The Young, the Old, and the Government: Demographics and Fiscal Multipliers

Henrique S. Basso Omar Rachedi

Banco de España Banco de España

First Annual Workshop of ESCB Research Cluster 2 16 November 2017

The opinions in this presentation are those of the authors and do not necessarily reflect the views of the Banco de España or the Eurosystem

Outline

- Introduction
- 2 Empirical Evidence
- Model
- Quantitative Analysis
- 6 Conclusions

Motivation - Demographics

- Age structure of the population matters for macroeconomic dynamics
- Different age groups
 - have different savings behavior & marginal propensity to consume
 - have different labor supply elasticities
 - have different productivity levels (age-profile of wages)
- ullet Demographics is slow moving \Rightarrow long-run effects
- Demographics also affect responses in the short-run

• Do fiscal multipliers depend on the age structure of the population?

Question

• Do fiscal multipliers depend on the age structure of the population?

Empirical Evidence

- Panel of military govt spending, output & demographics across U.S. states
- Causal effect of demographics on local fiscal multipliers
- ullet 1% increase in share of young people o local fiscal multiplier rises by 3.1%

Question

• Do fiscal multipliers depend on the age structure of the population?

Empirical Evidence

- Panel of military govt spending, output & demographics across U.S. states
- Causal effect of demographics on local fiscal multipliers
- ullet 1% increase in share of young people o local fiscal multiplier rises by 3.1%

Model

- We rationalize this fact with parsimonious life-cycle open-economy NK model
- Model has credit market imperfections & age-specific Frisch elasticities

Question

• Do fiscal multipliers depend on the age structure of the population?

Empirical Evidence

- Panel of military govt spending, output & demographics across U.S. states
- Causal effect of demographics on local fiscal multipliers
- ullet 1% increase in share of young people o local fiscal multiplier rises by 3.1%

Model

- We rationalize this fact with parsimonious life-cycle open-economy NK model
- Model has credit market imperfections & age-specific Frisch elasticities
- Also national fiscal multipliers increase with the share of young people

Question

• Do fiscal multipliers depend on the age structure of the population?

Empirical Evidence

- Panel of military govt spending, output & demographics across U.S. states
- Causal effect of demographics on local fiscal multipliers
- ullet 1% increase in share of young people o local fiscal multiplier rises by 3.1%

Model

- We rationalize this fact with parsimonious life-cycle open-economy NK model
- Model has credit market imperfections & age-specific Frisch elasticities
- Also national fiscal multipliers increase with the share of young people

Exercise - Population Aging

 \bullet Nowadays national fiscal multipliers are 36% lower than in 1980

Outline

- Introduction
- 2 Empirical Evidence
- Model
- Quantitative Analysis
- Conclusions

Empirical Evidence

- Panel of military spending, output & demographics across U.S. states
- Annual data over 1967 2015
- Estimate local fiscal multipliers: federally-financed open-economy relative multipliers

$$\frac{Y_{i,t} - Y_{i,t-2}}{Y_{i,t-2}} = \alpha_i + \delta_t + \beta \frac{G_{i,t} - G_{i,t-2}}{Y_{i,t-2}} + \gamma \frac{G_{i,t} - G_{i,t-2}}{Y_{i,t-2}} \left(D_{i,t} - \bar{D}\right) + \zeta D_{i,t} + \epsilon_{i,t}$$

- ▶ $D_{i,t} \equiv \text{log-share of white males aged 20-30}$ in total white male population
- $\beta \equiv$ fiscal multiplier for a state with average share of young people
- $ightharpoonup \gamma \equiv$ how fiscal multiplier changes with demographics
- When share of young people rises by 1% \rightarrow multiplier goes from β to $\beta + \gamma$

Empirical Evidence

- Panel of military spending, output & demographics across U.S. states
- Annual data over 1967 2015
- Estimate local fiscal multipliers: federally-financed open-economy relative multipliers

$$\frac{Y_{i,t} - Y_{i,t-2}}{Y_{i,t-2}} = \alpha_i + \delta_t + \beta \frac{G_{i,t} - G_{i,t-2}}{Y_{i,t-2}} + \gamma \frac{G_{i,t} - G_{i,t-2}}{Y_{i,t-2}} \left(D_{i,t} - \bar{D}\right) + \zeta D_{i,t} + \epsilon_{i,t}$$

