Monetary Blocs, Optimum Currency Areas and European Monetary Integration: Evidence from the Italian and German Unifications (1846-1870)

5th October 2017 Banco de España, Madrid

Roger Vicquéry r.h.vicquery@lse.ac.uk London School of Economics

Paper Overview

- What can we learn from past episodes of international and national monetary integration?
- Focus on the pre-1870 period: Gold Standard, Latin Union / Italy, Germany.
- 1) Monetary Blocs: Was the pre-1870 European monetary system unipolar? Was the Gold Standard inevitable?
- 2) Macroeconomic costs of monetary integration (focus of today)
- How big were the costs of monetary integration for Italy and Germany at unification? How close were they to an OCA?
- Are OCAs endogenous? Evidence on the Frankel and Rose vs. Krugman debate from the Italian unification.

Today

- 1) International Monetary Integration: Theory and Practice
- 2) Data
- 3) Econometric Analysis
- 4) Implication for OCA endogeneity hypothesis and Italian economic history

Costs and Benefits of Monetary Integration (1)

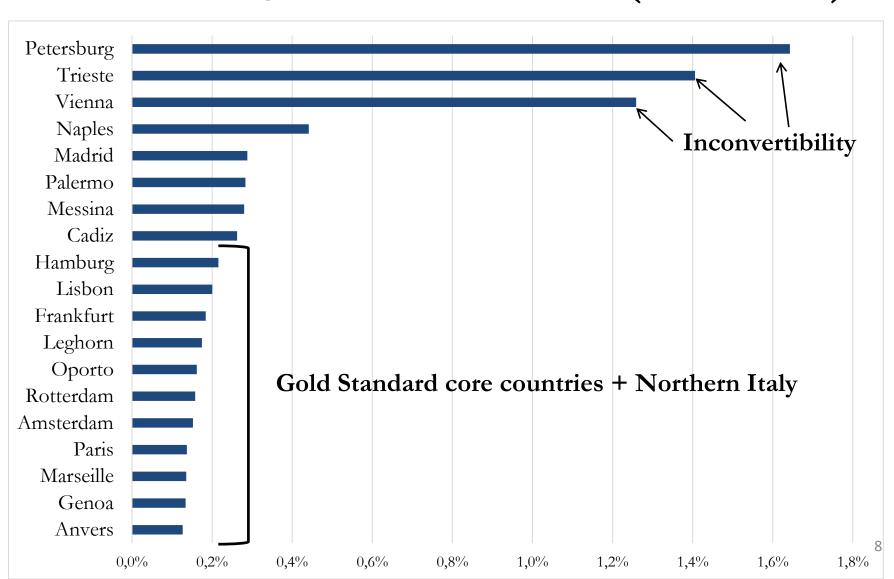
- Original OCA framework (Mundell, 1961)
- 1) Benefits: Reduction in transaction costs for trade and financial transactions. Trade effect literature (Rose, 2000; Tenreyro, 2007).
- 2) Costs: Loss of monetary policy independence, vulnerability to asymmetric shocks → Depends on: trade integration, factor mobility, price flexibility or smoothing mechanisms (fiscal / banking union).
- Are the OCA "criteria" endogenous? Frankel and Rose (1998) vs. Krugman (2001)

Costs and Benefits of Monetary Integration (2)

• Alesina and Barro (2002): very few countries really enjoy an independent monetary policy.

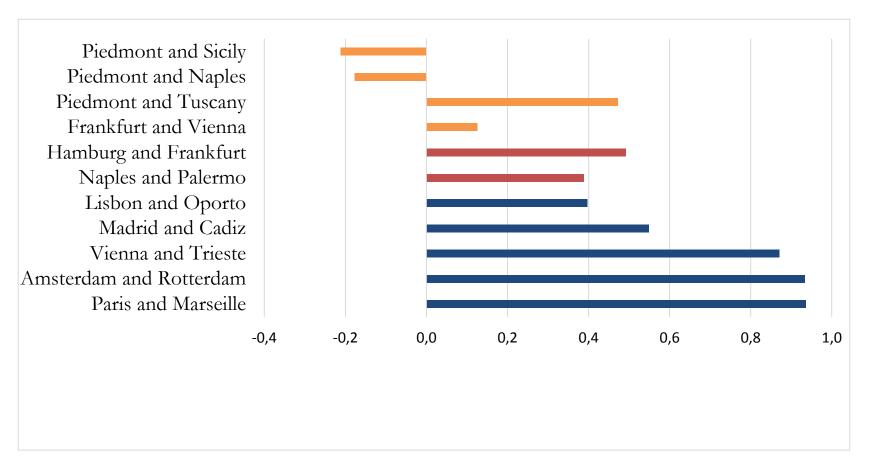
• This implies additional benefits (credibility) and lower costs to international monetary integration, which mostly involves "anchor-client" relationships.

