Non-standard monetary policy, asset prices and macroprudential policy in a monetary union

L. Burlon A. Gerali A. Notarpietro M. Pisani

Banca d'Italia

1st Annual Workshop ESCB Research Cluster 1 on Monetary Economics Banco de España Madrid, 9-10 October 2017

The views expressed here are those of the authors and should not be attributed to the Bank of Italy

Goal

- Assess the macroeconomic and financial effects of the interaction between union-wide non-standard monetary policy measures and regional macroprudential policy in a monetary union framework
- ► Laboratory: Eurosystem's Asset Purchase Programme (APP) and its interaction with region-specific macroprudential policy

Motivation

- ▶ Concern: in the euro area, the combination of
 - announced intention to keep short-term interest rates at low levels for a prolonged period of time (forward guidance, FG)
 - reduction in long-term yields generated by APP

may induce region-specific excessive increases in asset prices and private-sector borrowing

Risks for region-specific financial stability

Motivation

"Should any threat to financial stability materialise, specific macro-prudential measures should be implemented by national authorities to deal with local risks, without the need to alter the expansionary stance of monetary policy."

Ignazio Visco, London, 6 May 2015.

"We are closely monitoring risks to financial stability, but we do not see them materialising for the moment. Should this be the case, macroprudential policy – not monetary policy – would be the tool of choice to address these risks."

Mario Draghi, Brussels, 23 September 2015.

Contribution

Build an open-economy two-region model of the euro area with:

- ► Financial market segmentation (real effects of APP)
- Region-specific real estate and collateral constraints
- Overly optimistic expectations about real estate prices (role for macroprudential intervention)
- Local macroprudential authority can change loan-to-value (LTV) ratio to stabilize (excessive) debt and favor financial stability

Preview of results

- Implementation of union-wide APP has positive effects on household borrowing, the more so the larger the regional LTV ratio (amplification effect)
- During APP implementation, overly optimistic (non-fundamental) expectations about local real estate prices can further foster regional household borrowing
- Region-specific macroprudential measures can stabilize private sector borrowing, counteracting effects of over-optimistm and favoring macroeconomic expansion driven by fundamentals
- No need to scale back APP if local macroprudential policy acts

Related literature

- ► Financial market segmentation and non-standard monetary policy: Chen et al. (2012), Andrs et al. (2004), Burlon et al. (2015, 2017)
- ▶ Local real estate "bubble": Dupor (2005), Aizenmann and Jinjarak (2014), In't Veld et al. (2014)
- Macroeconomic and financial effects of monetary and macroprudential policies: Angelini et al. (2014), Beau et al. (2012), Collard et al. (2012), Quint and Rabanal (2014), Rubio and Carrasco-Gallego (2014), Brzoza-Brzezina et al. (2015), Gelain and Ilbas (2017)
- Our paper: first attempt to assess interaction between union-wide non-standard monetary policy and local macroprudential policy in a monetary union framework

Road map

- ▶ Model setup: most relevant features, calibration
- Simulated scenarios and results
- Conclusions

Model setup: general structure

- Large-scale New Keynesian open-economy DSGE model of the world economy
- ► Three-region model: Home, Rest of Euro Area (REA), and Rest of the World (RW)
- ► Full characterization of international trade flows and relative prices across regions
- Monetary policy: standard and non-standard measures (forward guidance, quantitative easing)

Crucial model features

We introduce three crucial features in the euro area:

- ► Financial markets segmentation, following Chen et al. (2012): imperfect substitutability among financial assets
- ▶ Region-specific real estate markets and collateral constraints (lacoviello 2005) ⇒ allow for region-specific amplification effects of APP
- Hence: in each EA region, 3 types of households: unrestricted, restricted and borrowers
- ► Irrational, overly optimistic expectations about real estate prices (Dupor 2005) ⇒ excessive increase in households' borrowing, role for macroprudential policy
- ▶ Macroprudential authority: uses LTV ratio as instrument

Model setup: Unrestricted households

- Have access to the domestic short-term private bond and long-term sovereign bond markets and trade a riskless private bond with RW households
- Invest in domestic physical capital
- Lend to domestic borrowers

