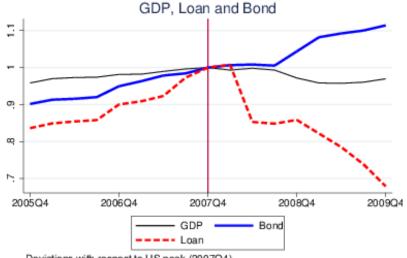
Corporate Debt Structure and Unconventional Monetary Policy in the United States¹

Stéphane Lhuissier

Urszula Szczerbowicz

Banque de France

Banque de France


First Annual Workshop
ESCB Research Cluster 1 on Monetary Economics

Banco de Espana, October 10, 2017

¹This presentation reflects the opinions of the authors and does not necessarily express the views of the Banque de France or the Eurosystem.

Motivation

- The composition of corporate credit has profoundly changed since the fall of 2008.
 - Bank loans to non-financial corporations declined while corporate bonds issuance increased (Adrian et al., 2013)
- At the same time, the Fed implemented unconventional monetary policies (UMP) to improve firms' financing conditions and stimulate the real economy.
- Research questions:
 - Did unconventional monetary policies play a role in the substitution from bank financing to bond financing?
 - Did unconventional monetary policies affect aggregate activity through an easier access to corporate bond markets?

Deviations with respect to US peak (2007Q4). Series are normalized to 1 at the peak period

^{*}Grjebine, Szczerbowicz and Tripier, 2017

Challenge: identification of UMP shock

- The previous literature measures the impact of UMP policies using zero-sign restrictions VAR that requires identifying assumptions (Weale and Wieladek (2016), Boeckx et al. (2017)).
- VAR model with external instruments use short-term policy indicator and instruments capturing mostly conventional monetary policy effects (Karadi and Gertler, 2015)
- We adapt a VAR model with external instruments to capture unconventional monetary policy effect:
 - Policy indicator: 5-year real rate (reflects UMP stance)
 - Instrument: daily changes of 5-year real rate around FOMC announcements and Fed's officials' speeches.

Results

- UMP implies an increase in the corporate bond issuance, but a slight decline in bank loans to NFC in the short run.
- Mechanisms of monetary transmission:
 - Financial intermediaries increase their holdings of risky securities, in detriment of government bond holdings and lending to NFC - financial intermediaries search for higher returns, thus affecting asset prices.
 - Borrowing costs for non-financial corporations in bond market fall sharply: issuance of corporate bonds increases.
- On the macroeconomic side, UMP are followed by increase in output, prices, consumption and investment.

Literature

- Effects of the Fed's unconventional measures on corporate bonds markets
 - Krishnamurthy and Vissing-Jorgensen (2011), Wright (2012), Gilchrist and Zakrajsek (2013), and Altavilla and Giannone (2017): UMP reduced yields and risk premia on long-term corporate bonds.
 - Lo Duca, Nicoletti, and Vidal Martinez (2016): UMP increased corporate bond issuance worldwide.
- Macroeconomic effects of unconventional measures in an identified VAR framework
 - Baumeister and Benati (2013), Gambacorta, Hofmann, and Peersman (2014) and Weale and Wieladek (2016).

Contributions

- Identification method that is better-suited to measure unconventional monetary policy effects.
- Focus on debt structure: we provide evidence on the role of U.S. monetary policy in the firms' substituting away from bank loans towards bond issuance.
- We show that unlike conventional MP, UMP stimulate the substitution between loans and bonds through their impact on longer-term corporate bond markets conditions.

Identification strategy

• Identification strategy combines event-study methodology and VAR with external instruments (Gertler and Karadi, 2014).

VAR Identification

Reduced form model:

$$y_t = \sum_{i=1}^{\rho} B_i y_{t-i} + C_y + v_t, \qquad t = 1, \dots, T$$
 $v_t = A \varepsilon_t$

- $\varepsilon_t = \left[\varepsilon_t^1, \varepsilon_t^2\right]$ where ε_t^1 represents exogenous variations in the policy indicator, and ε_t^2 the remaining structural shocks.
- We use external instruments to identify A¹

VAR Identification: external instruments

- We identify UMP using external instrument z_t (Stock and Watson (2012) and Mertens and Ravn (2013)).
- The instrument must be correlated with the unconventional monetary policy ε_t^1 but uncorrelated with all other structural shocks ε_t^2 :

$$E [z_t \varepsilon_t^1] = \psi$$
$$E [z_t \varepsilon_t^2] = 0$$

• To identify variation in v_t^1 due to ε_t^1 , we regress v_t^1 on z_t .

