
Why do manufacturing firms produce services? Evidence for the servitization paradox in Belgium

ESCB Research Cluster 2 workshop

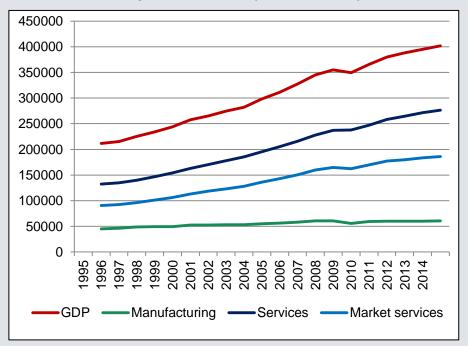
Madrid, 16-17 November 2017

INTERN

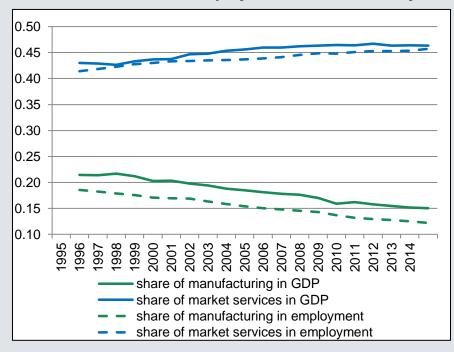
Catherine Fuss
Economics and Research Department
National Bank of Belgium

Motivation

- **Servitization**: Reallocation of production towards services
 - At the macro level
 - increasing share of services in GDP, international trade, employment, ...
 - At the micro level
 - servitization refers to the provision of services by a company whose main or initial activity is the production of goods


Why is this important?

- At the macro level
 - impact on growth, TFP growth, ...
 - impact on employment, labour force composition, ...
- At the micro level
 - changes the view of what is a manufacturing industry/firm
 - impact on firm competiton within and between sectors
 - may affect firm performance (profits), dynamics (higher exits), investment, labour demand (in terms of workforce composition and skills)



Motivation: Evidence at the macroeconomic level

Value added by broad sector (millions euro)

Share of value added/employment in total economy

Source: National Accounts - NSI

Employment consequences:

The manufacturing sector lost 1 job over four in twenty years Employment in services increased by 30% over the same period

Issue for external trade/competitiveness?

The trade balance positive thanks to net exports of services

Motivation: Evidence at the microeconomic level

- Servitization at the micro level:
 - provision of services by a firm whose main or initial activity is the production of goods
- Decomposition in extensive and intensive margin
 - Extensive margin of servitization: change of main activity
 - Intensive margin of servitization: firms that belong to the manufacturing sector and provide services

$$\Delta X_t = \left(\sum_{i \in I} X_{it} - \sum_{i \in I} X_{it-1}\right) + \left(\sum_{i \in N} X_{it} - \sum_{i \in X} X_{it-1}\right) + \left(\sum_{i \in Sin} X_{it} - \sum_{i \in Sout} X_{it-1}\right)$$

Incumbents

active in sector S in t and t-1

New firms

active in S in t not active in t-1

Deaths

active in S in t-1 not active in t

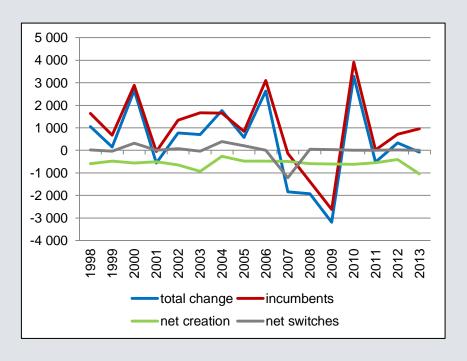
Entering firms

active in S in t active in J≠S in t-1

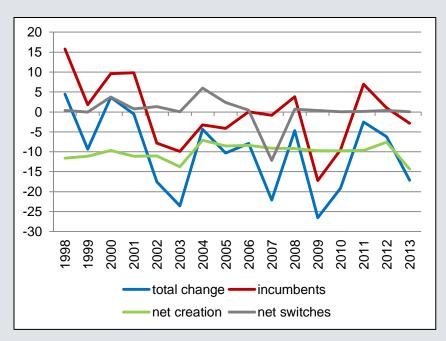
Exiting firms

active in S in t-1 active in J≠S in t

Incumbents


Net creation

Net switches



Motivation: Evidence at the microeconomic level

Total manufacturing value added changes (in million euro)

Total manufacturing employment changes (in thousands)

The extensive margin plays a minor role - > focus on the intensive margin

Motivation: Theoretical rationale

Costly and risky investment

- organisational costs
- changes in workforce composition
- change in business model, marketing, ...
- higher risk of failure

Why do firms engage in servitization?