- ▶ $D_{i,t} \equiv \text{log-share of white males aged 20-30}$ in total white male population
- $\beta \equiv$ fiscal multiplier for a state with average share of young people
- $ightharpoonup \gamma \equiv$ how fiscal multiplier changes with demographics
- When share of young people rises by 1% \rightarrow multiplier goes from β to $\beta + \gamma$
- We also estimate local employment rate fiscal multipliers

Identification of Government Spending Shocks

- National military spending is heterogeneously distributed across states
 - After Vietnam War, military spending (as fraction of GDP) dropped by 1.5%
 - ▶ In California it dropped by 2.5% & in Illinois it dropped by 1%
- We estimate a first-stage regression:

$$\frac{G_{i,t} - G_{i,t-2}}{Y_{i,t-2}} = \frac{\eta_i}{Y_{t-2}} \frac{G_t - G_{t-2}}{Y_{t-2}} + \epsilon_{i,t}$$

- \triangleright η_i captures state-specific sensitivity to national military spending
- ► Assumption: US don't go to war when a state output is low (relative to other states)
- Weaker than usual assumption US don't go to war when national output is low

Identification of the Role of Demograhics

- We exploit the time-series & cross-sectional variation of demographic shares
- In 2015 the share of young people ranges between 11.9% (Maine) & 22.6% (D.C.)
- Time-variation is due to the onset & aging of Baby-boomers
- Also large changes in the cross-sectional variation
 - ▶ In 1980 NY had the 4th lowest share of young people in the U.S.
 - ▶ In 2015 the share of young people of NY has become the 10th highest

Identification of the Role of Demograhics

- We exploit the time-series & cross-sectional variation of demographic shares
- In 2015 the share of young people ranges between 11.9% (Maine) & 22.6% (D.C.)
- Time-variation is due to the onset & aging of Baby-boomers
- Also large changes in the cross-sectional variation
 - ▶ In 1980 NY had the 4th lowest share of young people in the U.S.
 - ▶ In 2015 the share of young people of NY has become the 10th highest
- Migration flows react to shocks \rightarrow age structure is not exogenous
 - ▶ We instrument share of young people with 20-30 year lagged birth rates

Results

	(1)	(2)
	Output per Capita	Employment Rate
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	1.511*** (0.406)	1.095*** (0.215)
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}\times \left(D_{i,t}-\bar{D}\right)$	0.047*** (0.016)	0.034*** (0.011)
$D_{i,t}$	0.002*** (0.001)	0.001 (0.001)
R^2	0.374	0.621
N. Observations	2374	2374

Robustness Checks

- We consider:
 - ▶ OLS regression & IV regression where demographics is not instrumented
 - ▶ Different measure of young (15-29 years old) & different birth rate (20 year lagged)
- Additional national-level variables:
- Additional state-level variables:
- Changes in labor market (skill composition & female participation)

 ▶ Labor Market
- Two-year cumulative fiscal multipliers Cumulative Multipliers
- The effect of spending shocks on states' population Population Dynamics
- The effect of spending shocks on hours worked Response of Hours
- Link between demographics & national multipliers

Outline

- Introduction
- 2 Empirical Evidence
- Model
- Quantitative Analysis
- 6 Conclusions

Environment

- 2 states in a monetary union
- Each state has a standard Calvo pricing New Keynesian setup
- Labor and capital are immobile, bonds move freely across states
- Household sector has a life-cycle structure
- Individuals face three stages of life: young, mature, and old
- Idiosyncratic probability to age (moving across age groups) and die
- We follow Gertler (1999) to aggregate linearly individuals within age group
- All the individuals supply labor, accumulate assets, and consume
- Government spending is partially financed through debt

