Optimal Monetary Policy with Heterogeneous Agents

Galo Nuño & Carlos Thomas

Banco de España

First Annual Workshop ESCB Research Cluster 1 on Monetary Economics 9 October 2017

Outline

- Introduction
- 2 Mode
- Optimal Monetary Policy
- Mumerical analysis
- Conclusions
- 6 Appendix: additional material

Motivation

• Emerging **positive** literature about the redistributive effects of monetary policy in incomplete-markets models with non-trivial heterogeneity

Motivation

- Emerging **positive** literature about the redistributive effects of monetary policy in incomplete-markets models with non-trivial heterogeneity
 - Meh, Ríos-Rull and Terajima (2010), Gornemann, Kuester and Nakajima (2012), McKay, Nakamura and Steinsson (2015), Challe, Matheron, Ragot and Rubio-Ramírez (2015), Luetticke (2015), Auclert (2015), and Kaplan, Moll and Violante (2016)

Motivation

- Emerging **positive** literature about the redistributive effects of monetary policy in incomplete-markets models with non-trivial heterogeneity
 - Meh, Ríos-Rull and Terajima (2010), Gornemann, Kuester and Nakajima (2012), McKay, Nakamura and Steinsson (2015), Challe, Matheron, Ragot and Rubio-Ramírez (2015), Luetticke (2015), Auclert (2015), and Kaplan, Moll and Violante (2016)
- Little progress on the **normative** front: the entire wealth distribution is a state in the policy-maker's problem

This paper

• We solve the **optimal monetary policy** in a model with uninsurable idiosyncratic risk, both discretion & commitment

This paper

- We solve the **optimal monetary policy** in a model with uninsurable idiosyncratic risk, both discretion & commitment
 - we introduce a novel methodology for solving fully optimal dynamic policy problems in models of this kind...

This paper

- We solve the **optimal monetary policy** in a model with uninsurable idiosyncratic risk, both discretion & commitment
 - we introduce a novel methodology for solving fully optimal dynamic policy problems in models of this kind...
 - ... that relies on infinite-dimensional calculus

• Incomplete markets economy à la Huggett (1993)

- Incomplete markets economy à la Huggett (1993)
 - ▶ Nominal, long-term, non-contingent financial assets

- Incomplete markets economy à la Huggett (1993)
 - Nominal, long-term, non-contingent financial assets
 - ► Utility costs of inflation

- Incomplete markets economy à la Huggett (1993)
 - Nominal, long-term, non-contingent financial assets
 - Utility costs of inflation
 - ► Small open-economy with risk-neutral foreign investors

- Incomplete markets economy à la Huggett (1993)
 - ▶ Nominal, long-term, non-contingent financial assets
 - ► Utility costs of inflation
 - ► Small open-economy with risk-neutral foreign investors
 - ▶ in continuous time

• Effects of monetary policy:

- Effects of monetary policy:
 - ► Fisherian channel: Unanticipated inflation redistributes wealth from creditors (and foreign investors) to debtors

- Effects of monetary policy:
 - Fisherian channel: Unanticipated inflation redistributes wealth from creditors (and foreign investors) to debtors
 - ► Anticipated inflation raises the nominal costs of new debt issuances

- Effects of monetary policy:
 - Fisherian channel: Unanticipated inflation redistributes wealth from creditors (and foreign investors) to debtors
 - ► Anticipated inflation raises the nominal costs of new debt issuances
 - Nonzero inflation also entails a direct welfare loss

 Under discretion, monetary policy features an inflationary bias driven by a redistributive motive:

- Under discretion, monetary policy features an inflationary bias driven by a redistributive motive:
 - With incomplete markets (and concave preferences), debtors have higher marginal utility of net wealth

- Under discretion, monetary policy features an inflationary bias driven by a redistributive motive:
 - With incomplete markets (and concave preferences), debtors have higher marginal utility of net wealth
- Under commitment, monetary policy features inflation front-loading:

- Under discretion, monetary policy features an inflationary bias driven by a redistributive motive:
 - With incomplete markets (and concave preferences), debtors have higher marginal utility of net wealth
- Under commitment, monetary policy features inflation front-loading:
 - ▶ no precommitments at time zero → positive initial inflation

- Under discretion, monetary policy features an inflationary bias driven by a redistributive motive:
 - With incomplete markets (and concave preferences), debtors have higher marginal utility of net wealth
- Under commitment, monetary policy features inflation front-loading:
 - ▶ no precommitments at time zero → positive initial inflation
 - central bank internalizes the effect of expectations of future inflation on bond prices → inflation gradually falls towards long-run optimum

- Under discretion, monetary policy features an inflationary bias driven by a redistributive motive:
 - With incomplete markets (and concave preferences), debtors have higher marginal utility of net wealth
- Under commitment, monetary policy features inflation front-loading:
 - ▶ no precommitments at time zero → positive initial inflation
 - central bank internalizes the effect of expectations of future inflation on bond prices → inflation gradually falls towards long-run optimum
 - long-run optimal inflation is zero under certain conditions

- Under discretion, monetary policy features an inflationary bias driven by a redistributive motive:
 - With incomplete markets (and concave preferences), debtors have higher marginal utility of net wealth
- Under commitment, monetary policy features inflation front-loading:
 - ▶ no precommitments at time zero → positive initial inflation
 - central bank internalizes the effect of expectations of future inflation on bond prices → inflation gradually falls towards long-run optimum
 - ▶ long-run optimal inflation is zero under certain conditions
- Discretion implies first-order welfare losses relative to commitment for creditors and debtors

Outline

- Introduction
- 2 Model
- Optimal Monetary Policy
- Mumerical analysis
- Conclusions
- 6 Appendix: additional material

Output, prices and net assets

ullet Household $k \in [0,1]$ is endowed with y_{kt} units of output

Output, prices and net assets

- ullet Household $k \in [0,1]$ is endowed with y_{kt} units of output
 - y_{kt} follows 2-state Poisson process, $y_1 < y_2$, with intensities λ_1 and λ_2

Output, prices and net assets

- ullet Household $k \in [0,1]$ is endowed with y_{kt} units of output
 - y_{kt} follows 2-state Poisson process, $y_1 < y_2$, with intensities λ_1 and λ_2
- Domestic price,

$$dP_t = \pi_t P_t dt$$

Output, prices and net assets

- Household $k \in [0, 1]$ is endowed with y_{kt} units of output
 - y_{kt} follows 2-state Poisson process, $y_1 < y_2$, with intensities λ_1 and λ_2
- Domestic price,

$$dP_t = \pi_t P_t dt$$

Net asset position,

$$dA_{kt} = (A_{kt}^{new} - \delta A_{kt}) dt$$

 δ : amortization rate

Output, prices and net assets

- Household $k \in [0, 1]$ is endowed with y_{kt} units of output
 - y_{kt} follows 2-state Poisson process, $y_1 < y_2$, with intensities λ_1 and λ_2
- Domestic price,

$$dP_t = \pi_t P_t dt$$

Net asset position,

$$dA_{kt} = \left(A_{kt}^{new} - \delta A_{kt}\right) dt$$

 δ : amortization rate

Individual budget constraint

$$Q_t A_{kt}^{new} = P_t \left(y_{kt} - c_{kt} \right) + \delta A_{kt}$$

Net real debt dynamics

• Real net wealth

$$a_{kt} \equiv A_{kt}/P_t$$
.

Net real debt dynamics

• Real net wealth

$$a_{kt} \equiv A_{kt}/P_t$$
.

Then

$$\dot{a}_{kt} = \left(\mathit{r}_{t} - \pi_{t} \right) \mathit{a}_{kt} + rac{\mathit{y}_{kt} - \mathit{c}_{kt}}{\mathit{Q}_{t}},$$

where

$$r_t = \frac{\delta}{Q_t} - \delta$$

is the nominal bond yield

Net real debt dynamics

• Real net wealth

$$a_{kt} \equiv A_{kt}/P_t$$
.

