Demographic Trends and the Real Interest Rate

Noëmie Lisack Rana Sajedi Gregory Thwaites

Bank of England

November 2017

This does not represent the views of the Bank of England

Disclaimer

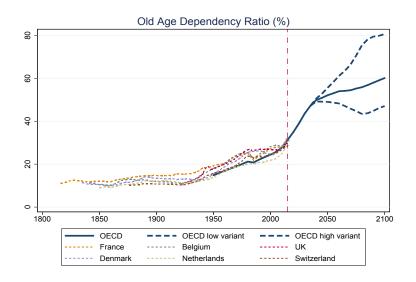
This does not represent the views of the Bank of England

Key points

- Unprecedented rise in life expectancy in recent decades in advanced economies
- Understand the macroeconomic impact of this change in the composition of the population
- A key implication: fall in the neutral interest rate

Key points

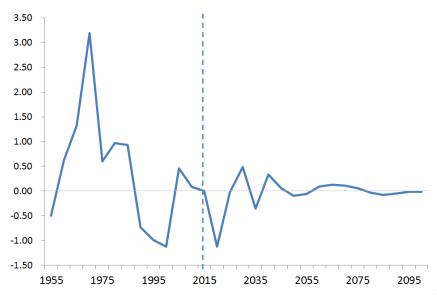
- Unprecedented rise in life expectancy in recent decades in advanced economies
- Understand the macroeconomic impact of this change in the composition of the population
- A key implication: fall in the neutral interest rate
- OLG model to quantify the effect of population ageing
- Across all advanced-countries, ageing can explain:
 - About 160bp of fall in interest rates since 1980, with a further 40bp still to come
 - More than 75% of the rise in house prices and private credit to GDP
 - Some of the labour productivity slow down since the 2000s
 - Just under 30% of the variation in net foreign asset positions


Key points

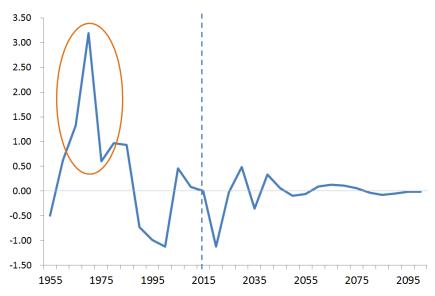
- Unprecedented rise in life expectancy in recent decades in advanced economies
- Understand the macroeconomic impact of this change in the composition of the population
- A key implication: fall in the neutral interest rate
- OLG model to quantify the effect of population ageing
- Across all advanced-countries, ageing can explain:
 - About 160bp of fall in interest rates since 1980, with a further 40bp still to come
 - More than 75% of the rise in house prices and private credit to GDP
 - Some of the labour productivity slow down since the 2000s
 - Just under 30% of the variation in net foreign asset positions
- Without a reversal of life expectancy, these effects will be permanent

Plan for today

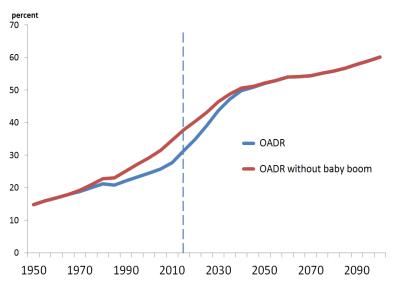
- Key facts Interest rates and demographics in recent decades
- Intuition The neutral rate in the neoclassical model
- Methodology Outline of our model and calibration
- Results Macroeconomic implications of population ageing
- Sensitivities Robustness and Extensions
- Conclusions Summary and some caveats