- product differentiation
- market advantage and barrier to entry
- response to other firms servitization strategy
- strengthening customer relationships

-> servitization paradox:

- small and young firms may use servitization to penetrate the market
- large and profitable firms may use it to protect or extend their market share

This paper

- theoretical model
- empirical evaluation

Relevant literature

Theoretical models

- Breinlich, Soderbery and Wright (2014)
 - Monopolistic competition, differentated products
 - Rivalry in the allocation of expertise between goods and services production
 - Separability between demand for goods and demand for services
 - Empirics: goods tariff reduction boost services provision, vary wrt sector or capital intensity
- Ariu, Mayneris, Parenti (2017)
 - Complementarity between demand for goods and services
 - Monopolistic competition vs oligopolistic competition
 - Exports of services increases performance of exports of goods through quantities under mon. comp. and through prices under olig. comp. Confirmed by an empirical evaluation
- Lee et al. (2016)
 - Complementarity between demand for goods and services
 - Comparison of two market models: firms produce both goods and services vs some firms produce goods while some others provide services

Empirical evaluations

- Bernard, Smeets, Warzynski (2016): focus on production services and change of main activity
- Crozet and Millet (2014): description of servitization and relation with firm characteristics
- Crozet and Millet (2015): impact of starting servitization on firm performance; vary across sectors
- Dachs et al. (2014): U-shape relation between firm size and servitization;
 varies wrt sector innovation intensity

Theoretical model: Demand

Quadratic utility function

$$U = \alpha \int_{0}^{N} q_{i}^{c} di - \frac{1}{2} \gamma_{g} \int_{0}^{N} (q_{i}^{c})^{2} di - \frac{1}{2} \left(\int_{0}^{N} q_{i}^{c} di \right)^{2}$$
$$+ \alpha \int_{0}^{N} y_{i}^{c} di - \frac{1}{2} \gamma_{s} \int_{0}^{N} (y_{i}^{c})^{2} di - \frac{1}{2} \left(\int_{0}^{N} y_{i}^{c} di \right)^{2} + \theta \int_{0}^{N} q_{i}^{c} y_{i}^{c} di$$

- L consumers, N varieties of goods, q_i and services y_i
- γ_a , γ_s : product differentiation
- θ : complementarity between goods and services $(0 \le \theta \le \gamma_g)$ and $0 \le \theta \le \gamma_s$
- Monopolistic competition on markets for goods and for services
- Market demand for goods, q_i , and services y_i

$$\begin{split} q_i &= L\Big(a - bp_i^{\mathsf{g}} - cp_i^{\mathsf{s}} + d\overline{P}^{\mathsf{g}} + e\overline{P}^{\mathsf{s}}\Big) \\ y_i &= L\Big(a' - cp_i^{\mathsf{g}} - b'\,p_i^{\mathsf{s}} + e\overline{P}^{\mathsf{g}} + d'\,\overline{P}^{\mathsf{s}}\Big) \end{split}$$

• a, b, c, a', b', c', d, d', e depend on N, γ_g , γ_s , θ and α

Theoretical model: Production

Production of goods and services (as in Breinlich et al. 2014)

$$q_i = T_{ig}L_{ig} y_i = T_{is}L_{is}$$

 T_i firm-specific productivity and L_{ig} , L_{is} labour inputs

Allocation of expertise across the production of goods and services

$$T_i = \left(T_{ig}^t + T_{is}^t\right)^{\frac{1}{t}}$$

depends on the degree of non rivalry t, (with $0 < t < \infty$)

At equilibrium

$$\frac{T_{is}}{T_{ig}} = \left(\frac{y_i}{q_i}\right)^{\frac{1}{1+t}}$$

$$q_i = \frac{L}{2} \left(a + d\overline{P}^g + e\overline{P}^s - \frac{bw}{T_{ig}} - \frac{cw}{T_{is}} \right)$$

$$y_i = \frac{L}{2} \left(a' + e \overline{P}^g + d' \overline{P}^s - \frac{cw}{T_{ig}} - \frac{b'w}{T_{is}} \right)$$

Theoretical model: Prediction for servitization

Comparative static

$$\frac{\mathrm{d}T_{is}}{\mathrm{d}T_i} = \left(\frac{T_{is}}{T_i}\right)^{1-t} \left(\frac{T_{ig}A}{T_{is}B + T_{ig}A}\right)$$

$$A = \left(\frac{cwL}{2T_{ig}} \left(\left(\frac{T_{b}}{T_{ig}}\right)^{1+t} \frac{b}{c} - 1 \right) - (1+t)y_{i} \right)$$

$$B = \left(\frac{cwL}{2T_{iz}} \left(\left(\frac{T_{ig}}{T_{iz}}\right)^{1+t} \frac{b'}{c} - 1 \right) - (1+t)q_i \right)$$

 dT_{it}/dT_i may be >0 or <0 depending on N, L, γ_g , γ_s , θ and α , t, T_i .

