Ambiguity, Monetary Policy, and Trend Inflation

R. Masolo and F. Monti

discussed by: James Costain, Banco de España

9 October 2017

This paper: Knightian uncertainty about monetary policy

- Q: What happens if market participants are extremely uncertain about monetary policy?
 - This paper: effects of Knightian uncertainty, also called ambiguity
 - That is, market participants cannot attribute probabilities to monetary policy stance

This paper: Knightian uncertainty about monetary policy

- Q: What happens if market participants are extremely uncertain about monetary policy?
 - This paper: effects of Knightian uncertainty, also called ambiguity
 - That is, market participants cannot attribute probabilities to monetary policy stance
 - May consider multiple priors about monetary policy stance
 - Ambiguity aversion: they fear that true prior is the worst one

This paper: Knightian uncertainty about monetary policy

- Q: What happens if market participants are extremely uncertain about monetary policy?
 - This paper: effects of Knightian uncertainty, also called ambiguity
 - That is, market participants cannot attribute probabilities to monetary policy stance
 - May consider multiple priors about monetary policy stance
 - Ambiguity aversion: they fear that true prior is the worst one
- Q: What are the implications for trend inflation if market participants are averse to ambiguity about monetary policy?
- Q: What is optimal monetary policy if market participants are averse to ambiguity about monetary policy?

Motivation: Persistent changes in inflation

- Large regime changes in monetary policy
 - Depression \to Keynesianism \to Stagflation \to Disinflation \to Moderation \to Financial Crisis
- 2 Low frequency component in inflation variation
 - Would be challenging to forecast effects of policy changes even if macroeconomic theory were unchanging
 - But theoretical consensus changes too!

Motivation: Persistent changes in inflation

- Large regime changes in monetary policy
 - Depression \rightarrow Keynesianism \rightarrow Stagflation \rightarrow Disinflation \rightarrow Moderation \rightarrow Financial Crisis
- Low frequency component in inflation variation
 - Would be challenging to forecast effects of policy changes even if macroeconomic theory were unchanging
 - But theoretical consensus changes too!
- Importance of transparency in monetary policy communication
- Concerns about de-anchoring of inflation expectations
- Empirical indicators of time-varying market uncertainty
- Persistent failures to hit inflation target

Model: Monetary policy

Monetary policy rule:

$$R_t = R_t^n e^{\epsilon_t} (\Pi_t)^{\phi}$$

- R_t^n is natural rate of interest
- \bullet ϕ is reaction of nominal interest rate to inflation
- ϵ_t is monetary policy shock:

$$\epsilon_t = \rho^{\epsilon} \epsilon_{t-1} + u_t^{\epsilon} + \mu_t^*$$

- Stochastic component: $u_t^\epsilon \sim \mathit{N}(0,\sigma_u)$
- Deterministic component: μ_t^*
 - Sample moments of μ_t^* converge as $T \to \infty$ to $N(0, \sigma^{\mu})$
- What does that mean?

Model: Monetary policy

Monetary policy rule:

$$R_t = R_t^n e^{\epsilon_t} (\Pi_t)^{\phi}$$

- R_t^n is natural rate of interest
- $oldsymbol{\phi}$ is reaction of nominal interest rate to inflation
- ϵ_t is monetary policy shock:

$$\epsilon_t = \rho^{\epsilon} \epsilon_{t-1} + u_t^{\epsilon} + \mu_t^*$$

- Stochastic component: $u_t^{\epsilon} \sim N(0, \sigma_u)$
 - Example: quantum mechanics
- Deterministic component: μ_t^*
 - Sample moments of μ_t^* converge as $T \to \infty$ to $N(0, \sigma^{\mu})$
 - Example: normrnd.m in MATLAB
- Why?