Unprecedented population ageing

Source: UN Population Statistics, Human Mortality Database

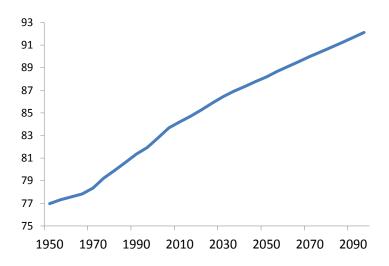

Population growth

Growth rate of 20-24 year old cohort

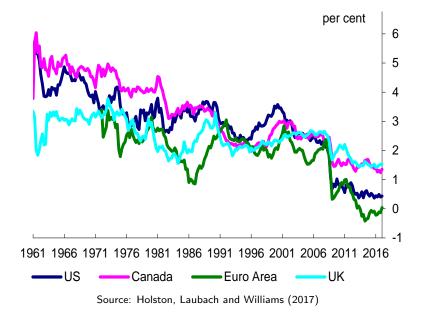


Population growth

Growth rate of 20-24 year old cohort

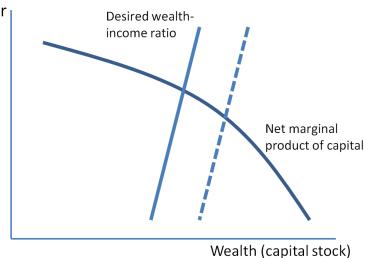


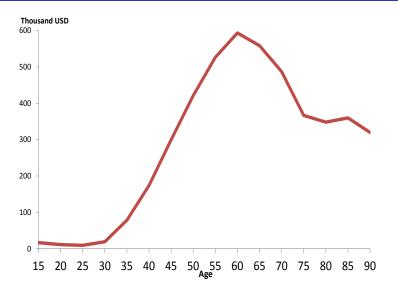
Baby boomers are not the main factor


Source: UN Population Statistics, own calculations

Life expectancy at 60

Source: UN Population Statistics


Natural interest rate in advanced economies since 1960


Plan for today

- Key facts Interest rates and demographics in recent decades
- Intuition The neutral rate in the neoclassical model
- Methodology Outline of our model and calibration
- Results Macroeconomic implications of population ageing
- Sensitivities Robustness and Extensions
- Conclusions Summary and some caveats

Intuition: How demographics affect interest rates

Intuition: Age-wealth profile in the US

Source: Survey of Consumer Finances, Average Net Worth excl. Housing, 1989-2013

Related literature

- Closed economy: Carvalho et al (2016), Eggertsson et al (2017), Gagnon et al (2016), Marx et al (2016)
- Open economy: Backus et al (2014), Domeij and Floden (2006), Krueger and Ludwig (2007)

Plan for today

- Key facts Interest rates and demographics in recent decades
- Intuition The neutral rate in the neoclassical model
- Methodology Outline of our model and calibration
- Results Macroeconomic implications of population ageing
- Sensitivities Robustness and Extensions
- Conclusions Summary and some caveats

Model: overview

- Calibrated neoclassical overlapping generations model
- Households value consumption, housing and bequests
- They face a given life-cycle profile of labour earnings
- Net savings of households invested by firms
- Demographic change: variable birth rates and life expectancy
- Solved assuming perfect foresight

Model: Household's Problem

The household born at time *t* maximises:

$$\max_{\{c_{\tau,t}, a_{\tau,t}, h_{\tau,t}\}_{\tau=1}^T} \quad \sum_{\tau=1}^T \beta_\tau \tilde{\psi}_{\tau,t} \left(\ln c_{\tau,t} + \theta_\tau \ln h_{\tau,t} \right) + \beta_T \tilde{\psi}_{T,t} \phi \ln a_{T,t}$$

subject to, for $\tau = 1, ..., T$:

$$c_{\tau,t} + a_{\tau,t} + p_{t+\tau-1}^h(h_{\tau,t} - h_{\tau-1,t}) \leq w_{t+\tau-1}\epsilon_{\tau} l_{\tau,t} + (1 + r_{t+\tau-1})a_{\tau-1,t} + \pi_{\tau,t}$$

 τ : age ; t: birth year

 $\hat{\psi}_{ au,t}$: survival probability up to age au

Inelastic labor supply

Fixed number of periods when the household is able to "move"; otherwise, we impose $h_{\tau,t} = h_{\tau-1,t}$.