Then

$$\dot{a}_{kt} = \left(\mathit{r}_{t} - \pi_{t} \right) \mathit{a}_{kt} + \dfrac{\mathit{y}_{kt} - \mathit{c}_{kt}}{\mathit{Q}_{t}},$$

where

$$r_t = \frac{\delta}{Q_t} - \delta$$

is the nominal bond yield

Borrowing constraint

$$a_{kt} \ge \phi$$
, $\phi \le 0$.

- Separable preferences
- Individual value function

$$v(t, \mathit{a}, \mathit{y}) = \max_{\left\{c_{\mathit{s}}\right\}_{\mathit{s} \in [t, \infty)}} \mathbb{E}_{t} \int_{t}^{\infty} \mathrm{e}^{-\rho(\mathit{s} - t)} \left[u(c_{\mathit{k} \mathit{s}}) - x(\pi_{\mathit{s}})\right] \mathit{d} \mathit{s}$$

International investors (bond pricing)

- Risk-neutral investors can invest elsewhere at riskless real rate \bar{r}
- Unit price of the nominal non-contingent bond

$$Q(t) = \int_t^\infty \delta e^{-(ar r + \delta)(s-t) - \int_t^s \pi_u du} ds$$

Dynamics of the income-wealth density

• Kolmogorov Forward (KF) equation

$$rac{\partial f_i(t, \mathbf{a})}{\partial t} = -rac{\partial}{\partial \mathbf{a}}\left[s_i\left(t, \mathbf{a}
ight)f_i(t, \mathbf{a})
ight] - \lambda_i f_i(t, \mathbf{a}) + \lambda_j f_j(t, \mathbf{a}),$$

 $i, j = 1, 2, j \neq i$, where

$$s_i(t, a) \equiv (r_t - \pi_t) a + \frac{y_i - c_i(t, a)}{Q_t}$$

is the drift function

Assumption

 The value of parameters is such that the country is a net debtor against the rest of the World

$$\int_{\phi}^{\infty}a\left(f_{1t}\left(a\right)+f_{2t}\left(a\right)\right)da\leq0$$

• For tractability: it avoids introducing a foreign bond

Outline

- Introduction
- Mode
- Optimal Monetary Policy
- 4 Numerical analysis
- Conclusions
- 6 Appendix: additional material

Central bank

- ullet The central bank chooses the **inflation rate** $\pi\left(t
 ight)$
- Central bank's utilitarian welfare criterion

$$U_0^{CB} \equiv \int_{\phi}^{\infty} \sum_{i=1}^{2} v_i(0,a) f_i(0,a) da$$

Commitment

Statement of the problem

• The Ramsey problem is

$$J^{R}\left[f\left(0,\cdot\right)\right] = \max_{\left\{\pi_{s},Q_{s},f\left(s,\cdot\right),v\left(s,\cdot\right),c\left(s,\cdot\right)\right\}_{s\in\left[0,\infty\right)}}U_{0}^{CB}$$

subject to the law of motion of the distribution, the bond pricing equation, the individual HJB equation and the first-order condition

- J^R and π are not ordinary functions, but **functionals** as they map a distribution $f(t,\cdot)$ into $\mathbb R$
- The problem is time-inconsistent

Methodology: commitment

- In the case of commitment we construct a functional Lagragian
- This is a problem of constrained optimization in an infinite-dimensional Hilbert space → Gateaux derivative

Gateaux derivative

Definition (Gateaux derivative)

Let J[f] be a functional and let h be arbitrary in $L^{2}(\Omega)$, where $\Omega \subset \mathbb{R}^{n}$. If the limit

$$\delta J[f;h] = \lim_{\alpha \to 0} \frac{J[f + \alpha h] - J[f]}{\alpha} = \left. \frac{d}{d\alpha} J[f + \alpha h] \right|_{\alpha = 0}$$
(1)

exists, it is called the *Gateaux derivative* of J at f with increment h.