Model setup: Restricted households

- ► Hold long-term sovereign bonds
- ► Invest in domestic physical capital details
- Rationale: APP lowers long-term yields and stimulates restricted households' consumption and investment (as in Chen et al. 2012)
- Long-term sovereign bonds are perpetuities with price $P_{L,t}$, paying exponentially decaying coupon $\kappa \in (0,1]$, as in Woodford (2001)

Model setup: Borrowers

Borrow from unrestricted households subject to a collateral constraint:

$$-B_{D,t}^{S}R_{t}^{S} \leq m_{t}E_{t}\left(Q_{t+1}^{h}h_{D,t}\right)$$

where $0 \le m_t \le 1$ is the LTV ratio

Housing demand from FOC:

$$\lambda_{D,t}Q_t^H = \chi \frac{1}{h_{D,t}} + \beta_D E_t \left(\lambda_{D,t+1}Q_{t+1}^H\right) + \gamma_{D,t} m_t E_t \left(Q_{t+1}^H\right)$$

Non-fundamental shock to expectations on real estate price

- ► Following Dupor (2005), assume people in the Home region have overly optimistic expectations on future house prices
- Borrowing constraint becomes:

$$-B_{D,t}^{S}R_{t}^{S} \leq m_{t}E_{t}\left(Q_{t+1}^{h}\theta_{t+1}h_{D,t}\right)$$

Housing demand:

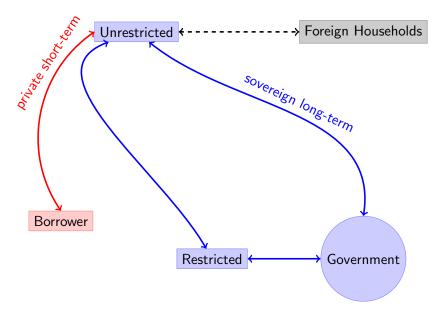
$$\lambda_{D,t}Q_t^H = \chi \frac{1}{h_{D,t}} + \beta_D E_t \left(\lambda_{D,t+1}\theta_{t+1}Q_{t+1}^H\right) + \gamma_{D,t}m_t E_t \left(\theta_{t+1}Q_{t+1}^H\right)$$

Home macroprudential rule

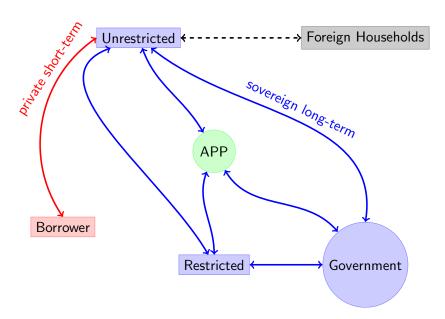
▶ Allow for a Home-specific macroprudential rule

$$m_t = (1-\rho_m)\bar{m} + \rho_m m_{t-1} + \rho_{B_D} \left(\frac{B_{D,t}^S}{GDP_t} - \frac{B_{D,t-1}^S}{GDP_{t-1}}\right)$$
 where $0 \le \rho_m \le 1$ and $\rho_{B_D} > 0$

▶ Rule is in line with existing literature (e.g., Angelini et al., 2014, Brzoza-Brzezina et al., 2015)


Model setup: monetary policy

- ► EA monetary authority can resort to:
- Standard (Taylor-rule based) monetary policy


$$\left(\frac{R_t}{\bar{R}}\right)^4 = \left(\frac{R_{t-1}}{\bar{R}}\right)^{4\rho_R} \left(\frac{\Pi_{\textit{EA},t,t-3}}{\bar{\Pi}^4}\right)^{(1-\rho_R)\rho_\pi} \left(\frac{\textit{GDP}_{\textit{EA},t}}{\textit{GDP}_{\textit{EA},t-1}}\right)^{(1-\rho_R)\rho_\textit{GDP}}$$

- and non-standard monetary policy measures, including
 - forward guidance (FG) on short-term interest rate
 - purchasing of EA long-term sovereign bonds

