 2, ..., N\}$
 - individual demands
 - budget constraints

- Finite agents and goods
 - finite population $H = \{1, 2, ..., M\}$
 - aggregate demands $\overline{x} = \sum_{h=1}^{M} x^h$
 - finite set of goods $i \in \{1, 2, ..., N\}$
 - individual demands $x^h = (x_1^h, x_2^h, ..., x_N^h)$
 - budget constraints

- Finite agents and goods
 - finite population $H = \{1, 2, ..., M\}$
 - aggregate demands $\overline{x} = \sum_{h=1}^{M} x^h$
 - finite set of goods $i \in \{1, 2, ..., N\}$
 - individual demands $x^h = (x_1^h, x_2^h, ..., x_N^h)$
 - budget constraints $q \cdot x^h = \sum_{i=1}^N q_i x_i^h = 0$

- Finite agents and goods
 - finite population $H = \{1, 2, ..., M\}$
 - aggregate demands $\overline{x} = \sum_{h=1}^{M} x^h$
 - finite set of goods $i \in \{1, 2, ..., N\}$
 - individual demands $x^h = (x_1^h, x_2^h, ..., x_N^h)$
 - budget constraints $q \cdot x^h = \sum_{i=1}^N q_i x_i^h = 0$
- Continuum of agents and goods
 - measure of agents μ_h over set \mathcal{H}
 - agents consume signed measure χ^h over X
 - linear budget constraints $B(\chi^h, q) = 0$

Mirrlees Model

- Agents
 - skills $\theta \sim F(\theta)$
 - utility $U(c, y; \theta)$ e.g. $u(c, y/\theta)$
- Technology

$$\int c(\theta)dF(\theta) \le \int y(\theta)dF(\theta)$$

Budget constraints

$$c(\theta) \le y(\theta) - T(y(\theta)) \equiv R(y(\theta))$$

• Social welfare function $W(\{U(c(\theta), y(\theta); \theta)\})$

Mirrlees Model

Policy problem

$$\max_{\{c(\theta),y(\theta)\},R(.)} W(\{U(c(\theta),y(\theta);\theta)\})$$

s.t.
$$\int c(\theta)dF(\theta) \leq \int y(\theta)dF(\theta)$$

and
$$c(\theta), y(\theta) \in \arg\max_{c,y} U(c, y; \theta)$$
 s.t. $c \leq R(y)$

Mirrlees Model

Policy problem

$$\max_{\{c(\theta),y(\theta)\},R(.)} W(\{U(c(\theta),y(\theta);\theta)\})$$

s.t.
$$\int c(\theta)dF(\theta) \leq \int y(\theta)dF(\theta)$$

and
$$c(\theta), y(\theta) \in \arg\max_{c,y} U(c, y; \theta)$$
 s.t. $c \leq R(y)$

- Solve using mechanism design
 - incentive compatible allocations $c(\theta)$, $y(\theta)$
 - optimal control problem

- Commodity space
 - single consumption good
 - continuum of labor varieties $y \ge 0$
 - agent θ chooses $c \ge 0$ and measure $H_{\theta}(y)$

- Commodity space
 - single consumption good
 - continuum of labor varieties $y \ge 0$
 - agent θ chooses $c \ge 0$ and measure $H_{\theta}(y)$
- Budget constraint $c \le \int_0^\infty q(y)dH_\theta(y)$

- Commodity space
 - single consumption good
 - continuum of labor varieties $y \ge 0$
 - agent θ chooses $c \ge 0$ and measure $H_{\theta}(y)$
- Budget constraint $c \le \int_0^\infty q(y)dH_\theta(y)$
- Taxes
 - q(y) p(y) on variety y (zero tax on c)
 - p(y) = y with linear technology

- Commodity space
 - single consumption good
 - continuum of labor varieties $y \ge 0$
 - agent θ chooses $c \ge 0$ and measure $H_{\theta}(y)$
- Budget constraint $c \le \int_0^\infty q(y)dH_\theta(y)$
- Taxes
 - q(y) p(y) on variety y (zero tax on c)
 - p(y) = y with linear technology

Preferences

- must put full mass on one value of y
- $H_{\theta}(y)$ is a step function $-c \leq q(y)$