Model: Monetary policy - allowing for ambiguity

• Monetary policy rule:

$$R_t = R_t^n e^{\epsilon_t} (\Pi_t)^{\phi}$$

- R_t^n is natural rate of interest
- $oldsymbol{\phi}$ is reaction of nominal interest rate to inflation
- ϵ_t is monetary policy shock:

$$\epsilon_t = \rho^{\epsilon} \epsilon_{t-1} + u_t^{\epsilon} + \mu_t^*$$

- ullet Agents have prior about first component: $u_t^{arepsilon} \sim N(0,\sigma_u)$
- Agents have ambiguous views about μ_t^*
 - They believe $E\mu_t^* \in [\mu, \overline{\mu}]$
 - But they don't assign probabilities to these alternatives

Model: Ambiguity aversion

- Recursively-defined utility function implies ambiguity aversion (Gilboa-Schmeidler 1989)
 - Let $\mathcal{P}_t(s^t)$ be set of possible priors over next state s_{t+1}
 - Let $ec{\mathcal{C}} \equiv \{c_t(s^t), n_t(s^t)\}_{t=0}^T$ be a contingent plan
 - Define the utility function recursively as follows:

$$U_t(\vec{C}; s^t) \equiv \min_{p \in \mathcal{P}_t(s^t)} \log \left(c_t(s^t) \right) - \frac{n_t(s^t)^{1+\psi}}{1+\psi} + \beta E^p U_{t+1}(\vec{C}; s^{t+1})$$

Model: Ambiguity aversion

- Recursively-defined utility function implies ambiguity aversion (Gilboa-Schmeidler 1989)
 - ullet Let $\mathcal{P}_t(s^t)$ be set of possible priors over next state s_{t+1}
 - Let $\vec{C} \equiv \{c_t(s^t), n_t(s^t)\}_{t=0}^T$ be a contingent plan
 - Define the utility function recursively as follows:

$$U_t(\vec{C}; s^t) \equiv \min_{p \in \mathcal{P}_t(s^t)} \log \left(c_t(s^t) \right) - \frac{n_t(s^t)^{1+\psi}}{1+\psi} + \beta E^p U_{t+1}(\vec{C}; s^{t+1})$$

• By maximizing $U_0(\vec{C}; s^0)$, agents are choosing a **robust plan** \vec{C} that performs well even under the **worst scenario** that they contemplate

Rest of model: Plain vanilla NK-DSGE

- Monetary policy rule
 - Ambiguous component
- Utility function
 - Ambiguity aversion / robustness incentive
- Household decisions: Consume / save / labor supply
- Firms: Monopolistic competitors / set sticky prices / labor demand

Solving the model

- **1** Guess which state $\mu_t \in \left[\underline{\mu}, \overline{\mu}\right]$ is the worst one
- **②** Can then **evaluate expectations** under **pessimistic beliefs** μ_t
 - For example:

$$\frac{1}{C_t} = E^{\mu_t} \left(\frac{\beta R_t}{C_{t+1} \Pi_{t+1}} \right) = E \left(\frac{\beta R_t^n \exp(\rho^\epsilon \epsilon_{t-1} + \mu_t) \Pi_t^{\phi}}{C_{t+1} \Pi_{t+1}} \right)$$

- E^{μ_t} represents pessimistic beliefs
- E_t represents rational expectations

Solving the model

- **①** Guess which state $\mu_t \in \left[\underline{\mu}, \overline{\mu}\right]$ is the worst one
- **②** Can then **evaluate expectations** under **pessimistic beliefs** μ_t
 - For example:

$$\frac{1}{C_t} = E^{\mu_t} \left(\frac{\beta R_t}{C_{t+1} \Pi_{t+1}} \right) = E \left(\frac{\beta R_t^n \exp(\rho^{\epsilon} \epsilon_{t-1} + \mu_t) \Pi_t^{\phi}}{C_{t+1} \Pi_{t+1}} \right)$$

- E^{μ_t} represents pessimistic beliefs
- E_t represents rational expectations
- Find steady state under pessimistic beliefs
- Linearize dynamics, under pessimistic beliefs, around pessimistic steady state

Results: Steady state inflation

Solving Euler equation:

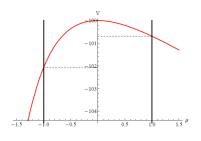
$$\frac{1}{C_t} = E^{\mu_t} \left(\frac{\beta R_t}{C_{t+1} \Pi_{t+1}} \right) = E \left(\frac{\beta R_t^n \exp(\rho^{\epsilon} \epsilon_{t-1} + \mu_t) \Pi_t^{\phi}}{C_{t+1} \Pi_{t+1}} \right)$$

• Steady state under pessimistic beliefs:

$$1 = \beta R^n \exp(\mu) \Pi^{\phi - 1} \quad \Pi = \exp^{\frac{-\mu}{\phi - 1}}$$

Results: persistent deviations from target

- max V is at $\mu = 0$
- V'' < 0, V''' > 0
- Therefore worst μ is at a corner.



- Symmetric case: $\mu_t^* \in [-\overline{\mu}, \overline{\mu}]$.
 - Worst case is **excessive expansion**: $\mu = -\overline{\mu}$.
 - Steady state inflation above target: $\Pi > 1$.
- Asymmetric case: $|\underline{\mu}| << \overline{\mu}$.
 - Worst case is excessive contraction: $\mu = \overline{\mu}$.
 - Steady state **deflation**: $\Pi < 1$.

Results: Optimal monetary policy in steady state

Steady state under pessimistic beliefs:

$$1 = \beta R^n \exp(\mu) \Pi^{\phi - 1} \quad \Pi = \exp^{\frac{-\mu}{\phi - 1}}$$

- Symmetric case: $\mu_t^* \in [-\overline{\mu}, \overline{\mu}].$
 - Worst case is **excessive expansion**: $\mu = -\overline{\mu}$.
 - Steady state inflation above target: $\Pi > 1$.
- Asymmetric case: $|\underline{\mu}| << \overline{\mu}$.
 - Worst case is **excessive contraction**: $\mu = \overline{\mu}$.
 - Steady state **deflation**: $\Pi < 1$.
- \bullet Reduced ambiguity \to corners closer to zero $\to \Pi$ closer to target
- ullet More hawkish rule $o \phi$ larger $o \Pi$ closer to target

Results: Optimal monetary policy in steady state

Steady state under pessimistic beliefs:

$$1 = \beta R^n \exp(\mu) \Pi^{\phi - 1} \quad \Pi = \exp^{\frac{-\mu}{\phi - 1}}$$

- Symmetric case: $\mu_t^* \in [-\overline{\mu}, \overline{\mu}]$.
 - Worst case is **excessive expansion**: $\mu = -\overline{\mu}$.
 - Steady state inflation above target: $\Pi > 1$.
- Asymmetric case: $|\mu| << \overline{\mu}$.
 - Worst case is **excessive contraction**: $\mu = \overline{\mu}$.
 - Steady state **deflation**: $\Pi < 1$.
- ullet Reduced ambiguity o corners closer to zero o Π closer to target
 - Transparency is good!
- More hawkish rule $o \phi$ larger $o \Pi$ closer to target
 - Conservatism is good!

Comments (1)

- Well-motivated question. Ambiguity about monetary policy is relevant.
- Closely following Ilut-Schneider (2014): Ambiguity about TFP.
 - Highly tractable because worst case is always low TFP.
 - Dynamic, quantitative linearized model of risk shocks.
- Here, worst case varies: may be excessive expansion or contraction.
 - Potentially *more interesting* but much *less tractable* than llut-Schneider.
 - Therefore studied steady state trend only.
- Would be extremely interesting to study entry/exit from ZLB, as "pessimism" switches from excessive inflation to excessive deflation (and back). But seems beyond the scope of the methods used here.