• Intuition: a perturbation $h(\cdot)$, as in Calculus of Variations

Optimal inflation under commitment

Optimal inflation at time t satisfies

$$x'\left(\pi\left(t\right)\right) = \underbrace{\sum_{i=1}^{2} \int_{\phi}^{\infty} \frac{\partial v_{i}}{\partial a} \left(-a\right) f_{i}\left(t,a\right) da}_{\text{redistributive motive}} + \underbrace{\mu(t) Q(t)}_{\text{(commitment)}},$$

where $\mu(t)$ is a costate with law of motion

$$\frac{d\mu\left(t\right)}{dt} = \left(\rho - \bar{r} - \pi(t) - \delta\right)\mu\left(t\right) + \sum_{i=1}^{2} \int_{\phi}^{\infty} \frac{\partial v_{it}}{\partial a} \frac{\delta a + y_{i} - c_{i}\left(t, a\right)}{Q\left(t\right)^{2}} f_{i}\left(t, a\right) da$$

and initial condition

$$\mu\left(0\right)=0$$
 (no precommitments).

Proposition (Optimal long-run inflation under commitment)

In the limit as $\rho \to \bar{r}$, the steady-state inflation is zero:

$$\lim_{\rho \to \bar{r}} \pi\left(\infty\right) = 0$$

Discretion

- A Markov Perfect Stackelberg Equilibrium is defined as the limit as $\Delta t \to 0$ of a sequence of problems in which the central bank chooses policy with commitment in each interval $(t, t + \Delta t]$ but not across intervals
- The problem is time-consistent

Discretion

Statement of the problem

The value functional of the central bank at time t is given by

$$J^{M}\left[f_{t}\left(\cdot\right)\right]=\lim_{\Delta t\to0}J_{\Delta t}^{M}\left[f_{t}\left(\cdot\right)\right],$$

where

$$J_{\Delta t}^{M}\left[f_{t}\left(\cdot\right)\right] = \max_{\left\{\pi_{s},Q_{s},v\left(s,\cdot\right),c\left(s,\cdot\right),f\left(s,\cdot\right)\right\}_{s\in\left(t,t+\Delta t\right]}} \\ \int_{t}^{t+\Delta t} e^{-\rho\left(s-t\right)} \left[\int_{\phi}^{\infty} \sum_{i=1}^{2} u\left(c_{is}\left(a\right),\pi_{s}\right) f_{i}\left(s,a\right) da\right] ds \\ + e^{-\rho\Delta t} J_{\Delta t}^{M}\left[f_{t+\Delta t}\left(\cdot\right)\right],$$

subject to the law of motion of the distribution, the bond pricing equation, the individual HJB equation and the first-order condition

Methodology: discretion

We proceed in two steps:

- lacktriangle First we solve the commitment problem over $(t,t+\Delta t]$ using infinite-dimensional calculus
- 2 Then we take the limit as $\Delta t \rightarrow 0$

Optimal inflation under discretion

• Optimal inflation at time t satisfies

$$x'(\pi(t)) = \sum_{i=1}^{2} \int_{\phi}^{\infty} \frac{\partial v_{i}}{\partial a} (-a) f_{i}(t, a) da > 0.$$

• As long as $x'(\pi) > 0$ only for $\pi > 0$, we have

$$\pi(t) > 0$$
 for all t (inflationary bias)

Outline

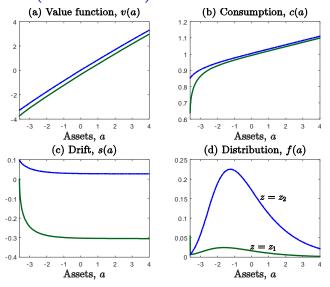
- Introduction
- Model
- Optimal Monetary Policy
- Mumerical analysis
- Conclusions
- 6 Appendix: additional material

