

Two stories, one fate:

Age-heaping and literacy in Spain 1877-1930

Francisco J. Beltrán Tapia

Norwegian University of Science and Technology

Alfonso Díez Minguela

Universitat de València

Julio Martínez Galarraga

Universitat de València

Daniel A. Tirado Fabregat

Universitat de València

1. Introduction

• Human capital and economic development (Romer, 1986; Lucas, 1988; Gennaioli et al., 2013).

• Did human capital have an effect on (long-run) regional development in Spain?

- Several obstacles, above all, measurement, e.g. what is human capital?
 - Reading and writing skills
 - Numeracy skills
 - Other skills

1. Introduction

• As regards Spain, the existing literature (i) is mostly qualitative, except for Núñez (1992), or (ii) explores region-specific cases.

• This study examines **human capital** in the early stages of modern economic growth in Spain. In doing so, we use all the population censuses since 1860.

• Interestingly, this exercise "raises more questions than answers".

• Proxies of human capital? (literacy; enrolment...)

• Proxies of human capital? (literacy; enrolment...)

• Age-misreporting is a common phenomenon in historical records, e.g. civil and legal documents, military records, passenger lists, parish registers or censuses.

Figure. Population pyramid by age (0-75 years old) and gender in 1877 and 1970

Source: INE.

• Proxies of human capital? (literacy; enrolment...)

• Age-misreporting is a common phenomenon in historical records, e.g. civil and legal documents, military records, passenger lists, parish registers or censuses.

• In economic and social history, **age-heaping** usually related to poor numeracy skills (A'Hearn et al., 2009; Crayen & Baten, 2010), custom and/or tradition.

• Several tools to gauge age-heaping (Bachi's index, Myers' index, Whipple index, Zelnik's index...).

• The **Whipple index** assumes that respondents are uniformly distributed over an age-range (23-62; 23-72...):

$$W = \frac{(P_{25} + P_{30} + P_{35} + P_{40} + P_{45} + P_{50} + P_{55} + P_{60})}{1/5 (P_{23} + P_{24} ... + P_{61} + P_{62})}$$

• Then, the Whipple index is transformed into an **ABCC index** (%):

ABCC =
$$\left\{1 - \frac{(W-1)}{4}\right\} \times 100 \text{ for } W \ge 1$$

ABCC = 100 elsewhere

• But, Spanish censuses do NOT exhibit a preference for ages ending in 5.

• What then? Noumbissi (1992) proposed a **modified Whipple index** to account for preference/avoidance of all digits.

Figure. Digit preference (23-62 years) by method in the census of 1877.

Source: INE.

• Why doing this? A first glance at Spain in mid-nineteenth century.

Table. Age-heaping in Europe during the 1850s.

Country	ABCC index (%)
Belgium	100.0
Finland	100.0
France	100.0
Sweden	100.0
Switzerland	100.0
Germany	99.7
Italy	99.4
Denmark	99.2
Netherlands	99.0
Norway	98.4
Austria	98.0
UK	97.1
Spain	87.4
Russia	83.6

Note: ABCC index (%) illustrated above is a birth decadal average.

Source: clio-infra (https://www.clio-infra.eu)

• Why doing this? A first glance at Spain in mid-nineteenth century.

• Still, the **clio-infra database** used those aged 43-52 yrs. in the 1900 census. If, for instance, we use information for 23-32 or 33-42 in previous censuses, then...

Figure. ABCC index (%) in Spain by birth decade, 1850-1980.

Source: Clio-infra; INE.

• Why doing this? A first glance at Spain in mid-nineteenth century.

• Still, the **clio-infra database** used those aged 43-52 yrs. in the 1900 census. If, for instance, we use information for 23-32 or 33-42 in previous censuses, then...

• Interestingly, age-heaping did not improve in late nineteenth-century...but, what about literacy?

Figure. ABCC index (%) and literacy rate in Spain by province for a selection of censuses.

Notes: Data for the following population censuses: 1877, 1887, 1900, 1910, 1920, 1930 and 1970.

Source: Núñez (1992); INE and authors' calculations.

• Then, are age-heaping and literacy comparable?

ABCC index (% of individuals reporting age correctly, 23-62 yrs.) Literacy rates (% of literates, 10 or more yrs.)

• Though age-heaping and literacy are correlated, this relationship not as strong as in other studies (A'Hearn et al., 2009).

• Furthermore, was not age-heaping "surprisingly" low?

ABCC index in Burgos, Guadalajara, Madrid, Segovia, Soria, Valladolid above 95%

Literary rates in Burgos, Guadalajara, Madrid, Segovia, Soria, Valladolid ranging from 40.3% to 62.1%.

Figure. Age-heaping and literacy in Spain, 1877. (Total-left; Male-right)

Notes: Provincial ABCC index (%) and literacy rates (%) classified into 25 equivalent categories for all censuses ranging from the minimum value (dark-blue) to the maximum or 100 (dark-red). **Source:** INE and authors' calculations.

• Even more, **gender differences** in age-heaping are trivial, but this is not the case for literacy..."self-reported" age?

• Also...the dynamics of age-heaping and literacy (only male data) differed widely.

Figure. Male age-heaping and literacy kernel densities in Spain in 1877, 1900, and 1930.

(a) ABCC index (%) (ESP=1)

(b) Literacy rates (%) (ESP=1)

Notes: Provincial ABCC index (%) and literacy rates (%) ranging from the minimum value to the maximum or 100.

Source: INE and authors' calculations.

• Even more, **gender differences** in age-heaping are trivial, but this is not the case for literacy..."self-reported" age?

• Also...the dynamics of age-heaping and literacy (only male data) differed widely.

Are age-heaping and literacy telling us two distinct stories?

4. Conclusion

• Our main findings can be summarised as follows:

```
#1# Spanish censuses exhibit a preference for digits ending in 0.
#2# In Spain, age-heaping did not improve until early twentieth-century (Note: Beware of age-effect)
#3# Given the level of literacy, age-heaping appears to be abnormally low, especially in some provinces.
#4# There seems to be a minor and insignificant gender gap in age-heaping.
```

• The study thus "casts doubt on the extent to which digit preference proxies numeracy skills, and henceforth human capital", as A'Hearn et al., (2016) did for Italy.

• As pointed above, the study "raises more questions than answers", especially regarding the efficacy of the public administration, hence calling for **further research**.