Model: Firm's Problem

At each period *t*, the firm maximises:

$$\max_{L_t, K_t} F(K_t, L_t) - w_t L_t - (r_t + \delta) K_t$$

$$F(K,L) = A \left[(1-\alpha)L^{\frac{\sigma-1}{\sigma}} + \alpha K^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$

Model: Market Clearing

 \tilde{X}_t : value of X_t per aggregate capita.

Market Clearing at every period t:

Capital/Asset Market

$$\tilde{A}_{t-1} = \tilde{K}_t$$

Labour Market

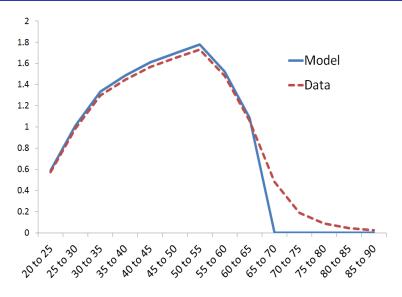
$$\tilde{\rho}' \epsilon \mathbf{I}_t = \tilde{L}_t$$

Housing Market

$$\tilde{H}_t = \tilde{H}$$

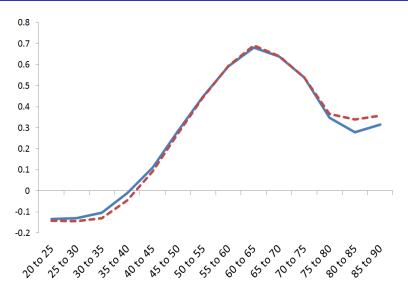
Goods Market

$$\tilde{Y}_t = \tilde{C}_t + \tilde{I}_t$$

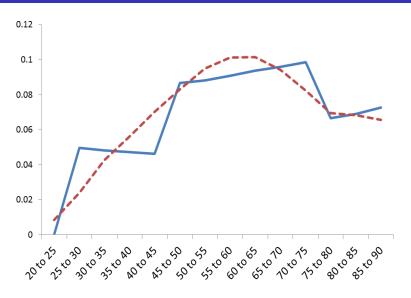

Steady state exists in per capita terms.

Housing supply exogenously increases with total population size.

Calibration


- Average aggregate values for advanced economies in the 1970s
 - World interest rate: 3.7%
 - Housing wealth/GDP ratio: 145%
 - Credit/GDP ratio: 45%
- Life-cycle patterns from the US Survey of Consumer Finances, from 1989 to 2013
 - Labour productivity
 - Net wealth (excluding housing)
 - Housing wealth
- Demographics data for advanced economies: Western Europe,
 North America, Japan, Australia, New Zealand details

Calibration: Labour productivity

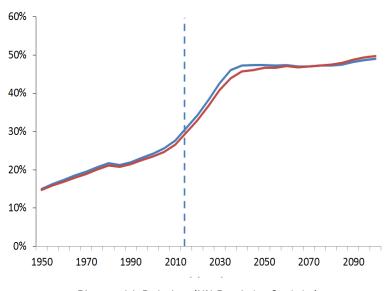

Source: Survey of Consumer Finances, Labour income, 1989-2013

Calibration: Net worth (excl. housing)

Source: Survey of Consumer Finances, Average Net Worth excl. Housing, 1989-2013

Calibration: Housing wealth

Source: Survey of Consumer Finances, Housing wealth, 1989-2013

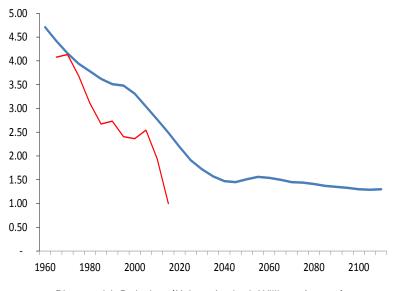

Plan for today

- Key facts Interest rates and demographics in recent decades
- Intuition The neutral rate in the neoclassical model
- Methodology Outline of our model and calibration
- Results Macroeconomic implications of population ageing
- Sensitivities Robustness and Extensions
- Conclusions Summary and some caveats