• "German dominance hypothesis": was pre-Maastricht Europe a Deutsche Mark zone (Giavazzi and Giovannini, 1998)?


Operationalizing the OCA Framework

- Symmetry of shocks between a given region and a potential anchor indicate low costs of monetary integration (Alesina, Barro, Tenreyro, 2002).
- An **OCA** can be proxied as an area composed of regions with similar dominance with respect to the same anchor(s).
- Nominal FX movements as a proxy of synchronization following Bayoumi and Eichengreen (1997).
- Estimate of monetary dominance and FX movements synchronization through Frankel-Wei regressions.

Data


- Original database of twice-weekly foreign exchange bills quotes manually collected from The Economist from 1846 to 1869
- London quotes on 22 European financial centres: 102,930 bid-ask observations, 26,371 weekly quotes
- Reflecting nominal shocks across Europe both between and within countries

Volatility of Foreign Exchange Bills' Returns Quoted in London (1852-1858):

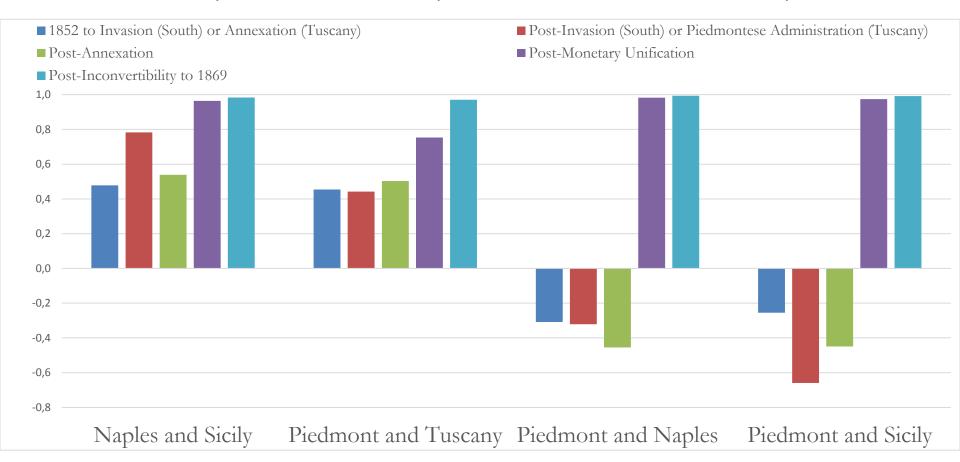
Foreign Exchange Bills' Returns Correlation Coefficient (1852-1858)

National monetary unions, Confederations, "Potential" monetary unions

Average Intra-Monetary Zone Spread against the British Pound

			Franc Germinal Zone****					
	Paris vs.	Vienna vs.	Paris vs.	Paris vs.				
	Marseille	Trieste	Cadiz	Oporto	Messina**	Naples***	Anvers	Genoa
1846-52	0.17%	0.14%	1.61%	0.33%	0.31%	-	0.22%	1.41%
1852-58	0.05%	0.35%	0.75%	0.41%	0.20%	-	-0.31%	0.50%
1859-65	0.04%	0.08%	0.33%	0.27%	0.09%	0.05%	-0.13%	0.50%
1866-69	0.06%	0.05%	1.01%	0.05%	-0.03%	0.01%	0.19%	7.82%

^{*} The figures in the table represent the difference in the amount of British Pounds one could buy for one unit of local currency in two different centers of a monetary zone.


^{**} Quoted in Sicilian Once until 1863 when the Italian Lira takes over.

^{***} Calculated only from 1863 onward when both centers start to be quoted in Italian Lire.

^{****} Latin Monetary Union from 1865 onward. The Italian Lira becomes inconvertible in 1866.