External instruments for UMP shocks

- We choose the best policy indicator (i.e., the "unconventional policy relevant" interest rate) and its instrument in two steps:
 - First, we measure the financial market reactions to the Federal Reserve's announcements using event-based regressions.
 - Second, we examine the response of reduced-form residuals of different policy indicators from the monthly VAR to potential instruments.

HF External Instruments: Event-based Regressions

 We run the event-based regressions to measure the impact of the Fed's UMP announcements on financial markets (02/07/2007 - 31/12/2017, daily)

$$\Delta y_t = \alpha + \beta \; \mathit{UMP}_t + \sum_{n=1}^N \psi_n \Delta S_{t-n}^M + \sum_{l=1}^7 \psi_l D_{l,t} + \epsilon_t$$

 Δy_t is a 1-day change in a financial asset price; $UMP_t=1$ on the days of UMP announcements; ΔS_{t-n}^M are lagged values of dependent variable; $D_{l,t}$ are dummies for the day of the week (Monday, Tuesday...); ϵ_t is a stochastic error term.

 The longer-term interest rates and MBS spreads reacted the most to the Fed's announcements (potential external instruments).

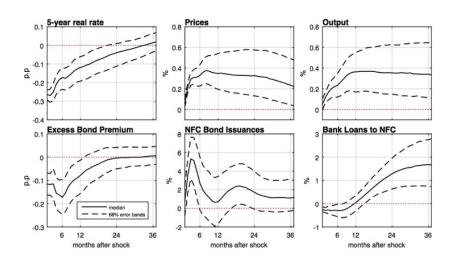
Financial Markets Responses to UMP announcements

Dependent variables	Coefficient	Standard error	R-squared
2y Treasuries	-0.06***	0.02	0.02
5y Treasuries	-0.14***	0.04	0.03
10y Treasuries	-0.15***	0.04	0.03
30y Treasuries	-0.10***	0.03	0.02
2y TIPS	-0.11***	0.04	0.05
5y TIPS	-0.16***	0.04	0.05
10y TIPS	-0.16***	0.04	0.04
2y Break-evens	0.04*	0.02	0.07
5y Break-evens	0.02	0.02	0.04
10y Break-evens	0.00	0.01	0.02
2y Interest rates expectations	-0.03*	0.02	0.01
5y Interest rates expectations	-0.04**	0.02	0.01
10y Interest rates expectations	-0.04**	0.02	0.01
2y Term premium	-0.04***	0.01	0.01
5y Term premium	-0.10***	0.03	0.03
10y Term premium	-0.12***	0.04	0.02
15y MBS Spread	-0.06*	0.03	0.01
20y MBS Spread	-0.11***	0.04	0.03
30y MBS Spread	-0.21***	0.07	0.05
*** p<0.01, ** p<0.05, * p<0.1			

Policy Indicator and Policy Instrument

- Since the ZLB, short-term interest rates is no longer representative of MP stance. We consider serveral medium-long term interest rates as an UMP stance to include in the VAR.
- We regress residuals of potential monetary stance on potential external instruments to verify that they explain the residuals.
- We rely on the statistic tests of Stock, Wright, and Yogo (2002) to single out the interest rates that do not suffer from weak instrument problem.
- As a result, we include 5 year real interest rate as an indicator of the UMP stance and we use its changes around FOMC announcements as an external instrument in the VAR analysis.

