A Positive Analysis of Bank Behaviour under Capital Requirements

Saleem Bahaj (BoE) and Frederic Malherbe (LBS)

The views expressed are those of the presenter and not necessarily those of the Bank of England, the MPC, the FPC or PRA Board.
A bank faces an increase in capital requirement
 - Will it raise capital or cut lending?

Theoretical framework
 - Risk-shifting and debt overhang

Main takeaway: it depends
 - Lending response typically U-shaped
 - Economic conditions matters

Test predictions using UK data
 - Find that main margin of adjustment is
 - Lending in bad times but capital in good times
The environment

- Three dates: 0, 1, and 2, random variable $A \in [A_L, A_H]$
- A bank and risk-neutral households

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (new loans)</td>
<td>e (capital)</td>
</tr>
<tr>
<td>x (legacy loans)</td>
<td>d (deposits)</td>
</tr>
</tbody>
</table>

- Payoff X
- Concave in x
- Payoff $Z(A)$
- $Z < z$ in some states
- Source of overhang
- Insured
- No premium
- Elastic supply

- Some initial level
- Can pay dividend
- Can issue seasoned capital
- No information asymmetry

- Capital requirement: $e \geq \gamma(x + z)$
- Three choice variable, but
 - Focus on binding capital requirement: $e = \gamma(x + z)$
 - Balance sheet identity: $d = z + x - e$
The problem of the bank

- Economic surplus: \(E [X + Z(A) - (x + z)] \)
- Private surplus: \(E [X + Z(A) - (1 - \gamma)(x + z)]^+ - \gamma(x + z) \)

FOC: \[
\int_{A_0}^{A_H} (X_x - (1 - \gamma)) f(A) dA - \gamma = 0
\]

where \(A_0 \) is the default threshold

- Define \(\pi(x, \gamma) \equiv \int_{A_0(x, \gamma)}^{A_H} f(A) dA \)

\[
X_x - \left(1 - \gamma + \frac{\gamma}{\pi(x, \gamma)}\right) = 0
\]
The overhang problem

\[\int_{A_0}^{A_H} (X_x - (1 - \gamma)) f(A) dA - \gamma = 0 \Rightarrow X_x - 1 + \int_{A_L}^{A_0} ((1 - \gamma) - X_x) f(A) dA = 0 \]

- The wedge is negative
 - Positive NPV loans are not issued
 - Reflects an overhang problem

• How does \(\gamma \) affect wedge?
• Comparative statics with respect to \(\gamma \) based on the FOC
Conditional reasoning

\[X_{x \text{ mr}} - \left(1 - \gamma + \frac{\gamma}{\pi(x, \gamma)} \right)_{\text{mc}} = 0 \]

- The sign of \(\frac{dx^*}{d\gamma} \) hinges on conditional marginal cost

\[\frac{dmc}{d\gamma} = \frac{1}{\pi} - 1 + \gamma \frac{\partial \pi}{\partial \gamma} \left(\frac{-1}{\pi^2} \right) \]

composition effect > 0

price effect < 0

As \(\pi \to 1 \), price effect dominates!
The U-shape

- Equilibrium lending as a function of γ

![Graph showing the U-shape relationship between x and γ.]

- Changes in economic conditions, for instance $E[A]$, shift the relationship
• Assume X also depends on A

• Either can dominate

• $\frac{d\text{mr}}{d\gamma} < 0 \rightarrow \text{internalisation effect}$

• Reinforces the composition effect; but price effect can still dominate
Empirics

- We use regulatory UK data (Basel I)
 - Changes to individual capital requirements
 - Test the interaction with economic conditions
 - We can control for what other banks do

- Find that the main margin of adjustment is
 - Lending in bad times
 - Capital in good times

- Consistent with prediction on
 - how economic conditions “shift” the U-shape
Conclusion

- Capital requirement under Basel III
 - Overall increase
 - Time varying adjustments
- Intellectual debate
 - Costs and benefits
 - Normative and general equilibrium questions
- Tractable general equilibrium analysis
 - Requires stark assumptions on bank individual behavior
- Understanding the determinants of such behavior is essential
Thank you
Overhang and risk-shifting

\[\text{beta}_x = 1, \text{beta}_z = 2, z = 2.5, \mu_z = -2, \mu_x = 1, \sigma = 0.3, b = 0.20 \]
Lending response

Figure 3: Lending and lending response in the general case

\(\beta_x = 1, \beta_z = 2, z = 2.5, \mu_z = -2, \mu_x = 1, \sigma = 0.3, b = 0.20 \)