FX-Bills Returns Correlation

- Money markets integration at odds with findings by Toniolo et al. (2003) and Collet (2013)
- Likely the Italian Lira quotes in London reflected conditions in Northern markets as the currency did not circulate widely in the South until later in the century

Econometric Analysis (1)

- Frankel-Wei (1994) currency co-movements factor model.
- Fratzscher and Mehl (2014): evidence of rising Chinese monetary dominance.

A standard Frankel-Wei regression can be written in its most general form as:

(1)
$$\Delta \ln \frac{X_t}{Num\acute{e}raire_t} = \alpha + \sum_i \beta_i \Delta \ln \frac{Reference_{i,t}}{Num\acute{e}raire_t} + \gamma_t' \mathbf{\Pi}_t + \epsilon_t$$

Econometric Analysis (2)

- Three factor models (two stages to obtain a regional factor)
- Measures the symmetry of co-movements with respect to each factor

$$\Delta e_{i,t} = \alpha_i + \beta_{i,t}^{GBP} \Delta e_t^{GBP} + \beta_{i,t}^{FFR} \Delta e_t^{FFR} + \beta_{i,t}^{REG} \Delta e_t^{\widehat{REG}_i} + \gamma_t BIDASK_t + \delta_t^{BOE} BOE_t + \delta_t^{BDF} BDF_t + \epsilon_t$$
(2)

(3)
$$\Delta e_t^{REG_i} = \alpha_i + \beta_t^{GBP} \Delta e_t^{GBP} + \beta_t^{FFR} \Delta e_t^{FFR} + \omega_t$$

$$\Delta e_t^{\widehat{REG}_i} = \omega_t$$

Econometric Analysis (2)

- Three factor models (two stages to obtain a regional factor)
- Measures the symmetry of co-movements with respect to each factor

(2)
$$\Delta e_{i,t} = \alpha_i + \beta_{i,t}^{GBP} \Delta e_t^{GBP} + \beta_{i,t}^{FFR} \Delta e_t^{FFR} + \beta_{i,t}^{REG} \Delta e_t^{\widehat{REG}_i} + \gamma_t BIDASK_t + \delta_t^{BOE} BOE_t + \delta_t^{BDF} BDF_t + \epsilon_t$$

$$+ \delta_t^{BOE} BOE_t + \delta_t^{BDF} BDF_t + \epsilon_t$$

$$\Delta e_t^{REG_i} = \alpha_i + \beta_t^{GBP} \Delta e_t^{GBP} + \beta_t^{FFR} \Delta e_t^{FFR} + \omega_t$$

$$\Delta e_t^{\widehat{REG}_i} = \omega_t$$

Econometric Analysis (3)

• The estimated anchor currency factors represent the degree of monetary policy autonomy / monetary dominance vis-à-vis each anchor country.

• Monetary dominance is likely to reflect drivers of cyclical synchronization (trade, financial links).

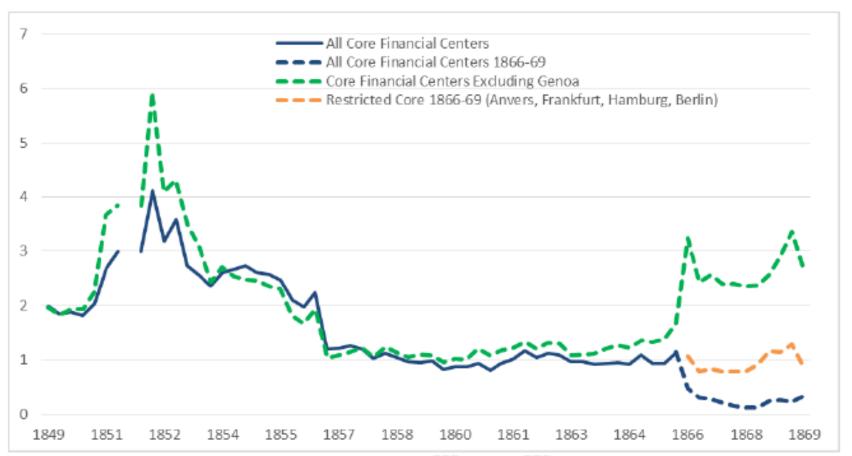
• Regions with similar monetary dominance should experience lower costs of monetary integration.