Issues

- Natural quantities are densities
 - budget constraint

$$c \le \int_0^\infty q(y)h_\theta(y)dy$$

• but $H_{\theta}(y)$ does not admit density

Issues

- Natural quantities are densities
 - budget constraint

$$c \le \int_0^\infty q(y)h_\theta(y)dy$$

- but $H_{\theta}(y)$ does not admit density
- Discontinuous effects on demand
 - suppose q(y) = p(y) = y
 - density over y in aggregate
 - raise $q(y_0)$ at a point y_0
 - \rightarrow mass of agents shift to y_0
 - reduce $q(y_0)$ at y_0
 - density drops discontinuously to 0

A Reformulation

Integrate budget constraint by parts

$$c \le \int_0^\infty q'(y)(1 - H_\theta(y))dy + I$$

- \rightarrow price q'(y)
- \rightarrow quantity $1 H_{\theta}(y)$

A Reformulation

Integrate budget constraint by parts

$$c \le \int_0^\infty q'(y)(1 - H_\theta(y))dy + I$$

- \rightarrow price q'(y)
- \rightarrow quantity $1 H_{\theta}(y)$
- Overcomes previous problems
 - quantities always well-defined

$$1 - H_{\theta}(y) = \mathbb{I}(y \le y(\theta))$$

• Aggregate demand no longer discontinuous w.r.t. small changes in q'(y)

$$1 - H(y) = \int_0^\infty (1 - H_\theta(y)) dF(\theta)$$

Tax Formulas

DM Formula

Diamond (1975) "Many-Person Ramsey Tax Rule"

$$\frac{\partial}{\partial \tau} \left(\sum_{h=1}^{M} x_i^{c,h} (q + \tau t) \right) \bigg|_{\tau=0} = \sum_{h=1}^{M} \hat{\beta}^h x_i^h$$

with

$$\hat{\beta}^h = \beta^h - 1 + \frac{\partial}{\partial I} \left(\sum_{j=1}^N t_j x_j^h(q, I) \right)$$

DM Formula

Diamond (1975) "Many-Person Ramsey Tax Rule"

$$\frac{\partial}{\partial \tau} \left(\sum_{h=1}^{M} x_i^{c,h} (q + \tau t) \right) \bigg|_{\tau=0} = \sum_{h=1}^{M} \hat{\beta}^h x_i^h$$

with

$$\hat{\beta}^h = \beta^h - 1 + \frac{\partial}{\partial I} \left(\sum_{j=1}^N t_j x_j^h(q, I) \right)$$

 \rightarrow Encourage goods consumed by those with high $\hat{\beta}^h$

DIM Formula

In terms of elasticities

$$\sum_{j=1}^{N} \frac{t_j}{q_j} \varepsilon_{ij}^c = \frac{\sum_h \hat{\beta}^h x_i^h}{X_i}$$

DM Formula

In terms of elasticities

$$\sum_{j=1}^{N} \frac{t_j}{q_j} \varepsilon_{ij}^c = \frac{\sum_h \hat{\beta}^h x_i^h}{X_i}$$

Special case: no cross-price effects

$$\frac{t_i}{q_i} = \frac{1}{\varepsilon_{ii}^c} \frac{\sum_h \hat{\beta}^h x_i^h}{X_i}$$

"Inverse elasticity rule"

Mirrlees Formula

$$\frac{T'(y)}{1-T'(y)}\varepsilon^{c}(y)yh(y) = \int_{y}^{\infty} (1-\beta_{\tilde{y}})dH(\tilde{y}) + \int_{y}^{\infty} \frac{T'(\tilde{y})}{1-T'(\tilde{y})}\eta(\tilde{y})dH(\tilde{y})$$