Using the model

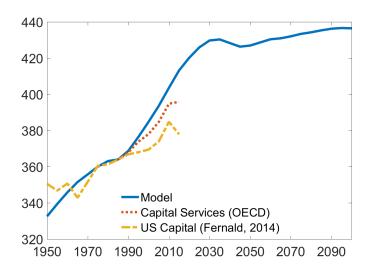
- Incorporate both the baby boom and the increase in life expectancy in our model
- Compute the transition from the 1950s to the 2100s according to the UN population predictions
- Match the data in the 1970s
- Let the model speak before and after these dates

Calibration: Demographic change

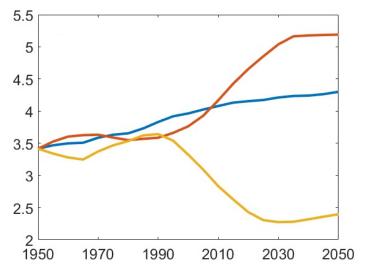


Blue: model, Red: data (UN Population Statistics)

Results overview


- Savings, debt and the interest rate
- House prices and the role of housing
- Labour productivity
- Open economy implications

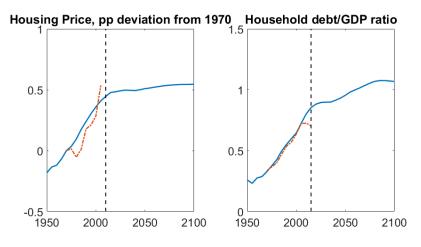
Model outcome: Natural interest rate



 $Blue:\ model,\ Red:\ data\ (Holston-Laubach-Williams\ Average)$

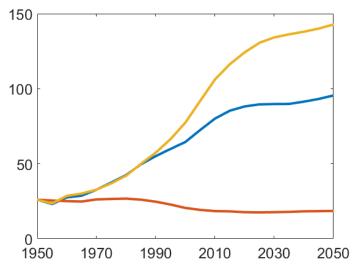
Model outcome: capital-output ratio

Model outcome: Decomposing the drivers of savings



Blue: full simulation

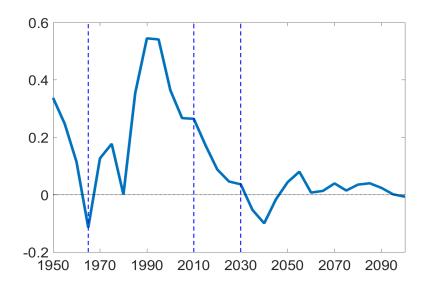
Red: changing only the population age structure


Yellow: changing only the household's optimal behaviour

Model outcome: Housing and credit

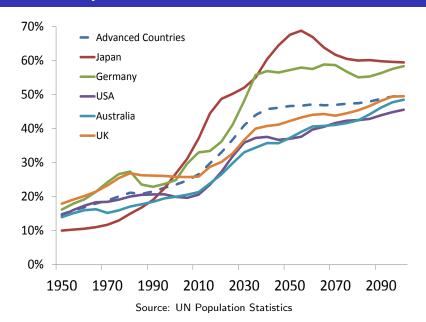
Blue: model, Red: data (BIS, Private credit, House price index)

Model outcome: Decomposing the drivers of debt

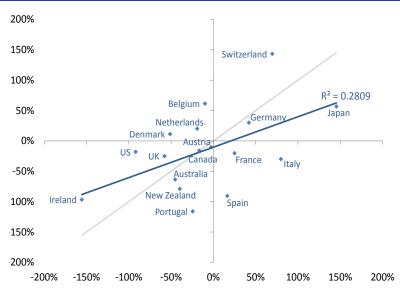


Blue: full simulation

Red: changing only the population age structure

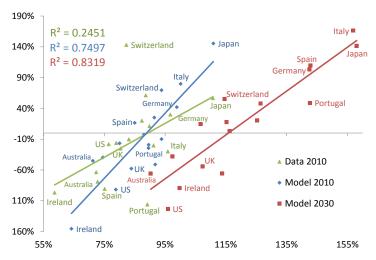

Yellow: changing only the household's optimal behaviour

Model outcome: Labour productivity



Deviation from trend, annualised growth

Open economy: OADR across countries


Open economy: Model vs data

Model on x-axis and Data on y-axis, grey line is the 45 degree line.