Calibration

- ullet Calibrate to a prototypical European small open economy, time unit =1 year
- $u(c) = \log(c)$, $x(\pi) = \frac{\psi}{2}\pi^2$ (Rotemberg pricing)

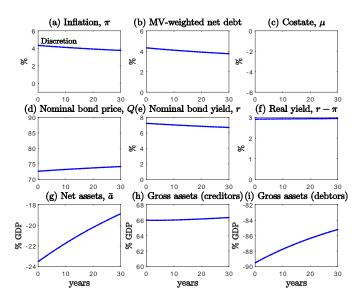
	Value	Description	Source/Target
ī	0.03	world real interest rate	standard
ψ	5.5	scale inflation disutility	slope NKPC in Calvo model
δ	0.19	bond amortization rate	Macaulay duration $= 4.5$ yrs
λ_1	0.72	transition rate U to E	monthly job finding rate 0.1%
λ_2	0.08	transition rate E to U	unemployment rate 10%
y_1	0.73	income in U state	Hall & Milgrom (2008)
<i>y</i> ₂	1.03	income in E state	E(y) = 1
ρ	0.0302	subjective discount rate	∫ NIIP/GDP (-25%)
φ	-3.6	borrowing limit	HH debt/GDP (90%)

Steady-state (zero inflation)

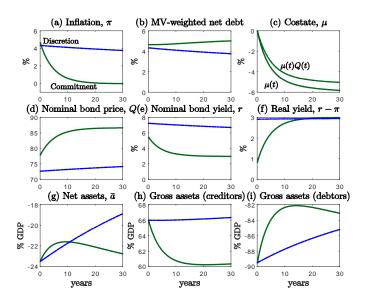


 \bullet We will use the wealth distribution in the zero- π steady state as initial condition

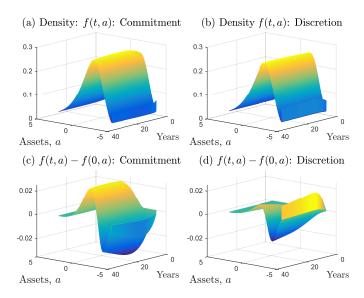
Optimal transitional dynamics: discretion



Optimal transitional dynamics: commitment



Density dynamics



Welfare analysis

Welfare losses relative to the optimal commitment

	Economy-wide	Creditors	Debtors
Discretion	0.31	0.23	0.08
Zero inflation	0.05	-0.17	0.22

Note: welfare losses are expressed as a % of permanent consumption

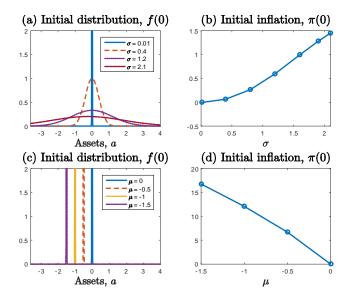
Robustness: initial distribution and initial inflation

- Initial net wealth distribution is a key determinant of optimal policy
- We have assumed so far that f(0, a) is the one corresponding to the zero inflation steady state
- How does $\pi(0)$ change with initial distribution?
- To make the analysis operational, assume Normal distributions truncated at borrowing limit:

$$f\left(0,a\right) = \left\{ \begin{array}{c} \phi\left(a;\mu,\sigma\right) / \left[1 - \Phi\left(\phi;\mu,\sigma\right)\right], & a \geq \phi \\ 0, & a < \phi \end{array} \right.$$

- ϕ , Φ : Normal pdf and cdf
- ullet Sensitivity wrt σ and μ
 - ▶ When varying σ , adjust μ such that $\sum_{i=1}^{2} \int_{\phi}^{\infty} a f_i(0, a) da = 0 \rightarrow \text{isolate}$ domestic redistribution channel