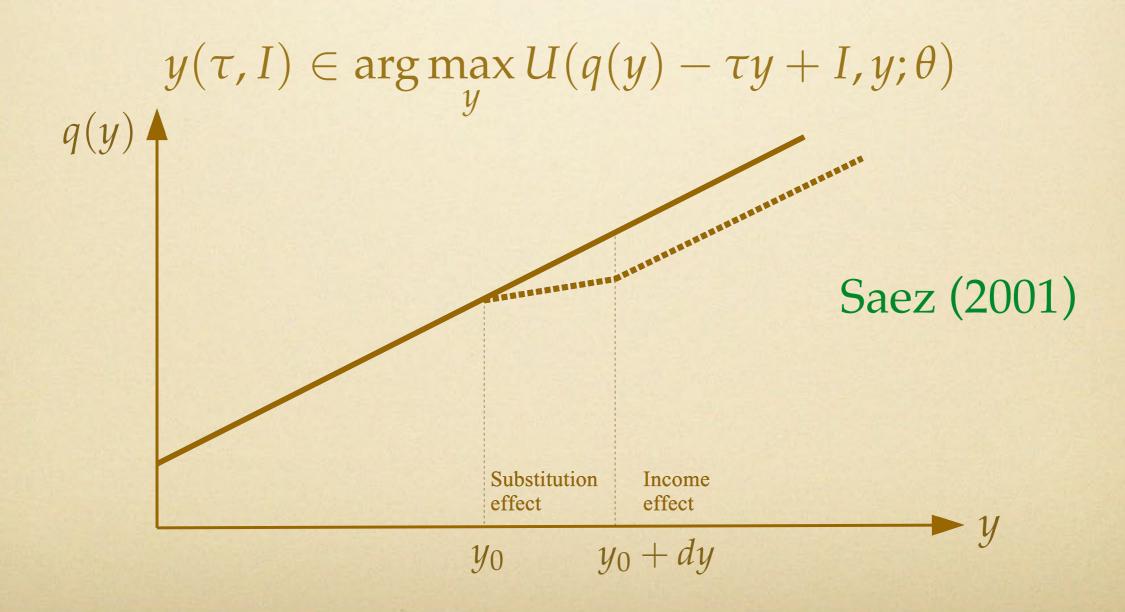
with elasticities from

$$y(\tau, I) \in \arg\max_{y} U(q(y) - \tau y + I, y; \theta)$$

Mirrlees Formula

$$\frac{T'(y)}{1-T'(y)}\varepsilon^{c}(y)yh(y) = \int_{y}^{\infty} (1-\beta_{\tilde{y}})dH(\tilde{y}) + \int_{y}^{\infty} \frac{T'(\tilde{y})}{1-T'(\tilde{y})}\eta(\tilde{y})dH(\tilde{y})$$

with elasticities from



From DM to Mirrlees

Recall

$$\left. \frac{\partial}{\partial \tau} \left(\sum_{h} x_i^{c,h} (q + \tau t) \right) \right|_{\tau=0}$$

Recall

$$\left. \frac{\partial}{\partial \tau} \left(\sum_{h} x_i^{c,h} (q + \tau t) \right) \right|_{\tau=0}$$

 \rightarrow corresponds to $q'(y) \rightarrow q'(y;\tau) = q'(y) + \tau t'(y)$

Recall

$$\left. \frac{\partial}{\partial \tau} \left(\sum_{h} x_i^{c,h} (q + \tau t) \right) \right|_{\tau=0}$$

 \rightarrow corresponds to $q'(y) \rightarrow q'(y;\tau) = q'(y) + \tau t'(y)$

$$\frac{\partial}{\partial \tau} \left(1 - H^c(y; \tau) \right) \Big|_{\tau=0}$$

Recall

$$\left. \frac{\partial}{\partial \tau} \left(\sum_{h} x_i^{c,h} (q + \tau t) \right) \right|_{\tau=0}$$

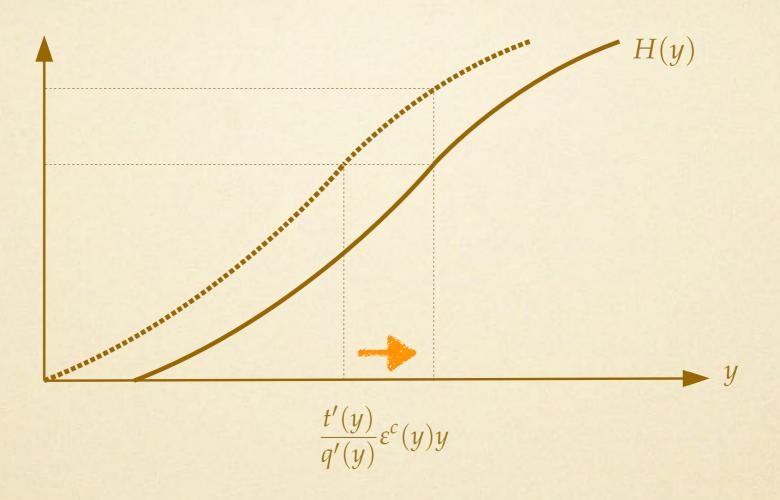
 \rightarrow corresponds to $q'(y) \rightarrow q'(y;\tau) = q'(y) + \tau t'(y)$