Results (1): Monetary Dominance in the Pre-Gold Standard Period

- First trade and financial globalisation provides incentives for international monetary integration. Why the Gold Standard?
- Fundamentals (Kindelberger, 1978), transactions costs (Redish, 1995), network externalities with German "tipping the balance" (Eichengreen, 1998): gold standard was inevitable.
- Flandreau (1996): random events! The French bimetallic system was extremely resilient pre-1870 and still credible by 1876 (Flandreau and Oosterlinck, 2013). Rising French capital exports provided strong incentives to monetary integration around the Franc (Flandreau, 2000; Einaudi, 2001).

Results (1): Monetary Dominance in the Pre-Gold Standard Period

- The debate on the origins (and the inevitability) of the international gold standard can be re-framed in terms of monetary dominance.
- Was the European monetary system unipolar and subject to British dominance? Or France also was a driver of the monetary system?
- Contribute to the debate by estimating equation (2) in panel.


Table 5: Equation 2 Panel Estimation (1852-1869)

	All I	Financial Ce	nters ^a	Core	Financial (Centers ^b
	(1)	(2)	(3)	(4)	(5)	(6)
British Factor	0.893*** (0.0704)	0.903*** (0.0695)	0.908*** (0.0761)	0.365*** (0.0480)	0.377*** (0.0465)	0.392*** (0.0487)
French Factor	0.06094 (0.0786)	0.054374 (0.0778)	0.051005 (0.0751)	0.373*** (0.0498)	0.359*** (0.0481)	0.349*** (0.0472)
Regional Factor		0.192*** (0.0382)	0.191*** (0.0377)		0.128*** (0.0417)	0.122*** (0.0419)
Bid-Ask Spread			-0.11502 (0.1181)			-0.206** (0.0908)
Bank of England			-0.00012 (0.0002)			-0.00025** (0.0001)
Bank of France			0.000128 (0.0003)			0.000085 (0.0001)
Observations Adj. R-squared	10,550 0.055	10,550 0.088	10,550 0.089	5,123 0.097	5,123 0.191	5,123 0.198

Notes: Constant and fixed effects included in all the specifications. Robust standard errors are reported in parentheses. ***, ** and * denote statistical significance at the 1%, 5% and 10% respectively.

 ^a All financial centers included except the ones mentioned in Footnote 13 due to collinearity issues.
 ^b Anvers, Hamburg, Frankfurt, Berlin, Genoa, Leghorn, Lisbon. Leghorn exits the sample once it starts being quoted in Italian Lire in 1860

Figure 2: Relative Size of Anchors' Dominance (British Factor / French Factor)*

*The lines are obtained by computing the ratio of β^{GBP} over β^{FFR} from Equation 2, estimated through 4-years rolling regression. Core Financial Centers: Anvers, Frankfurt, Hamburg, Berlin, Genoa, Leghorn, Lisbon. Leghorn drops from the sample as soon as it starts to be quoted in Italian Lire in 1860.