Servitization varies with

- firm characteristics : non linear relationship with efficiency
- Product characteristics: complementarity between goods and services, product differentiation
- Production characteristics: extent of expertise rivalry
- Market conditions: demand elasticity and extent of competition
- -> Low performing firms as well as high performing firms engage in servitization
- -> The relationship between servitization and firm efficiency varies across sectors

Data and measure of servitization

Sample coverage

manufacturing firms in Belgium over 1997-2013 with at least 20 employees

serv_{it}: firm servitization rate

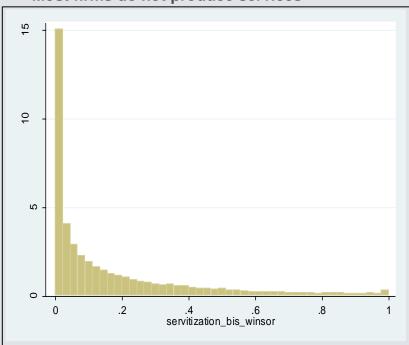
- share of firm sales that does not refer to industrial goods
- Data on firm total sales (from VAT declarations)
- Data on firm industrial goods sales (from Survey of Industrial Production, Prodcom)
- $serv_{it} = \frac{sales_{it} goods \ sales_{it}}{sales_{it}}$
- Trimming: focus on serv_{it} within [-0,05, 1,05] and winsorize at [0, 1]

Firm-level variables

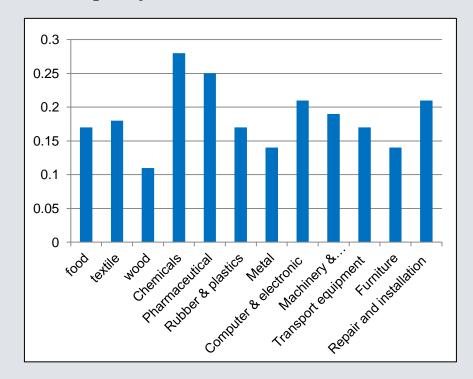
- *size_{it}*: log(employment) (from annual accounts)
- wage_{it}: firm average wage bill (from annual accounts)
- age;: from firm offical starting date (from Crossroads Bank for Enterprises)
- *tfp_{it}*: TFP estimated based on Ackerberg et al. (2015) (L predetermined, intermediate inputs as proxy)

Sector-level variables

- Herfindahl_{st:} Herfindahl index on sales_{it}
- servitization: average servitization rate
- σ(servitization)_{st}: dispersion (standard deviation) of servitization rate


Descriptive statistics on servitization

average(serv_{it}): 0,17


 $std(serv_{it}): 0,23$

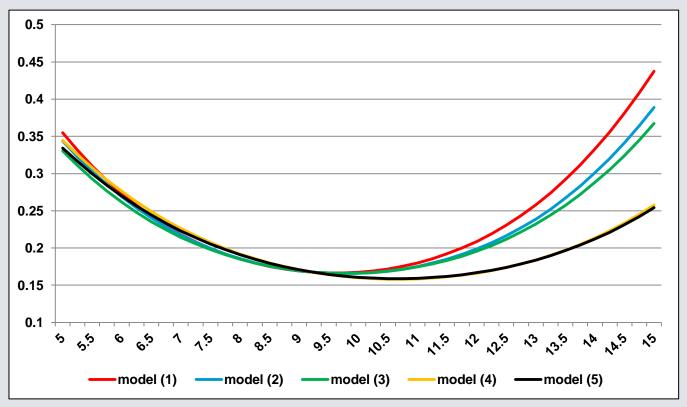
Heterogeneity across firms

Most firms do not produce services

Heterogeneity across sectors

Econometric evaluation

Fractional Probit model with multiplicative heteroscedasticity and Chamberlain-Mundlak correction