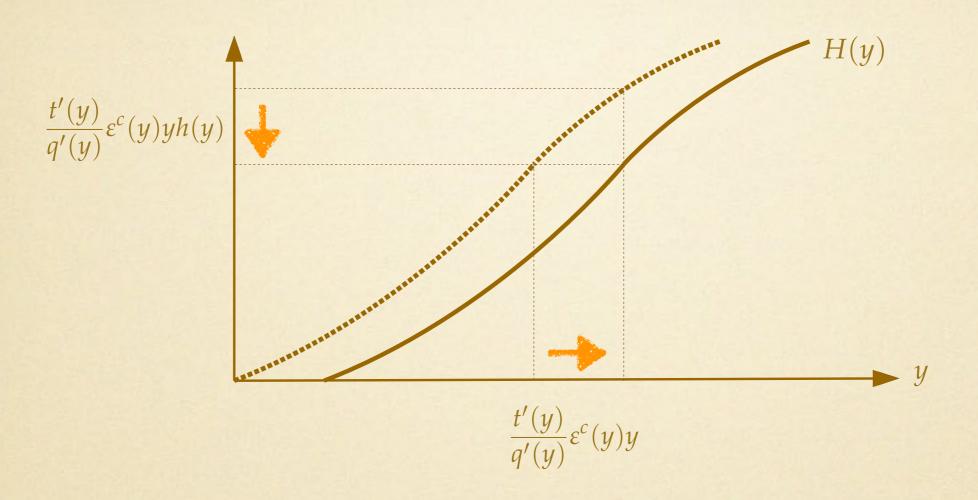
$$\frac{\partial}{\partial \tau} \left(1 - H^c(y; \tau) \right) \Big|_{\tau=0}$$

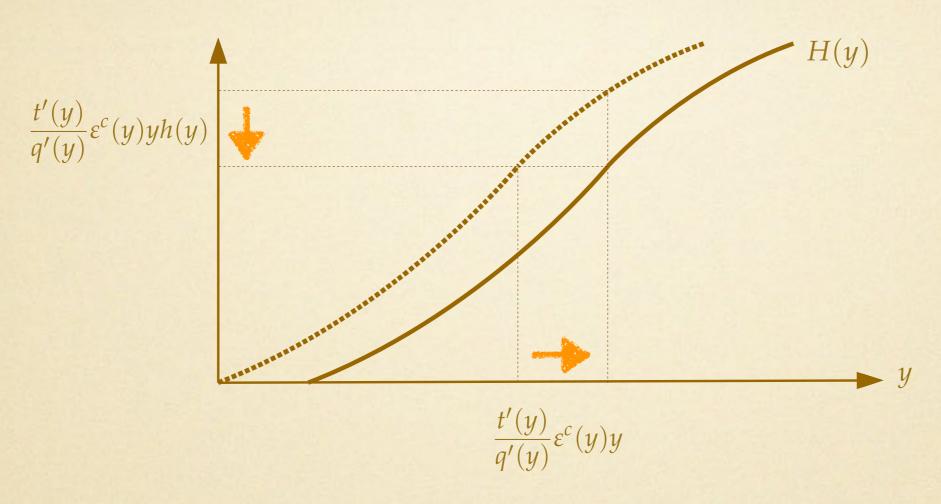
Agents raise y in response to small τ by

$$t'(y)\frac{\varepsilon^c(y)y}{q'(y)}$$

rightward shift in H(y)







$$\frac{\partial}{\partial \tau} \left(1 - H^c(y; \tau) \right) \bigg|_{\tau=0} = \frac{t'(y)}{q'(y)} \varepsilon^c(y) y h(y)$$

Inverse elasticity rule!