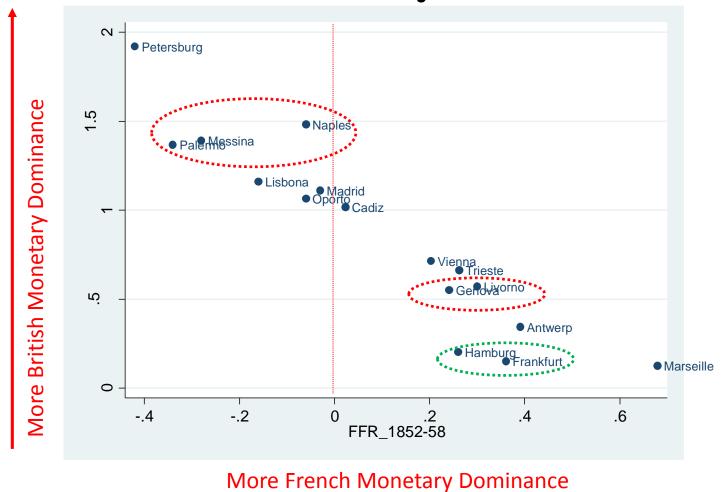
Results (1): Summary

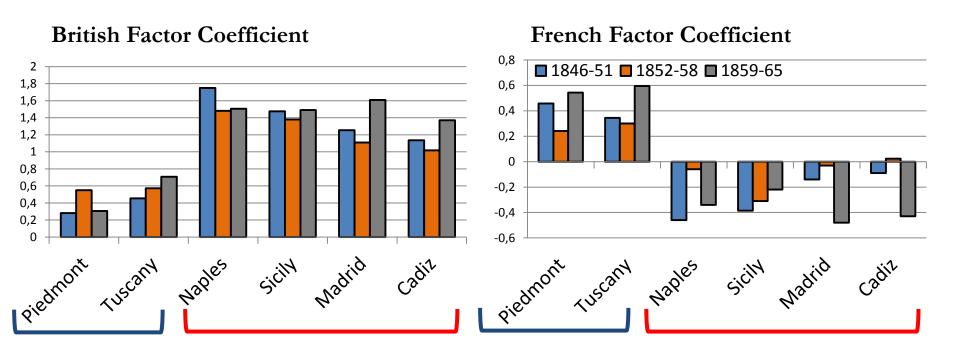
- Core vs. Periphery.
- Rising French dominance (including in Germany) and strongly bipolar European Monetary core.
- Confirms Flandreau's view against the inevitability of the international Gold Standard and the economic rationale of the Latin Monetary Union project.
- Had France not been defeated in 1870, it is plausible to imagine further international monetary integration around France.

Results (1): Explaining Monetary Dominance

• Are the factors driven by policy choice or fundamentals (trade and financial linkages)?

Table 6: Determinants of the Heterogeneity in the Estimated Individual Factors

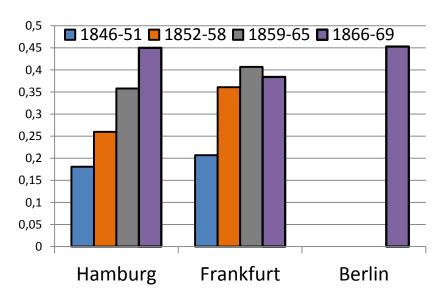

		British	Factor				French Factor	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Trade per Capita	0.115		0.148	0.193***	0.154***		0.153***	-0.00825
	(0.0783)		(0.0939)	(0.0685)	(0.0345)		(0.0292)	(0.0733)
Trade Balance per Capita		-0.0158	0.0635	0.208***		0.129	0.00682	0.141
		(0.0676)	(0.0797)	(0.0499)		(0.109)	(0.102)	(0.171)
d_Bimetallic				-0.709***				0.479**
				(0.119)				(0.189)
d_Gold				0.253**				-0.305
				(0.0980)				(0.193)
d_Paper				0.223				-0.169
-				(0.185)				(0.163)
Constant	-0.906	0.811***	-1.402	-1.983*	-0.792***	0.0758	-0.786***	0.0853
	(1.137)	(0.0660)	(1.374)	(1.022)	(0.225)	(0.0485)	(0.189)	(0.397)
Observations	83	83	83	83	93	93	93	93
R-squared	0.029	0.001	0.035	0.348	0.218	0.031	0.218	0.282


Robust standard errors are reported in parentheses. ***, ** and * denote statistical significance at the 1%, 5% and 10% respectively.

- The «Spring of Nations» contributes to European monetary integration in Italy (exogenous) and Germany (endogenous).
- Italy: Cavour and Napoléon negotiated a loose confederation of Italian States in 1858 → Full political and economic unification is largely the product of random military events (Garibaldi expedition). Very little intra-Italian economic integration preunification (Federico and Tena, 2013).
- Germany: centuries of institutional integration (Chilosi et al., 2016), economic and monetary integration started at the beginning of the century (James, 1997).

• Run Frankel-Wei regressions individually for each financial center.

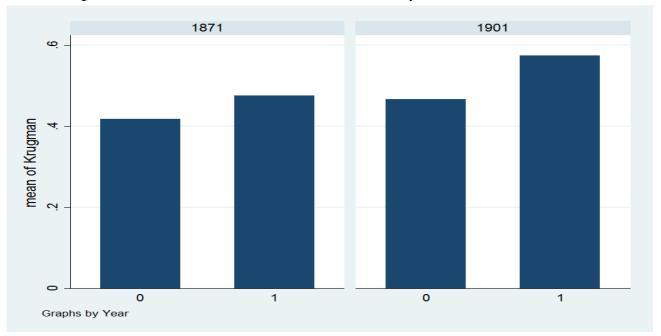
• Compare monetary dominance (estimated factor coefficients) across monetary unification «candidates».