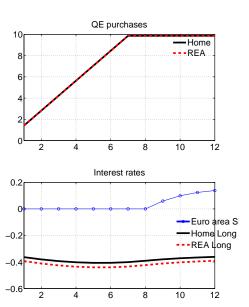
Wrapping up: market clearing

Wrapping up: APP

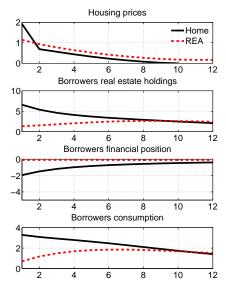
Calibration

- Calibration of standard parameters follows literature and existing evidence, match "great ratios"
- Specifically: Home GDP is 20% of EA GDP
- Less standard parameters set in line with literature and with Eurosystem evidence on long-term interest rate response to APP (Altavilla et al., 2015)
- ▶ Home LTV ratio is 90%, REA LTV is 50%
- ► In each EA region share of restricted households is 0.1, indebted households: 0.4 details

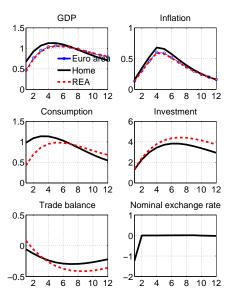
Simulations


- ▶ Scenario 1: APP (purchases of EA sovereign bonds, euro 180 billion per quarter, for 7 quarters, bonds are held to maturity (8 years); 2-year FG; Home and REA LTV ratios set at their steady-state values (90% and 50%, respectively)
- Scenario 2: Scenario 1 + Home-specific non-fundamental expectational shock
- Scenario 3: Scenario 2, but Home LTV ratio is modified by the Home macroprudential authority to stabilize households' borrowing
- ▶ All scenarios are simulated under perfect foresight

Scenario 1: APP


Transmission mechanism:

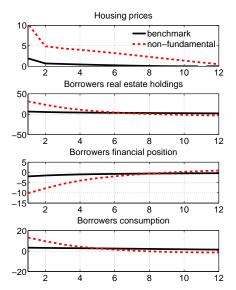
- ▶ Restricted households sell long-term sovereign bonds to the central bank, ↑ consumption and investment ⇒ initial positive effect on aggregate demand and inflation
- ▶ Borrowers face low short-term (real) interest rate: ↑ demand for consumption and real estate ⇒ ↑ real estate price ⇒ ↑ borrowing and consumption by borrowers, because of borrowing constraint (collateral effect)
- ► Collateral effect is larger in Home region than in the REA, because of higher Home LTV ratio


Scenario 1: Effects on interest rates

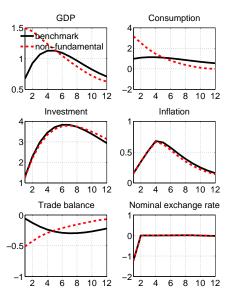
Scenario 1: Effects on Home real estate and borrowing

Scenario 1: Macroeconomic effects

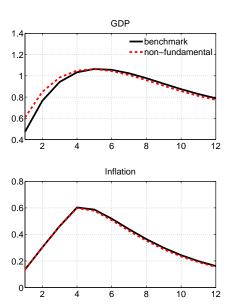
Scenario 2: APP + Home-specific non-fundamental expectational shock


- Non-fundamental shock is calibrated to get, on top of APP-induced increase in Home real estate price, an additional increase of around 5% on average in the first year
- ➤ Such value is line with evidence provided by Hartmann (2015): average increase in the overvalued component of housing prices of around 5% per year over the 2002-2007 run-up in EA house prices

Scenario 2: APP + Home-specific non-fundamental expectational shock

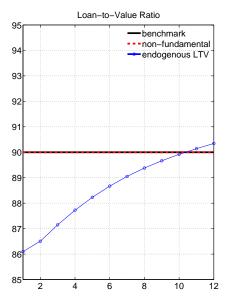

Transmission mechanism:

- ▶ Real estate overvaluation is an additional incentive for borrowers to increase debt ⇒ ↑ consumption and real estate demand
- ▶ Larger collateral effect than in scenario 1

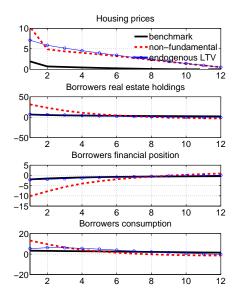

Scenario 2: Effects on Home real estate and borrowing

Scenario 2: Macroeconomic effects (Home)