Recall
$$\sum_{h} x_{i}^{h} \left(\beta_{h} - 1 + \frac{\partial}{\partial I} \left(\sum_{j} t_{j} x_{j}^{h}(q, I) \right) \right)$$

Recall
$$\sum_{h} x_{i}^{h} \left(\beta_{h} - 1 + \frac{\partial}{\partial I} \left(\sum_{j} t_{j} x_{j}^{h}(q, I) \right) \right)$$

---- corresponds to

$$\int_0^\infty (1 - H_{\theta}(y)) \left(\beta_{\theta} - 1 - \frac{\partial}{\partial I} \int_0^\infty t'(z) (1 - H_{\theta}(z; I)) dz\right) dF(\theta)$$

Recall
$$\sum_{h} x_{i}^{h} \left(\beta_{h} - 1 + \frac{\partial}{\partial I} \left(\sum_{j} t_{j} x_{j}^{h}(q, I) \right) \right)$$

--> corresponds to

$$\int_0^\infty (1 - H_{\theta}(y)) \left(\beta_{\theta} - 1 - \frac{\partial}{\partial I} \int_0^\infty t'(z) (1 - H_{\theta}(z; I)) dz\right) dF(\theta)$$

use step-function and change variables

$$\int_{y}^{\infty} (\beta_{\tilde{y}} - 1) dH(\tilde{y}) + \int_{y}^{\infty} \frac{t'(\tilde{y})}{q'(\tilde{y})} \eta(\tilde{y}) dH(\tilde{y})$$

Recall
$$\sum_{h} x_{i}^{h} \left(\beta_{h} - 1 + \frac{\partial}{\partial I} \left(\sum_{j} t_{j} x_{j}^{h}(q, I) \right) \right)$$

--> corresponds to

$$\int_0^\infty (1 - H_{\theta}(y)) \left(\beta_{\theta} - 1 - \frac{\partial}{\partial I} \int_0^\infty t'(z) (1 - H_{\theta}(z; I)) dz\right) dF(\theta)$$

use step-function and change variables

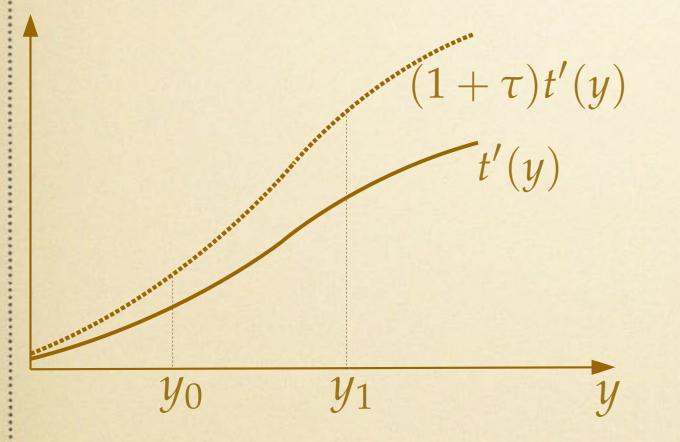
$$\int_{y}^{\infty} (\beta_{\tilde{y}} - 1) dH(\tilde{y}) + \int_{y}^{\infty} \frac{t'(\tilde{y})}{q'(\tilde{y})} \eta(\tilde{y}) dH(\tilde{y})$$

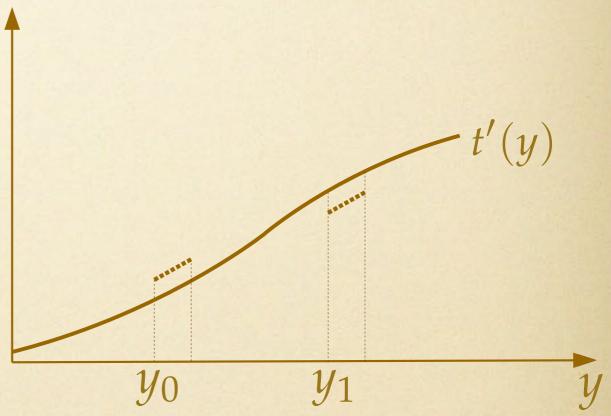
Combining with LHS immediately gives Mirrlees formula!