British Factor Coefficient

French Factor Coefficient

Results (2): Summary


- German regions were more likely to form an OCA, they will experience comparatively less divergence post-unification.
- Evidence of high macroeconomic costs of monetary integration for Italian regions (Two Sicilies and Spain might have formed more of an OCA). Role of monetary unification in the Southern Question?
- Ex-ante sub-optimality but what endogenous effects of monetary integration?

Implications (1): Endogenous Effects of Monetary Integration

- Frankel and Rose (1998): Monetary union → Trade integration → Cyclical convergence.
- Krugman (2001): Monetary union → Trade specialization → Cyclical divergence, hysteresis.
- Italy: starting point of high cyclical divergence on the back of different specialization and trade partners. Which model fits post-unification experience?

Implications (1): Endogenous Effects of Monetary Integration

Krugman Index of dissimilarity amongst pairs of Italian provinces 1=the pair did not share the same currency before unification

• In line with Krugman's view, average dissimilarity amongst pairs of Italian provinces that did not share the same currency pre-unification increased markedly post-unification.

Implications (1): Endogenous Effects of Monetary Integration

$$K_{i,j,t} = c + CU_d_t + Distance_{i,j} + {}^{t}X_{i,j} + Polity_{m,n,t} + \epsilon_{i,j,t}$$

- K: Krugman index of dissimilarity across industrial production sub-components
- CU_d: takes value of one in 1901 if the pair of provinces were not part of the same currency area pre-unification. 'X: time varying correlates expressed in terms of absolute log difference between each province in the pair
- Time varying polity pair fixed effects: controls for time varying heterogeneity amongst pre-unitary polity pairs (eg. Tuscany-TwoSicilies).

Monetary integration associated with an increase of around one standard deviation in the dissimilarity index between provinces pairs

Dependent Variable: Industrial Production Dissimilarity amongst Provinces Pairs (Krugman Index)

OLS (1)	OLS (2)	OLS (3)	FE (4)
0.107***	0.0642***	0.197***	0.154***
-0.0106	-0.0108	-0.0242	-0.0143
	0.00217***	0.000563*	-0.000811
	-0.000259	-0.000298	-0.000765
	0.0636***	0.0408***	-0.0619**
	-0.00647	-0.00576	-0.0245
	0.00247***	0.00267***	0.00184***
	-0.00056	-0.000514	-0.000591
	-0.000458*	-0.000363	0.00168***
	-0.000278	-0.000254	-0.000296
	5.09e-08***	2.75e-07***	
	-1.53E-08	-2.03E-08	
0.461***	0.349***	0.347***	0.407***
-0.00412	-0.00814	-0.0146	-0.0221
4,692	4,692	4,692	4,692
0.059	0.125	0.263	0.342
-	-	-	YES
YES	YES	YES	YES
-	-	YES	YES
	0.107*** -0.0106 0.461*** -0.00412 4,692 0.059 - YES	0.107*** 0.0642*** -0.0106 -0.0108 0.00217*** -0.000259 0.0636*** -0.00647 0.00247*** -0.00056 -0.000458* -0.000278 5.09e-08*** -1.53E-08 0.461*** 0.349*** -0.00412 -0.00814 4,692 4,692 0.059 0.125 - YES	0.107*** 0.0642*** 0.197*** -0.0106 -0.0108 -0.0242 0.00217*** 0.000259 -0.000298 0.0636*** 0.0408*** -0.00647 -0.00576 0.00247*** 0.00267*** -0.00056 -0.000514 -0.000278 -0.000254 5.09e-08***2.75e-07*** -1.53E-08 -2.03E-08 0.461*** 0.349*** 0.347*** -0.00412 -0.00814 -0.0146 4,692 4,692 4,692 0.059 0.125 0.263 - - - YES YES YES