	(1)	(2)	(3)	(4)	(5)
tfp _{it}	-0.291***	-0.248***	-0.230**	-0.233***	-0.222***
	(0.102)	(0.093)	(0.091)	(0.087)	(0.085)
tfp _{it} ²	0.015***	0.013**	0.012**	0.011**	0.011**
	(0.006)	(0.005)	(0.005)	(0.005)	(0.005)
age _{it}		-0.039*	-0.035	-0.025	-0.021
		(0.022)	(0.022)	(0.020)	(0.020)
size _{it}			-0.043***		-0.036**
			(0.015)		(0.014)
wage _{it}				0.136***	0.128***
				(0.031)	(0.031)
$\overline{servitization}_{st}$	1.424***	1.316***	1.297***	1.249***	1.229***
	(0.353)	(0.332)	(0.327)	(0.312)	(0.309)
σ(servitization) _{st}	0.235	0.195	0.205	0.131	0.144
	(0.263)	(0.245)	(0.242)	(0.227)	(0.226)
Herfindahl _{st}	-0.131	-0.153	-0.142	-0.148	-0.140
	(0.159)	(0.151)	(0.149)	(0.140)	(0.140)
constant	0.067	-0.126	-0.265	-3.865***	-3.762***
	(0.840)	(0.782)	(0.791)	(1.043)	(1.037)
Observations	36850	36850	36850	36846	36846
Log likelihood	-16344	-16314	-16289	-16182	-16178

All regressions include year and sector effects, Estimation by Quasi Maximum Likelihood. Robust clustered standard errors

Econometric evaluation: fractional Probit model

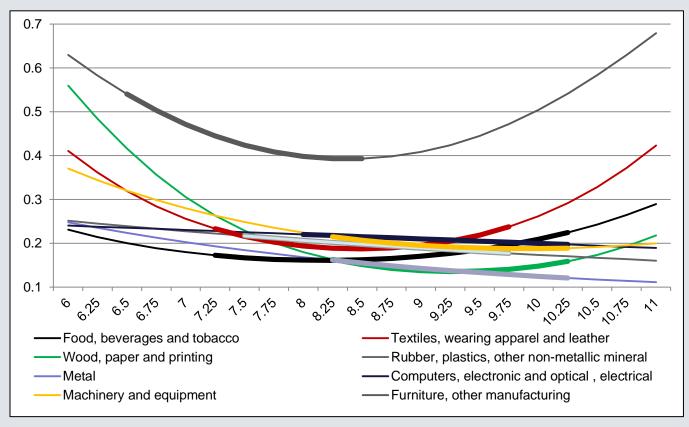
Predicted servitization rate for alternative values of TFP

model (1): tfp_{it} tfp_{it}² sector-level variables, sector and year effects

model (2): tfp_{it} tfp_{it}² age_{it} sector-level variables, sector and year effects

model (3): tfp_{it} tfp_{it} age_{it} size_{it} sector-level variables, sector and year effects

model (4): tfp_{it} tfp_{it}² age_{it} wage_{it} sector-level variables, sector and year effects


model (5): tfp_{it} tfp_{it}² age_{it} size_{it} wage_{it} sector-level variables, sector and year effects

-> Low performing firms as well as high performing firms engage in servitization

Econometric evaluation: fractional Probit model

Predicted servitization rate for alternative values of TFP

regressions include tfp_{it} tfp_{it}², sector-level variables, sector and year effects the bold line represents values that lie within the [P1-P99] range of the TFP distribution of the corresponding broad sector of economic activity

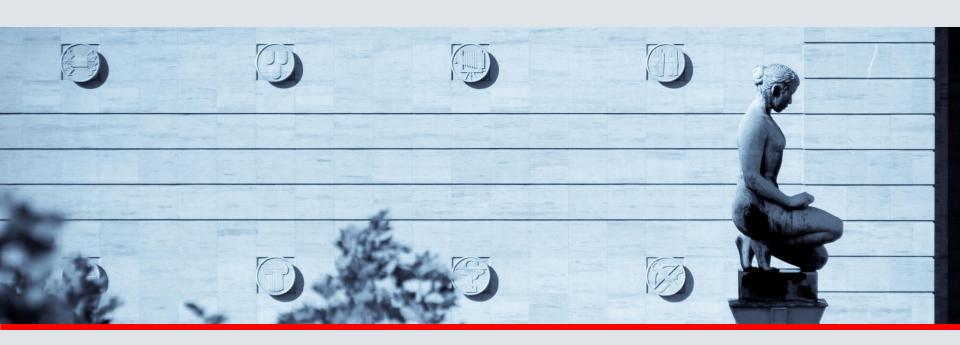
-> The relationship between servitization and firm efficiency varies across sectors

Conclusions - Summary

Theoretical model with

- The demand side accounts for complementarity between goods and services
- The supply side allows for non-rivalry in the allocation of expertise between goods production and services provision
- Monopolistic competition, differentiated products, firm heterogeneity in efficiency

Theoretical predictions


- Both less performing firms and high performing firms engage in service production
- The form of the relationship depends on product characteristics, production technology, market environment

Empirical evaluation

- U-shape relationship between servitization and TFP
- The relationship varies across sectors

INTERN