Comments (2)

- Clear, qualitatively robust findings about long-run.
 - Persistent deviations of inflation from target.
 - Greater transparency reduces deviations from target.
 - More hawkish rule reduces deviations from target.
- Unfortunately, quantitative results are entirely driven by arbitrary corners.
 - Predicted inflation trend: $\Pi = e^{-\mu/(\phi-1)}$.
 - ullet Depends on "worst possible" shock inflation $\mu.$
 - ullet Predicted inflation highly sensitive to rule coefficient ϕ
 - Optimal monetary policy: set $\phi = \bar{\phi}$.
 - "Highest possible" inflation reaction coefficient $\bar{\phi}$.
- Corners also play a big role in the dynamics.
 - Sudden switches from focus only on excessive expansion to excessive contraction... plausible?
 - These jumps are also likely to make computing dynamics harder...

An alternative: Ambiguity aversion with less extreme uncertainty

 Recursively-defined utility function with entropy constraint (Hansen-Sargent book, 2008)

$$U_t(\vec{C}; s^t) \equiv \min_{p \in \mathcal{P}_t(s^t)} \log \left(c_t(s^t) \right) - \frac{n_t(s^t)^{1+\psi}}{1+\psi} + \beta E^p U_{t+1}(\vec{C}; s^{t+1})$$

$$s.t. \ \mathcal{D}(p||\mathcal{Q}_t) < \theta^{-1}$$

ullet Implies p cannot be too far from the "benchmark" distribution \mathcal{Q}_t .

An alternative: Ambiguity aversion with less extreme uncertainty

 Recursively-defined utility function with entropy constraint (Hansen-Sargent book, 2008)

$$U_t(\vec{C}; s^t) \equiv \min_{p \in \mathcal{P}_t(s^t)} \log \left(c_t(s^t) \right) - \frac{n_t(s^t)^{1+\psi}}{1+\psi} + \beta E^p U_{t+1}(\vec{C}; s^{t+1})$$

 $s.t. \ \mathcal{D}(p||\mathcal{Q}_t) < \theta^{-1}$

- ullet Implies p cannot be too far from the "benchmark" distribution \mathcal{Q}_t .
- Resulting distribution of $s_{t+1} \equiv (\mu_{\star}, \overline{\mu}_{t})$ is regarded as a logit:

$$p_t(s) = \frac{Q_t(s) \exp(-U(s)/\theta)}{\int Q_t(s') \exp(-U_{t+1}(s')/\theta) ds'}$$

Value function E^pU is Hansen-Sargent "risk-sensitive expectation"

$$E^p U_{t+1}(\vec{C}; s) = \theta \log \left(\int \mathcal{Q}_t(s') \exp \left(\frac{U_{t+1}(s')}{\theta} \right) \right) ds'$$

An alternative: Ambiguity aversion with less extreme uncertainty

 Recursively-defined utility function with entropy constraint (Hansen-Sargent book, 2008)

$$U_t(\vec{C}; s^t) \equiv \min_{p \in \mathcal{P}_t(s^t)} \log \left(c_t(s^t) \right) - \frac{n_t(s^t)^{1+\psi}}{1+\psi} + \beta E^p U_{t+1}(\vec{C}; s^{t+1})$$

 $s.t. \ \mathcal{D}(p||\mathcal{Q}_t) < \theta^{-1}$

- ullet Implies p cannot be too far from the "benchmark" distribution \mathcal{Q}_t .
- Resulting distribution of $s_{t+1} \equiv (\underline{\mu}_t, \overline{\mu}_t)$ is regarded as a logit:

$$p_t(s) = \frac{Q_t(s) \exp(-U(s)/\theta)}{\int Q_t(s') \exp(-U_{t+1}(s')/\theta) ds'}$$

- ullet Value function E^pU is Hansen-Sargent "risk-sensitive expectation"...
- Smoother, more tractable model for calculating dynamics, less sensitive to assumed corners?

THANKS FOR YOUR ATTENTION!

Minor comments

- μ is confusing notation for the *contractionary* money shock, since μ often represents money growth
- Having notation $(\mu^e?)$ for the pessimistic expectation would be clearer
- ullet Prop. 4.1 is hard to read because definition of δ^* is not immediately obvious
- You can simplify equation (3) by moving E^p after the β
- I'm confused about why (8) is valid. Doesn't Π_t depend on u_t^e ? If so, how did you you cancel out u_t^e by taking expectations?