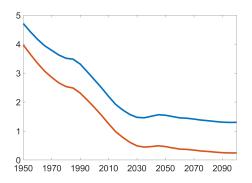
Open economy: model predictions

Demographic Changes and NFA accumulation

Note: HWR on x-axis and NFA/GDP on y-axis.

Plan for today

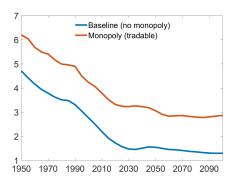
- Key facts Interest rates and demographics in recent decades
- Intuition The neutral rate in the neoclassical model
- Methodology Outline of our model and calibration
- Results Macroeconomic implications of population ageing
- Sensitivities Robustness and Extensions
- Conclusions Summary and some caveats


Sensitivities and extensions

- Housing
- Monopoly profits
- Retirement age

Sensitivities and extensions: housing

- Housing facilitates life-cycle saving, somewhat attenuating effects of demographics
- Prevents negative interest rates


Figure: Simulations With and Without Housing

Sensitivities and extensions: monopoly profits

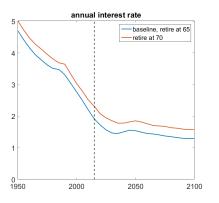

- Add monopolistic competition and supernormal profits to the corporate sector.
- In partial equilibrium, this pushes down on the interest rate $r_t = \frac{1}{\mu} \frac{\partial Y_t}{\partial K_t}$
- Tradable claims constitute an additional store of value, again attenuating fall and

Figure: Simulations With and Without Monopoly Power

Sensitivities and extensions: retirement age

Simulations varying retirement age by 5 years

Effects of retirement age increase surprisingly small

Plan for today

- Key facts Interest rates and demographics in recent decades
- Intuition The neutral rate in the neoclassical model
- Methodology Outline of our model and calibration
- Results Macroeconomic implications of population ageing
- Sensitivities Robustness and Extensions
- Conclusions Summary and some caveats

Conclusions and some caveats

Conclusions:

- Population ageing mostly due to persistent rise in longevity
- Explain around half the fall in real interest rates since the 1980s, most of the rise in house prices and household debt and about 30% of cross-sectional variation in NFA positions.
- Potentially permanent implications

Conclusions and some caveats

Conclusions:

- Population ageing mostly due to persistent rise in longevity
- Explain around half the fall in real interest rates since the 1980s, most of the rise in house prices and household debt and about 30% of cross-sectional variation in NFA positions.
- Potentially permanent implications

Caveats:

- We have assumed perfect foresight, but not everyone plans ahead
- Not all the pressure of demographic change will fall on private savings
 - Retirees can instead consume less (no evidence so far)
 - Households will work more, or retire later (already some evidence)
 - Governments will provide part of the old-age pensions through contemporaneous transfers
- This is not a forecast that rates will remain low many other factors at play

Conclusions and some caveats

Conclusions:

- Population ageing mostly due to persistent rise in longevity
- Explain around half the fall in real interest rates since the 1980s, most of the rise in house prices and household debt and about 30% of cross-sectional variation in NFA positions.
- Potentially permanent implications

Caveats:

- We have assumed perfect foresight, but not everyone plans ahead
- Not all the pressure of demographic change will fall on private savings
 - Retirees can instead consume less (no evidence so far)
 - Households will work more, or retire later (already some evidence)
 - Governments will provide part of the old-age pensions through contemporaneous transfers
- This is not a forecast that rates will remain low many other factors at play

Country list

Country list for UN population data: Australia, Austria, Belgium, Canada, Denmark, France, Germany, Ireland, Italy, Japan, Netherlands, New Zealand, Portugal, Spain, Switzerland, United Kingdom, United States of America

Population approximation before 1950: Belgium, Canada, Denmark, France, Italy, Netherlands, Spain, Switzerland, UK, USA