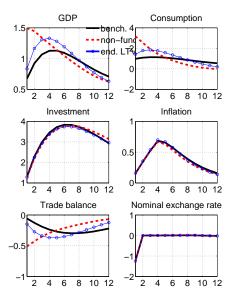
Scenario 2: Macroeconomic effects (EA)

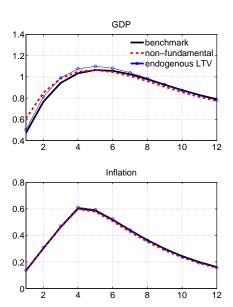

Scenario 3: Macroprudential policy

- Starting point: Scenario 2, i.e. APP + Home-specific non-fundamental expectational shock
- ► Home macroprudential authority can modify LTV ratio to limit increase in borrowing, according to a feedback rule


$$m_t = (1 - \rho_m)\bar{m} + \rho_m m_{t-1} + \rho_{B_D} \left(\frac{B_{D,t}^S}{GDP_t} - \frac{B_{D,t-1}^S}{GDP_{t-1}} \right)$$

▶ Reverse-engineer rule parameters so that the chosen value of m_t is such that the "excess" increase in household debt (due to APP + non-fundamental shock) is completely undone and household debt grows as in Scenario 1


Scenario 3: Home LTV ratio


Scenario 3: Effects on Home real estate and borrowing

Scenario 3: Effects on Home macroeconomic variables

Scenario 3: Effects on EA variables

Scenario 3: Results

- GDP and inflation not greatly affected
- Macroprudential policy can effectively preserve financial stability without jeopardizing APP's effectiveness:
 - ► Home LTV ratio ↓ to counterbalance excess increase in borrowing
 - ▶ Demand for consumption and real estate ↑ to a lower extent
 - Unrestricted households substitute investment in physical capital for lending to borrowers
 - Larger increase in investment compensates for lower increase in consumption

Conclusions

- During APP and FG implementation, region-specific macroprudential measures can stabilize excessive private sector borrowing, with limited negative effects on regional economic activity and almost no impact on inflation
- Possible synergies between non-standard monetary and macroprudential policies in a monetary union
- Monetary policy focuses on union-wide macroeconomic conditions
- ► Region-specific macroprudential policies maintain financial stability at regional level

Model setup: capital producers

- Capital producers accumulate physical capital by demanding final investment goods subject to quadratic adjustment costs on investment change
- ▶ Rent out capital to the domestic firms
- Maximize profits with respect to capital and investment taking prices as given
- ► Evaluate returns according to a weighted average of restricted and unrestricted households' stochastic discount factors (weights are the corresponding population shares)
- Net revenues are rebated (lump-sum) to domestic restricted and unrestricted households according to their corresponding shares

Borrowers

$$E_{0} \left\{ \sum_{t=0}^{\infty} \beta_{D}^{t} \left[\frac{\left(C_{D,t} \left(j' \right) - \varsigma C_{D,t-1} \right)^{1-\sigma}}{\left(1 - \sigma \right)} + \left[\chi \log h_{D,t} \left(j' \right) - \frac{L_{D,t} \left(j' \right)^{1+\tau}}{1+\tau} \right] \right\},$$

$$B_{D,t}^{S} \left(j' \right) - B_{D,t-1}^{S} \left(j' \right) R_{t-1}^{S}$$

$$= W_{D,t} \left(j' \right) L_{D,t} \left(j' \right) - Q_{t}^{h} \left(h_{D,t} \left(j' \right) - h_{D,t-1} \left(j' \right) \right) - P_{t} C_{D,t} \left(j' \right),$$

$$(1)$$

Restricted households

$$\begin{split} P_{t}^{L}B_{R,t}^{L}\left(j''\right) - P_{t}^{L}R_{t}^{L}B_{R,t-1}^{L}\left(j''\right) \\ &= \omega\Pi_{t} + W_{R,t}\left(j''\right)L_{R,t}\left(j''\right) \\ &- P_{t}C_{R,t}\left(j''\right) - AC_{R,t}^{W}\left(j''\right), \\ R_{t}^{L} &= \frac{1}{P_{t}^{L}} + \kappa. \end{split}$$