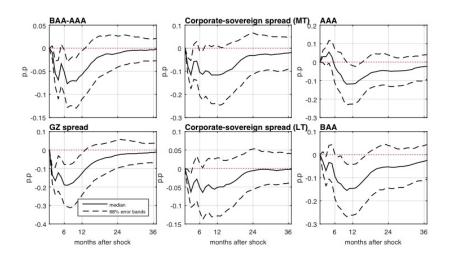
Effects of HF instruments on 1st stage VAR residuals


	Nom5y	Nom10y	Real5y	Real10y	MBS S_30y
S_Nom5y	0.860*** (0.194)				
S_Nom10y	, ,	0.769*** (0.205)			
$S_{-}Real5y$,	1.256*** (0.218)		
$S_{-}Real10y$,	0.839*** (0.188)	
S_MBS Spread_30y				(0.200)	0.557*** (0.154)
Observations	95	95	95	95	95
R-squared	0.175	0.132	0.263	0.177	0.123
F test model	19.75	14.10	33.11	20.01	13.03

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

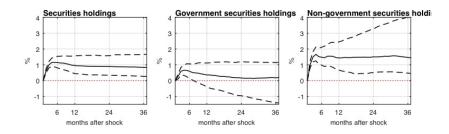
VAR with external instruments: Data

- Sample period 2008:M6 2016:M8, monthly data, 4 lags.
- Benchmark VAR:
 - GDP
 - Prices
 - Excess Bond Premium
 - Bonds issued by non-financial corporations (six-month moving average)
 - Bank loans to non-financial corporations
 - Policy indicator: 5-year real interest rate


Benchmark

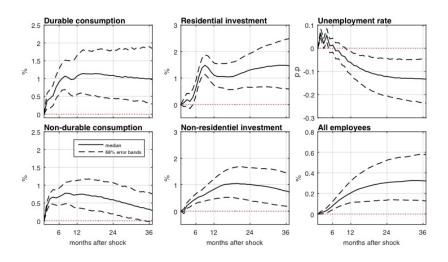
Bond markets

- Additional variables: Corporate bond markets
 - BAA-AAA spread, GZ spread, Corporate-sovereign spreads (medium and long-term), AAA and BAA corporate yields
- Corporate bond yields diminish more than the corresponding sovereign yields ("default risk channel" of UMP Krishnamurthy and Vissing-Jorgensen, 2011)
- Lower-rated bonds yields diminished more than the higher-rated bonds yields ("reach for yield", Foley-Fisher, Ramcharan, and Yu, 2016).


Bond markets

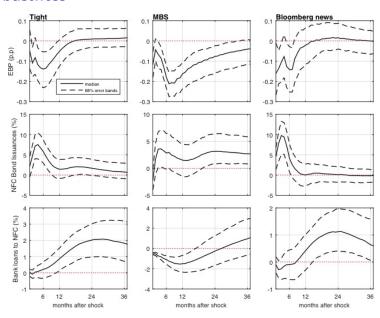
Bank securities holdings

- Additional variables: Bank balance sheets
 - All securities, Government and Non-government securities holdings
- Financial intermediaries accumulate riskier assets following the expansionary UMP shock ("portfolio-balance" effect)


Bank securities holdings

Additional macroeconomic variables

- Additional macroeconomic variables
 - Durable and Non-durable consumption, Residential and Non-residential investment, Unemployment
- Durable and non-durable consumption both increase, but the former to a bigger extent
- Residential and non-residential investment go up, with a higher impact on the former
- The unemployment rate falls


Macroeconomic Variables

Robustness checks

- What if Fed's announcements were anticipated?
 - We use the number of Bloomberg news concerning the U.S. quantitative easing as a proxy for the market expectations about the program being implemented.
- What if some other news occurred on the same day?
 - We narrow down the event window from one day to 30 minutes around the announcement.
- What if 5-year real interest rate is not the only measure of monetary policy stance?
 - We use the 30-year MBS spread as a measure of monetary policy stance and instrument.

Robustness

Conclusions

- There has been a shift in the corporate debt composition since the fall of 2008 in the United States.
- We have examined the effect of UMP on the bond-loan substitution using the VAR model identified with an external instrument.
- Accommodative monetary policy shock
 - contributes to the shift in the corporate debt composition from bank loans to bonds.
 - reduces yields and spreads on corporate bonds and boosts investors' appetite for risky securities.
 - increases output, prices, consumption and investment, and decreases unemployment.