Robustness: initial distribution and initial inflation



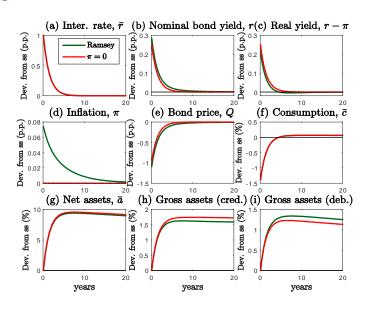
Aggregate shocks

• Consider a one-time, unanticipated, temporary increase in the World real interest rate, after which

$$d\bar{r}_t = \eta_r (\bar{r} - \bar{r}_t) dt$$

- Up to a first order approximation \Leftrightarrow model with stochastic process $d\bar{r}_t = \eta_r (\bar{r} \bar{r}_t) dt + \sigma dZ_t$
 - ► The IRFs coincide with the solution by first-order perturbation around the det. steady state, as in Ahn, Kaplan, Moll and Winberry (2017)
- We focus on the commitment case
 - ► Initial condition: steady state of the Ramsey problem → optimal responses from a timeless perspective

Aggregate shocks



Outline

- Introduction
- 2 Mode
- Optimal Monetary Policy
- Mumerical analysis
- Conclusions
- 6 Appendix: additional material

Conclusions

- Analyze optimal monetary policy in an economy with nontrivial household heterogeneity (uninsurable idiosyncratic risk)
 - Methodological contribution: Novel methodology based on infinite-dimensional calculus
- Under discretion there is an inflationary bias for redistributive motives
 - Intuition: the central bank gives more weight to debtors as they have larger marginal consumption utilities
- Under commitment there is inflation front-loading
 - Avoid inflation expectations from being priced into bond issuances
 - Long-run inflation rate is zero under certain conditions

Outline

- Introduction
- 2 Mode
- Optimal Monetary Policy
- 4 Numerical analysis
- Conclusions
- 6 Appendix: additional material

Competitive equilibrium

Given $\{\pi(t)\}_{s\in[0,\infty)}$ and the initial density f(0,a,y), a competitive equilibrium is v(t,a,y), c(t,a,y), Q(t) and f(t,a,y) such that:

- Given π , the price of bonds set by investors is Q
- ② Given Q and π , ν is the solution of the households' problem and c is the optimal consumption policy
- **3** Given Q, π , and c, f is the solution of the KF equation

Why continuous time?

Numerical advantages

The discretized HJB

$$\left[\left(rac{1}{\Delta t}+
ho
ight)\mathbf{I}-\mathbf{A}_{n}
ight]\mathbf{V}^{n}=\mathbf{u}^{n}\Delta t+\mathbf{V}^{n+1}$$
,

where $\left[\left(\frac{1}{\Delta t}+\rho\right)\mathbf{I}-\mathbf{A}_{n}\right]$ is a sparse (tridiagonal matrix) ightarrow efficient solution

► Analytical mapping from the value function to the optimal policy function → no numerical maximization

$$c_{i}\left(t,a
ight)=\left[rac{1}{Q\left(t
ight)}rac{\partial v_{i}\left(t,a
ight)}{\partial a}
ight]^{-1/\gamma}$$

► Trivial solution of the KF equation

$$\left(\mathbf{I} - \Delta t \mathbf{A}_n^{\mathsf{T}}\right) \mathbf{f}^{n+1} = \mathbf{f}^n.$$

Steady state results

	units	Ramsey	MPE
Inflation, π	%	-0.05	1.68
Nominal yield, r	%	2.95	4.68
Net assets, \bar{a}	% GDP	-24.1	-0.6
Gross assets (creditors)	% GDP	65.6	80.0
Gross debt (debtors), \bar{b}	% GDP	89.8	80.6
Current acc. deficit, $\bar{c} - \bar{y}$	% GDP	-0.63	-0.01

Robustness: interest rate gap

