Motivation/1

- Significant increase in the Fed supervisory staff post crisis
- How is staff employed in terms of supervisory hours?
 - Many hours are employed in the large BHCs, but **not** in proportion of assets (except for very large BHC)
 - Over the years, large banks have received increasingly **more attention** relative to small banks, so the gap has reduced

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Total Assets ($ tn)</td>
<td>801</td>
<td>9980</td>
<td>1049</td>
</tr>
<tr>
<td>Total Yearly Hours (thousands)</td>
<td>83</td>
<td>347</td>
<td>100</td>
</tr>
<tr>
<td>Total Yearly Hours / Total Assets ($ bn)</td>
<td>104</td>
<td>35</td>
<td>96</td>
</tr>
<tr>
<td>σ(ROA) (%)</td>
<td>0.56</td>
<td>0.61</td>
<td>0.80</td>
</tr>
<tr>
<td>Probability of Failure (%)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.66</td>
</tr>
</tbody>
</table>
Motivation/2

- Small and large banks have different risk profiles
 - Large banks are riskier before and during the crisis
 - But less risky after the crisis

- These observations suggest some relationship between size, risk and supervisory hours

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Large</td>
<td>Small</td>
<td>Large</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Total Assets ($ trn)</td>
<td>801</td>
<td>9980</td>
<td>1049</td>
<td>14419</td>
<td>1066</td>
<td>15802</td>
</tr>
<tr>
<td>Total Yearly Hours (thousands)</td>
<td>83</td>
<td>347</td>
<td>100</td>
<td>488</td>
<td>104</td>
<td>807</td>
</tr>
<tr>
<td>Total Yearly Hours / Total Assets ($ trn)</td>
<td>104</td>
<td>35</td>
<td>96</td>
<td>34</td>
<td>98</td>
<td>51</td>
</tr>
<tr>
<td>σ(ROA) (%)</td>
<td>0.56</td>
<td>0.61</td>
<td>0.80</td>
<td>0.85</td>
<td>0.68</td>
<td>0.66</td>
</tr>
<tr>
<td>Probability of Failure (%)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.66</td>
<td>0.31</td>
<td>0.25</td>
<td>0.06</td>
</tr>
</tbody>
</table>

3
The paper

- Novel data set containing supervisory hours at the FED
- Main questions
 - What determines supervisory hours?
 - What is the impact of supervision?
 - How are supervisory resources allocated?
Approach of the paper

- It needs a “model”/conceptual framework
- Resource allocation analyzed in different steps
 - One bank in isolation – bank risk and size as determinants of supervisory hours
 - Multiple banks – structural model, two steps approach to study impact of supervision on risk and aggregate resource allocation
- Note: in the model a default externality is introduced – large for banks with assets above $10bn after 2008
Main answers

- Hours spent supervising banks increase with size and risk
 - Size elasticity less than one - potential scale economies
 - “Break” at $10 bn assets – very large banks are special
 - Riskier banks receive more attention – percentage increase smaller for larger banks

- Large sensitivity of bank risk to supervisory effort
 - Supervision has a significant impact in reducing risk

- More attention on very large banks (> $10 bn) post crisis
 - Higher dispersion/scarcity across districts
General comments

- Very important (and different) research question
 - We know much too little about supervision
 - We ought to know, also because of post crisis staff increase and current “political climate”
- Novel data set on amounts of hours spent by supervisors doing their job
- Analysis and results can be pushed further
 - The research question
 - Some observations on model and results
The research question

- Two main questions
 - What is the impact of supervision?
 - How are resources allocated?

- Alternative/complementary questions
 - What is the optimal supervisory arrangement?
 - How large should α and σ be?
 - Is the observed supervisory arrangement optimal?
 - Are large/small banks supervised enough?
 - Is supervision effective enough?

- Can you find a “counterfactual” to use as benchmark?
 - Or even a way to calculate “optimal” supervision
Some observations on model and results

- Key parameters σ and α are constant across type of banks/districts
 - Is this the right assumption?
 - Can you test it?
 - E.g. $\alpha<1$ may suggest larger σ for larger banks

- Size elasticity less than 1: economies of scale
 - Where do they come from (e.g., different information extraction problem in small and large banks)?
 - Can it be something else, such as intentional reduction of supervisory hours at large banks, maybe for political risk?
 - How do economies of scale square with the result that impact on risk smaller at larger banks?
Some observations on model and results/2

- First step – baseline specification for supervisory hours
 - Estimates elasticity of hours to bank size α

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Hours)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(Assets)</td>
<td>0.96***</td>
<td>0.68***</td>
<td>0.68***</td>
<td>0.68***</td>
</tr>
<tr>
<td>Rating = 2</td>
<td>0.23***</td>
<td>0.15**</td>
<td>0.15**</td>
<td>0.15**</td>
</tr>
</tbody>
</table>

- Estimating model parameter
 1. Treat μ as a fixed effect \Rightarrow obtain reduced form $\hat{\beta}$
 - Note that $\mu(\beta(\sigma, \alpha, n_i))$
 2. Compute $\hat{\mu}$ from $\hat{\beta}$’s \Rightarrow estimate $\hat{\beta}_\mu$ and $\hat{\sigma}$
 3. From $\hat{\sigma}$ \Rightarrow $\hat{n_i}$ and $\hat{\alpha}$

- α goes from 0.68 to 0.55
- σ goes from 1 but 2 with IV

How shall we interpret these (different) numbers?
Conclusions

- Very important topic
 - We know too little about it
 - Authors have to be praised for the idea and the effort
- Difficult paper to write – where to start from?
- Try and push questions and analysis further
 - Clarify research questions
 - Look for some “optimality” criteria/benchmarks
- Policy implications?
Addition slide: The model

- Probability of default of bank I
 \[PD(R_i, s_i) \propto \frac{r(R_i)}{s_i} \]

- Supervisory hours needed for intensity s_i
 \[h(s_i, A_i) = s_i A_i^{\alpha} \]

- Optimal hours for bank i given total hours \tilde{H}
 \[H_i = \frac{(r(R_i) n_i)^{1+\sigma} A_i^{\alpha+1}}{\sum_k (r(R_k) n_k)^{1+\sigma} A_k^{\alpha+1}} \tilde{H} \]

- Lagrange multiplier on budget constraint (μ)
 \[\mu \frac{1}{1+\sigma} = \frac{1}{\tilde{H}} \sum_i (\sigma r(R_i) n_i)^{1+\sigma} A_i^{\frac{\alpha+1}{1+\sigma}} \]