Bank regulation – ex-ante vs. ex-post

- financial crises have high social costs
 - almost always lead to policy interventions (Laeven-Valencia, 2013)
- ex-post interventions can reduce costs, e.g. recapitalization
- but ex-ante measures also matter, e.g. capital buffers
 - Lorenzoni (2008), MartinezMiera-Suarez (2012)
- can trade off ex-ante and ex-post measures
 - Jeanne-Korinek (2013), this paper
Focus on bank long-term prospects

- literature relates bank access to funding to asset value during bank default
- reflects concern about liquidation value of bank
 - its assets worth less when bank defaults, e.g. loans not serviced
 - 2007–08 run on sale and repurchase market, Gorton-Metrnick (2012)
- this paper assumes bank decision to default depends on its future prospects
 motivation:
 defaulting bank loses charter value, depends positively on future prospects
 care about liquidation value, but also about likelihood of liquidation
- use this focus to derive new implications for bank regulation
Preview of results

- laissez-faire competitive equilibrium:
 - banks engage in risk management through loan loss provisioning
 - lose access to market funding only occasionally, severe credit crunch

- constrained-efficient allocation:
 - additional capital buffers in normal times, builds resilience
 - boost bank future prospects during credit crunch
 lending drops much less but also recovers much more slowly
 smooth out scarcity of bank lending to economy over time

- implication for macro-prudential regulation: CCB, CCyB, resolution fund
Model

- infinite horizon, time periods $t = 0, 1, 2, \ldots$
- aggregate productivity shocks $z_t \in \{z_L, z_H\}$ i.i.d. with $Pr(z_t = z_L) = \rho$
- measure one of identical risk-neutral consumers:
 - supply labor inelastically, trade non-contingent bond at price $\beta < 1$
- measure one of identical short-lived firms:
 - borrow k_{t+1} in period t, hire labor l_{t+1} in period $t + 1$
 - produce $z_{t+1}k_{t+1}^\alpha l_{t+1}^{1-\alpha} + (1 - \delta)k_{t+1}$ in period $t + 1$
 - contingent loan repayment $R_{t+1}k_{t+1}$, wage bill $w_{t+1}l_{t+1}$
 - firms eat any profits, exit, and new firms enter
- measure one of identical banks:
 - only banks can lend to firms, denote new lending in \(t \) by \(\ell_{t+1} \)
 - bank equity costly, discount dividends \(d_t \) with \(\gamma < \beta \)
 - can extract \(\theta \ell_{t+1} \) if bank chooses to default at end of period \(t \)
 e.g. risk-shifting or holding up creditors
 defaulting bank enjoys \(\theta \ell_{t+1} \) but must exit afterwards
 - market discipline:
 bank has access to funding \(b_{t+1} \) as long as no-default condition holds

\[
E_t \left[\sum_{\tau=1}^{\infty} \gamma^\tau d_{t+\tau} \right] \geq \theta \ell_{t+1}
\]
Market-imposed equity requirements

- define bank equity: $A_t = R_t \ell_t - b_t$

- define bank future rents:

$$\Pi_t = \sum_{\tau=1}^{\infty} \gamma^\tau E_t \left[\left(R_{t+\tau} - \frac{1}{\gamma} \right) \ell_{t+\tau} \right] + \sum_{\tau=1}^{\infty} \gamma^\tau E_t \left[\frac{\beta - \gamma}{\gamma} b_{t+\tau} \right]$$

 - first term denotes profits from lending
 - second term denotes benefit from using external finance $b_{t+\tau}$

- re-write no-default condition: $\gamma E_t[A_{t+1}] \geq \theta \ell_{t+1} - \gamma E_t[\Pi_{t+1}]$

 - equity requirement is θ in normal times, when rents are zero
 - but lower during credit crunch, when banks earn positive rents
Competitive equilibrium and pecuniary externality

- markets for bank loans clears:

 aggregate bank lending is $K_t = k_t = \ell_t$

 bank lending return is $R_t = z_t \alpha K_t^{\alpha-1} + 1 - \delta$

- market for labor clears:

 aggregate labor is $L_t = l_t = 1$

 wage is $w_t = z_t (1 - \alpha) K_t^\alpha$

- lending returns determine bank rents, affect equity requirement

- but banks take them as given... pecuniary externality!
Constrained-efficient allocation

- competitive equilibrium not constrained-efficient:
 - can improve allocation by taking pecuniary externality into account
- maximize expected present value of dividends and wages
 - internalize how lending affects market-imposed equity requirement
 - also do not consider equity costly, discount dividends with β as well
- competitive equilibrium (CE) vs. constrained-efficient allocation (SB)
 - interpret differences as due to macro-prudential concerns
Numerical solution

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
<th>target</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.94</td>
<td>risk-free interest rate</td>
</tr>
<tr>
<td>γ</td>
<td>0.93</td>
<td>crisis frequency</td>
</tr>
<tr>
<td>δ</td>
<td>0.12</td>
<td>average replacement investment</td>
</tr>
<tr>
<td>α</td>
<td>0.35</td>
<td>capital income share</td>
</tr>
<tr>
<td>θ</td>
<td>0.10</td>
<td>average bank leverage</td>
</tr>
<tr>
<td>(z_L, z_H, ρ)</td>
<td>(0.8, 1.05, 0.2)</td>
<td>several large crises</td>
</tr>
</tbody>
</table>

- define financial crisis: bank lending 5% or more below first best
- economy spends 6% of time in financial crisis in competitive equilibrium
- define normal times: bank equity constant as long as z_H occurs
- ‘capital adequacy ratio’ measured by $\gamma E_t[A_{t+1}] / \ell_{t+1}$ in model
- additional buffer in SB, but more time to build it up
- additional buffers avoid some crises but not all, even in SB
- crisis in SB much less severe, but also slower recovery
- promising future profits relaxes equity requirement in SB
- possible implementation: equity injection financed by tax on bank lending
- deliver profits over many periods in SB, less distortionary than spike
- smooth out scarcity of bank lending over time, reason for slow recovery!
- in practice: Basel III has CCB, but why do we need CCyB as well?
- no dividend if CCB breached, but allow payouts while CCyB being rebuilt