Unrestricted households

$$P_{t}^{L}B_{U,t}^{L}(j) - P_{t}^{L}R_{t}^{L}B_{U,t-1}^{L}(j) + B_{U,t}^{S}(j) - B_{U,t-1}^{S}(j)R_{t-1}^{S} + B_{t}^{G}(j) - B_{t-1}^{G}(j)R_{t-1} + B_{t}^{P}(j) - B_{t-1}^{P}(j)R_{t-1}^{P}(1 - \phi_{t}) = W_{U,t}(j)L_{U,t}(j) + (1 - \omega)\Pi_{t}^{prof} + \Pi_{t}^{P}(j) - P_{t}C_{U,t}(j) - Q_{t}^{h}(h_{U,t}(j) - h_{U,t-1}(j)) - TAX_{t}(j) - AC_{U,t}^{W}(j) - AC_{U,t}^{B}(j) - AC_{U,t}^{h}(j),$$
(2)

Monetary and fiscal policy

$$\begin{split} \frac{R_t}{\bar{R}} &= \left(\frac{R_{t-1}}{\bar{R}}\right)^{\rho_R} \left(\frac{\Pi_{EA,t}}{\bar{\Pi}_{EA}}\right)^{(1-\rho_R)\rho_\pi} \left(\frac{GDP_{EA,t}}{GDP_{EA,t-1}}\right)^{(1-\rho_R)\rho_{GDP}}, \\ & B_{g,t}^S - B_{g,t-1}^S R_{t-1} + P_t^L B_{g,t}^L - P_t^L R_t^L B_{g,t-1}^L \\ &= P_{N,t} C_t^g - TAX_t, \\ & \frac{TAX_t}{TAX_{t-1}} = \left(\frac{b_{g,t}^S}{\bar{b}_g^S}\right)^{\phi_1} \left(\frac{b_{g,t}^S}{b_{g,t-1}^S}\right)^{\phi_2}. \end{split}$$

Market clearing

Short-term private bond:

$$\int_0^{n\lambda_D} B_{D,t}^{\mathcal{S}}(j')dj' + \int_{n(\lambda_D + \lambda_R)}^n B_{U,t}^{\mathcal{S}}(j)dj = 0.$$

Long-term sovereign bond:

$$\int_{n\lambda_D}^{n(\lambda_D+\lambda_R)} B^L_{R,t}(j'')dj'' + \int_{n(\lambda_D+\lambda_R)}^n B^L_{U,t}(j)dj + B^L_{APP,t} = B^L_{g,t}.$$

Real estate:

$$\int_0^{n\lambda_D} h_{D,t}^{\mathcal{S}}(j')dj' + \int_{n(\lambda_D + \lambda_R)}^n h_{U,t}^{\mathcal{S}}(j)dj = \bar{h}.$$

Parametrization

Parameter	Н	REA	RW
Discount factor β_U , β_U^* , β^{**}	0.995	0.995	0.995
Discount factor β_R , β_R^*	0.991	0.991	-
Discount factor β_D , β_D^*	0.945	0.945	-
Intertemporal elasticity of substitution $1/\sigma$	1.0	1.0	1.0
Inverse of Frisch Elasticity of Labor Supply $ au$	3.0	3.0	3.0
Habit <i>ς</i>	0.75	0.75	0.75
Depreciation rate of capital δ	0.025	0.025	0.025
Housing weight χ ,	0.1	0.1	-
Share of restricted households λ_R	0.10	0.10	-
Share of unrestricted households λ_U	0.50	0.50	-
Share of cap. producers held by restr. households ω , ω^*	1/6	1/6	_
Tradable Intermediate Goods			
Subst. between factors of production ξ_T , ξ_T^* , ξ_T^{**}	0.95	0.95	0.95
Bias towards capital α_T , α_T^* , α_T^{**}	0.55	0.55	0.55
Non-tradable Intermediate Goods			
Subst. between factors of production $\xi_N, \xi_N^*, \xi_N^{**}$	0.95	0.95	0.95
Bias towards capital α_N , α_N^* , α_N^{**}	0.5	0.5	0.5
Final consumption goods			
Subst. between domestic and imported goods ϕ_A , ϕ_A^* , ϕ_A^{**}	1.50	1.50	1.50
Bias towards domestic tradable goods a_H , a_G^* , a_F^{**}	0.45	0.55	0.90
Subst. between tradables and non tradables $\rho_A, \rho_A^*, \rho_A^{**}$	0.50	0.50	0.50
Bias towards tradable goods a_T , a_T^* , a_T^{**}	0.70	0.60	0.60
Final investment goods			
Subst. between domestic and imported goods ϕ_E , ϕ_F^* , ϕ_F^{**}	1.50	1.50	1.50
Bias towards domestic tradable goods v_H, v_G^*, v_F^{**}	0.45	0.55	0.90
Subst. between tradables and non tradables $\rho_E, \rho_F^*, \rho_F^{**}$	0.50	0.50	0.50
Bias towards tradable goods v_T, v_T^*, v_T^{**}	0.80	0.70	0.70