Variational Approach

Diamond-Mirrlees (1971)

Saez (2001)

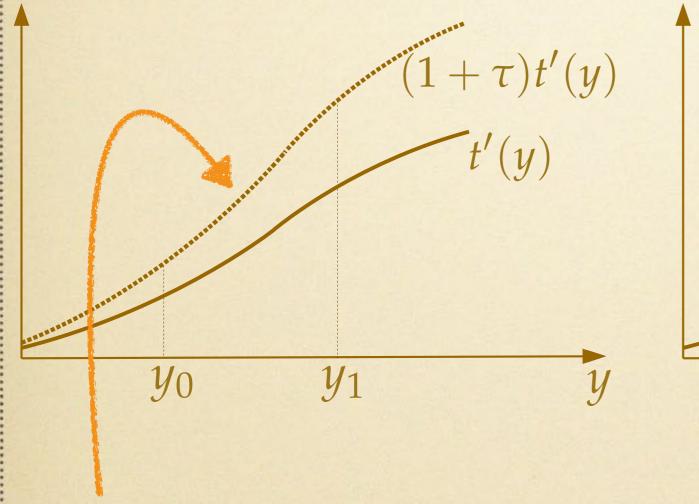




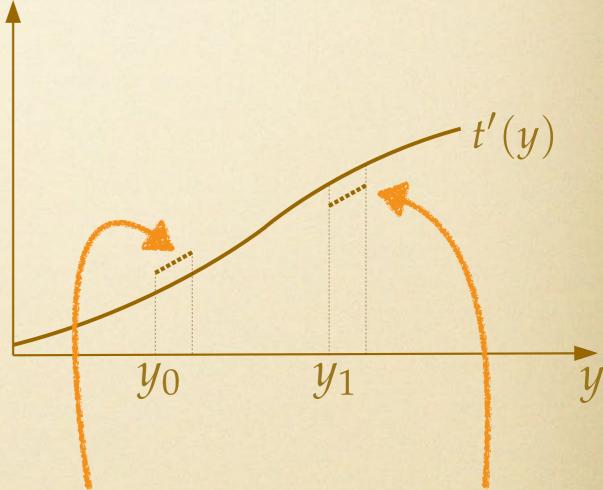
Variational Approach

Diamond-Mirrlees (1971)

Saez (2001)



Single global variation



Different local variations

Discussion

- Technology
 - DM holds for general G(H) → extends to Mirrlees!
 - $G(H^1,...H^S)$ neutrality still holds with $t^1(y),...,t^S(y)$
 - production efficiency is optimal
 - restricted tax instruments modifications
 tax formula: Rothschild-Scheuer (2013), Ales et al. (2015), Sachs et al. (2017), production efficiency: Costinot-Werning (2018)

Discussion

- Technology
 - DM holds for general G(H) → extends to Mirrlees!
 - $G(H^1,...H^S)$ neutrality still holds with $t^1(y),...,t^S(y)$
 - production efficiency is optimal
 - restricted tax instruments modifications
 tax formula: Rothschild-Scheuer (2013), Ales et al. (2015), Sachs et al. (2017), production efficiency: Costinot-Werning (2018)
- DWL interpretation

$$\frac{\partial D(t)/\partial t_i}{\sum_h x_i^h} = 1 - \frac{\sum_h \beta^h x_i^h}{\sum_h x_i^h} \,\forall i$$

Discussion

- Technology
 - DM holds for general G(H) → extends to Mirrlees!
 - $G(H^1,...H^S)$ neutrality still holds with $t^1(y),...,t^S(y)$
 - production efficiency is optimal
 - restricted tax instruments modifications
 tax formula: Rothschild-Scheuer (2013), Ales et al. (2015), Sachs et al. (2017), production efficiency: Costinot-Werning (2018)
- DWL interpretation

$$\frac{\partial D(t)/\partial t_i}{\sum_h x_i^h} = 1 - \frac{\sum_h \beta^h x_i^h}{\sum_h x_i^h} \forall i \longrightarrow \frac{\frac{\partial}{\partial \tau} D(T' + \tau \delta_y)|_{\tau=0}}{1 - H(y)} = 1 - \frac{\int_y^\infty \beta_{\tilde{y}} dH(\tilde{y})}{1 - H(y)} \forall y$$