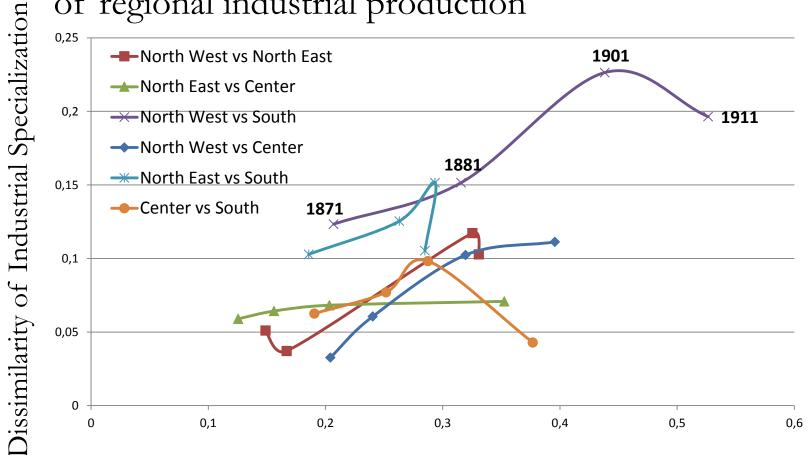
Robust standard errors in parentheses

^{***} p<0.01, ** p<0.05, * p<0.1

Implications (2): Monetary Integration and the Southern Question

- Ex-ante assymmetry of shocks
- Italian unification drives even more regional specialisation, further increasing vulnerability to assymetric shocks
- Monetary policy during the 1880s agrarian crisis: Italy (gold «shadowing») vs. Spain (devaluation)
- (Partial) external adjustement in Southern Italy takes place through labour emigration
- Hysteresis post terms of trade asymmetric shock might partially explain the widening North-South gap by the turn of the century.

Conclusion


- The pre-Gold Standard monetary system was bi-polar, both British and French monetary dominance, the Gold Standard was not "inevitable".
- High costs of monetary unification for Italian regions when compared to German ones. Possible role of asymmetric shocks in the arising of Southern Question.
- Evidence in favour of the Krugman's (2001) view on the endogenous effects of monetary integration: looking at the Italian experience monetary integration is associated with increased dissimilarity across regions.

Thank You

Annex

Specialization Patterns in Post-Unification Italy

Krugman Index calculated on Fenoaltea (2003) estimates of regional industrial production

Annex (1)

		British	n Factor			French	Factor		Regional Factor				
	1846-51	1852-58	1859-65	1866-69	1846-51	1852-58	1859-65	1866-69	1846-51	1852-58	1859-65	1866-69	
Hamburg	0.231***	0.201**	0.120*	0.244***	0.181**	0.260***	0.358***	0.450***	0.043	0.033	0.021	0.058***	
Frankfurt	0.436***	0.151**	0.305***	0.285***	0.207***	0.361***	0.407***	0.384***	0.002	0.042*	-0.00	-0.11***	
Berlin	-	-	-	0.400***	-	-	-	0.453***	-	-	-	0.074***	
Antwerp	0.241***	0.344***	0.179***	0.569***	0.491***	0.391***	0.619***	0.256***	0.032	0.024**	0.019*	0.087***	
Marseille	0.152***	0.126***	0.078**	0.340***	0.635***	0.679***	0.798***	0.499***	0.024	0.021**	0.019**	0.022*	
Genova	0.281***	0.550***	0.305***	0.013	0.458***	0.241***	0.543***	0.282	0.063***	-0.00	0.008*	0.048**	
Livorno	0.454***	0.572***	0.707***	-	0.344***	0.300***	0.595**	-	0.032***	0.005	0.013**	-	
Naples	1.749***	1.482***	1.505***	-	-0.46***	-0.06	-0.34	-	0.400***	0.175**	0.841***	-	
Palermo	1.439***	1.367***	1.498***	-	-0.37***	-0.34***	-0.25*	-	0.352***	0.467***	0.601***	-	
Messina	1.513***	1.392***	1.482***	-	-0.40***	-0.28***	-0.19	-	0.308***	0.432***	0.618***	-	
Milano (Lira)	-	-	0.258***	0.240	-	-	0.581***	0.256	-	-	0.021***	0.025	
Livorno (Lira)	-	-	0.219***	0.050	-	-	0.626***	0.184	-	-	0.020***	0.043*	
Palermo (Lira)	-	-	0.105	0.406	-	-	0.807***	0.095	-	-	0.007	0.038*	
Naples (Lira)	-	-	0.178*	0.246	-	-	0.725***	0.067	-	-	0.011	0.047**	
Messina (Lira)	-	-	0.124	0.208	-	-	0.785***	0.241	-	-	0.011	0.015	
Madrid	1.254***	1.110***	1.609***	1.119***	-0.14	-0.03	-0.48***	0.300	0.387***	0.173***	0.215***	0.274***	
Cadiz	1.135***	1.017***	1.370***	1.262***	-0.09	0.023	-0.43***	-0.27	0.401***	0.047	0.230***	0.079**	
Lisbona	1.154***	1.159***	1.320***	1.237***	-0.17	-0.16	-0.10	-0.22*	0.243**	0.186***	0.113***	0.089***	
Oporto	1.063***	1.065***	1.120***	1.558***	-0.16	-0.06	-0.05	-0.54***	0.069	0.076***	0.164***	0.056**	
Petersburg	0.444**	1.920***	1.451***	0.679	-0.27*	-0.42	0.013	-0.24	0.280*	0.394**	0.471***	0.614***	
Trieste	0.652***	0.662***	0.701	0.943*	0.148	0.262	-0.59	-0.03	0.209**	0.178	0.900	0.407***	
Vienna	0.671***	0.714***	0.714	1.066*	0.216	0.203	-0.57	-0.02	0.256**	0.157	0.883	0.406***	