Gross mark-ups

Mark-ups and Elasticities of Substitution			
	Tradables	Non-tradables	Wages
Н	1.2 $(\theta_T = 6)$	1.5 $(\theta_N = 3)$	1.30 ($\psi = 4.3$)
REA	$1.2 \; (\theta_T^* = 6)$	1.5 $(\theta_N^* = 3)$	1.30 ($\psi^* = 4.3$)
RW	1.2 $(\theta_T^{**} = 6)$	1.5 $(\theta_N^{**} = 3)$	1.30 $(\psi^{**} = 4.3)$

Fiscal, Monetary, and Macroprudential Policy Rules

Parameter	Н	REA	EA	RW
Fiscal policy rule				
ϕ_1 , ϕ_1^* , ϕ_1^{**}	1.01	1.01	-	1.01
$\phi_2, \phi_2^*, \phi_2^{**}$	1.01	1.01	-	1.01
Common monetary policy rule	-	-		
Lagged interest rate $ ho_R$, $ ho_R^{**}$	-	-	0.87	0.87
Inflation $ ho_\Pi$, $ ho_\Pi^{**}$	-	-	1.70	1.70
GDP growth $ ho_{GDP}$, $ ho_{GDP}^{**}$	-	-	0.10	0.10
Macroprudential rule				
LTV ratio <i>m</i>	90%	50%	_	
Lagged LTV ratio $ ho_m$	0.99	_	_	
Households' debt to GDP $ ho_{B_D}$	0.50	_	_	

Real and Nominal Adjustment Costs

Parameter	Н	REA	RW
Real Adjustment Costs			
Investment ϕ_I , ϕ_I^* , ϕ_I^{**}	5.00	5.00	5.00
Adjustment Costs on Bonds			
Households' long-term bond positions ϕ_{b^L} , $\phi_{b^L}^*$	0.000104	0.000104	_
Households' private bond positions			
$\phi_{b1}, \phi_{b1}^{**}$	0.0055	_	0.0055
$\phi_{b2}, \phi_{b2}^{**}$	0.0055	_	0.0055
Adjustment Costs on Real Estate			
ϕ_h , ϕ_h^*	1.00	1.00	-
Nominal Adjustment Costs			
Wages κ_W , κ_W^* , κ_W^{**}	400	400	400
H produced tradables κ_H , k_H^* k_H^{**}	300	300	50
REA produced tradables κ_G , k_G^* , k_G^{**}	300	300	50
RW produced tradables κ_F , k_F^* k_F^{**}	50	50	300
Non-tradables κ_N , κ_N^* , κ_N^{**}	600	600	600

Main macroeconomic variables (ratio to GDP)

	Н	REA	RW
Private consumption	59.1	59.8	59.3
Public consumption	20.0	20.0	20.0
Private investment	20.9	20.2	20.7
Imports	29.0	20.6	4.3
Home Imports from	_	7.5	21.5
REA Imports from	2.4	_	18.1
Net Foreign Asset Position	0.0	0.0	0.0
GDP (share of world GDP)	2.7	15.9	81.4
Private debt (ratio to annual GDP)	116.7	22.0	_
Short-term public debt (ratio to annual GDP)	8.0	8.0	_
Long-term public debt (ratio to annual GDP)	93.3	93.3	_