DM

Mirrlees

Extensions

- Dynamics
 - \bullet ex ante $\theta \sim F(\theta)$
 - lifecycle $\delta \sim P(\delta|\theta)$
- "Annual" income tax q(y)
- Complete markets

$$c = \int_0^\infty q(y(\delta;\theta))dP(\delta|\theta)$$

- Dynamics
 - \bullet ex ante $\theta \sim F(\theta)$
 - lifecycle $\delta \sim P(\delta|\theta)$
- "Annual" income tax q(y)
- Complete markets

$$c = \int_0^\infty q(y(\delta;\theta))dP(\delta|\theta)$$

• Preferences $U(c, Y; \theta)$

with
$$Y = \int_0^\infty v(y(\delta; \theta), \delta) dP(\delta | \theta)$$

$$\left(\frac{T'(y)}{1-T'(y)} + \Lambda(y)\right) \varepsilon^{F}(y)yh(y) = \int_{y}^{\infty} (1-\bar{\beta}_{\tilde{y}})dH(\tilde{y}) + \int_{y}^{\infty} \frac{T'(\tilde{y})}{1-T'(\tilde{y})} \bar{\eta}(\tilde{y})dH(\tilde{y})$$

$$\left(\frac{T'(y)}{1-T'(y)} + \Lambda(y)\right) \left(\varepsilon^{F}(y)yh(y) = \int_{y}^{\infty} (1-\bar{\beta}_{\tilde{y}})dH(\tilde{y}) + \int_{y}^{\infty} \frac{T'(\tilde{y})}{1-T'(\tilde{y})}\bar{\eta}(\tilde{y})dH(\tilde{y})\right)$$
Frisch

• Frisch elasticity holds $\lambda = -U_c/U_Y$ fixed

elasticity

$$\frac{T'(y)}{1-T'(y)} + \Lambda(y) (\varepsilon^{F}(y)yh(y)) = \int_{y}^{\infty} (1-\bar{\beta}_{\tilde{y}})dH(\tilde{y}) + \int_{y}^{\infty} \frac{T'(\tilde{y})}{1-T'(\tilde{y})} \bar{\eta}(\tilde{y})dH(\tilde{y})$$
 lifetime Frisch

lifetime effects

Frisch elasticity

- Frisch elasticity holds $\lambda = -U_c/U_Y$ fixed
- Lifetime effects on λ

vanish with
$$U\left(c-\int_0^\infty v(y(\delta;\theta),\delta)dP(\delta|\theta);\theta\right)$$

$$\frac{T'(y)}{1-T'(y)} + \Lambda(y) (\varepsilon^{F}(y)yh(y)) = \int_{y}^{\infty} (1+\bar{\beta}_{\tilde{y}}) dH(\tilde{y}) + \int_{y}^{\infty} \frac{T'(\tilde{y})}{1-T'(\tilde{y})} (\bar{\eta}(\tilde{y})) dH(\tilde{y})$$
 lifetime Prisch elasticity averages

- Frisch elasticity holds $\lambda = -U_c/U_Y$ fixed
- Lifetime effects on λ vanish with $U\left(c-\int_0^\infty v(y(\delta;\theta),\delta)dP(\delta|\theta);\theta\right)$
- Fundamental welfare weights β_{θ} only vary with θ
 - \rightarrow $\bar{\beta}_y$ varies less than in static framework
 - \rightarrow T=0 if inequality from δ only

Human Capital

- Education e
 - affects productivity profile $P(\delta|\theta,e)$
 - lifetime utility $U(c, Y; \theta, e)$

Human Capital

- Education e
 - affects productivity profile $P(\delta|\theta,e)$
 - lifetime utility $U(c, Y; \theta, e)$
- Annual tax q(y)

Human Capital

- Education e
 - affects productivity profile $P(\delta|\theta,e)$
 - lifetime utility $U(c, Y; \theta, e)$
- Annual tax q(y)
- Same tax formula goes through!
- Λ now also captures effects of taxes on e