Annex (2)

		Bio	d ask			Bank o	f England		Banque de France					
	1846-51	1852-58	1859-65	1866-69	1846-51	1852-58	1859-65	1866-69	1846-51	1852-58	1859-65	1866-69		
Hamburg	0.132	-0.07	0.056	-0.03	-	-0.00090***	-0.00031**	-0.00023	-	0.000226	-0.00016	0.000930*		
Frankfurt	0.052	-0.07	0.056	-0.20***	-	-0.00054**	-3.96744	0.000449	-	-0.00029	-0.00062***	0.001014		
Berlin	-	-	-	0.088*	-	-	-	-0.00021	-	-	-	0.001492**		
Antwerp	0.041	-0.04	0.069	0.134***	-	-0.00044***	-5.39719	0.000235	-	-0.00017	-0.00033**	0.000691*		
Marseille	-0.03	-0.10***	-0.05	0.003	-	-0.00076***	-0.00031***	-0.00011	-	-0.00105***	-0.00083***	-0.00092***		
Genova	-0.00	0.009	0.123*	-1.93***	-	-0.00072***	-8.06414	0.000870	-	-0.00080***	-0.00079***	-0.00295		
Livorno	-0.09	-0.13*	-0.38**	-	-	-0.00073**	-0.00063	-	-	-0.00068*	-0.01804***	_		
Naples	-0.17	-0.75***	0.099	-	-	0.000637	-3.26740	-	-	-0.00078	0.000133	-		
Palermo	-0.11	-0.10	-0.25	-	-	0.000129	7.595547	-	-	0.000756*	0.000083	-		
Messina	-0.19*	-0.12	-0.10	-	-	0.000488	-6.32712	-	-	0.000354	5.334916	-		
Milano (Lira)	-	-	0.017	-1.41***	-	-	-0.00014	0.000155	-	-	-0.00050***	-0.00252		
Livorno (Lira)	-	-	0.069	-1.95***	-	-	-0.00016	0.000638	-	-	-0.00051***	-0.00212		
Palermo (Lira	a -	-	-0.02	-1.10***	-	-	-0.00028	0.000780	-	-	-0.00057**	-0.00404		
Naples (Lira)	-	-	-0.00	-1.64***	-	-	-0.00026	0.000880	-	-	-0.00054**	-0.00311		
Messina (Lira	a -	-	-0.00	-1.48***	-	-	-0.00025	0.000354	-	-	-0.00057**	-0.00284		
Madrid	-0.07	0.024	0.173	0.002	-	0.000633	8.694969	0.001254*	-	0.000893*	0.000297	0.000856		
Cadiz	0.160	-0.08	0.026	-0.07	-	0.000742**	-1.45223	-7.13333	-	-0.00064	0.000816**	-0.00094		
Lisbona	-0.08	-0.09	0.025	0.048	-	0.000247	4.250382	-0.00040	-	-0.00034	8.172098	0.001287		
Oporto	0.101	0.012	0.109	0.173**	-	-0.00002	0.000152	-0.00031	-	0.000190	5.861490	0.000188		
Petersburg	0.661***	0.290	0.530	0.820**	-	0.003649***	0.001072*	0.005523***	-	0.003117**	0.001348	-0.00435		
Trieste	-0.34**	-0.06	-2.73***	-1.84***	-	-0.00094	0.000295	-0.00454**	-	-0.00211**	-0.00332*	-0.00036		
Vienna	-1.98***	-0.25	-2.50***	-1.93***	-	-0.00084	-0.00010	-0.00595***	-	-0.00274***	-0.00380**	0.001015		