General Heterogeneity

- DM: arbitrary heterogeneity
- Mirrlees: only one dimension, single-crossing

General Heterogeneity

- DM: arbitrary heterogeneity
- Mirrlees: only one dimension, single-crossing
- Groups indexed by $\phi \in \Phi$
 - preferences $U(c, y; \theta, \phi)$
 - single-crossing only in terms of θ within ϕ
 - Φ can be arbitrary

General Heterogeneity

- DM: arbitrary heterogeneity
- Mirrlees: only one dimension, single-crossing
- Groups indexed by $\phi \in \Phi$
 - preferences $U(c, y; \theta, \phi)$
 - single-crossing only in terms of θ within ϕ
 - Φ can be arbitrary
- Standard formula goes through
- Replace elasticities/welfare weights by averages at y

$$\bar{\varepsilon}^c(y) = \mathbb{E}[\varepsilon^c(y,\phi)|y] = \int_{\Phi} \varepsilon^c(y,\phi)dP(\phi|y)$$

Preferences

$$V(c, y; \theta, \varphi) = \begin{cases} U(c, y; \theta) & \text{if } y > 0 \\ u(c; \theta, \varphi) & \text{if } y = 0 \end{cases}$$

Preferences

$$V(c, y; \theta, \varphi) = \begin{cases} U(c, y; \theta) & \text{if } y > 0 \\ u(c; \theta, \varphi) & \text{if } y = 0 \end{cases}$$

$$\frac{T'(y)}{1-T'(y)}\varepsilon^{c}(y)yh(y) = \int_{y}^{\infty} \left(1-\bar{\beta}_{\tilde{y}} + \frac{T'(\tilde{y})}{1-T'(\tilde{y})}\eta(\tilde{y}) - \frac{T(\tilde{y})-T(0)}{q(\tilde{y})-q(0)}\rho(\tilde{y})\right)dH(\tilde{y})$$

Preferences

$$V(c, y; \theta, \varphi) = \begin{cases} U(c, y; \theta) & \text{if } y > 0 \\ u(c; \theta, \varphi) & \text{if } y = 0 \end{cases}$$

$$\frac{T'(y)}{1-T'(y)}\varepsilon^{c}(y)yh(y) = \int_{y}^{\infty} \left(1-\bar{\beta}_{\tilde{y}} + \frac{T'(\tilde{y})}{1-T'(\tilde{y})}\eta(\tilde{y}) - \frac{T(\tilde{y})-T(0)}{q(\tilde{y})-q(0)}\rho(\tilde{y})\right)dH(\tilde{y})$$

Participation elasticity $\rho(y) = \frac{\partial h(y)}{\partial (q(y) - q(0))} \frac{q(y) - q(0)}{h(y)} \Big|_{\{y(\theta)\}}$

Preferences

$$V(c, y; \theta, \varphi) = \begin{cases} U(c, y; \theta) & \text{if } y > 0 \\ u(c; \theta, \varphi) & \text{if } y = 0 \end{cases}$$

$$\frac{T'(y)}{1-T'(y)}\varepsilon^{c}(y)yh(y) = \int_{y}^{\infty} \left(1-\bar{\beta}_{\tilde{y}} + \frac{T'(\tilde{y})}{1-T'(\tilde{y})}\eta(\tilde{y}) - \frac{T(\tilde{y})-T(0)}{q(\tilde{y})-q(0)}\rho(\tilde{y})\right)dH(\tilde{y})$$

Participation elasticity $\rho(y) = \frac{\partial h(y)}{\partial (q(y) - q(0))} \frac{q(y) - q(0)}{h(y)} \Big|_{\{y(\theta)\}}$

Pure extensive margin
$$\frac{T(y) - T(0)}{q(y) - q(0)} = \frac{1 - \beta_y}{\rho(y)}$$

Conclusion

- Connection between canonical models in public finance
 - Link between widely used tax formulas
 - Integrated approach to linear and nonlinear taxation
- Simpler treatment of nonlinear taxation
- Allows for...
 - ... weaker conditions for known results
 - ... novel extensions that would not be tractable otherwise