Differences Across Age Groups

- Young & old agents have higher Frisch elasticity than prime-age workers
- Young households face a hump-shaped labor income over the life-cycle
- Would like to borrow & smooth consumption
- Credit market imperfections
 - ▶ Incomplete markets: Idiosyncratic aging risk & non-contingent one-period bond
 - Borrowing constraint: Households cannot borrow
- Credit mkt imperfections boost the marginal propensity to consume of the young

Outline

- Introduction
- 2 Empirical Evidence
- Model
- Quantitative Analysis
- 6 Conclusions

Calibration

- Symmetric countries. Share of home country is 10%
- We match the average 1967-2015 age structure
 - ▶ Young are 20-29 years old, Mature are 30-64 years old, Old are 65+ years old
- The model is calibrated to match the hump-shaped dynamics of labor income:
 - Young workers earn 68% of hourly wage of mature workers
 - Old workers earn 72% of hourly wage of mature workers
 - Mature individuals work 0.35 hours in steady-state
 - ▶ Hours worked by young & old are normalized by relative employment rates
- Frisch elasticity disciplined by estimates on micro intensive margin elasticity:
 - Elasticity of prime-age workers is $\nu_m = 0.2$ (Chetty et al., 2013)
 - Elasticity of old workers is $\nu_o = 0.75$ (Rogerson and Wallenius, 2013)
 - Elasticity of young workers is $\nu_{\nu} = 0.71 \rightarrow$ weighted avg elasticity of 0.4

Local Fiscal Multiplier

• We estimate the following regression using simulated data from the model

$$\frac{Y_{i,t}-Y_{i,t-2}}{Y_{i,t-2}}=\alpha_i+\delta_t+\beta\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}+\epsilon_{i,t}, \qquad i\equiv\{H,F\}$$

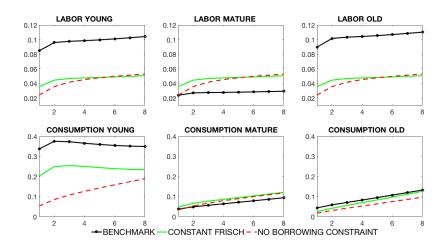
- We change the age structure of the economy & replicate the estimation
- \bullet Difference between $\hat{\beta} \to {\sf sensitivity}$ to demographics

Local Fiscal Multiplier

• We estimate the following regression using simulated data from the model

$$\frac{Y_{i,t}-Y_{i,t-2}}{Y_{i,t-2}}=\alpha_i+\delta_t+\beta\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}+\epsilon_{i,t}, \qquad i\equiv\{H,F\}$$

- We change the age structure of the economy & replicate the estimation
- ullet Difference between $\hat{eta}
 ightarrow$ sensitivity to demographics


		Data	Model
Local Output Fiscal Multiplier	β	1.511	1.392
Sensitivity of Output Fiscal Multiplier with States' Age Structure	γ	0.047	0.027
Δ Local Fiscal Multiplier if Share Young People Rises by 1%	γ/eta	3.1%	2.0%

Local Fiscal Multiplier - Channels

- We compare the baseline model with three counterfactual economies
 - "Constant Frisch Elasticity": $\nu_{\rm V} = \nu_{\rm m} = \nu_{\rm o} = 0.4$
 - "No Borrowing Constraint": constant Frisch & without borrowing constraint

	Data	Baseline Model	Constant Frisch Elasticity	No Borrowing Constraint
Δ Local Output Fiscal Multiplier of 1% Increase in Share Young People	3.1%	2%	1.8%	0.9%

Individual Responses by Age Groups

Results on National Fiscal Multipliers

- We consider an increase in national government spending
- National govt spending is $G_t^u = G_{H,t} + G_{F,t}$
- National output is $Y_t^u = Y_{H,t} + Y_{F,t}$
- We estimate the regression

$$\frac{Y_t^u - Y_{t-2}^u}{Y_{t-2}^u} = \beta_N \frac{G_t^u - G_{t-2}^u}{Y_{t-2}^u} + \epsilon_t.$$

Results on National Fiscal Multipliers

- We consider an increase in national government spending
- National govt spending is $G_t^u = G_{H,t} + G_{F,t}$
- National output is $Y_t^u = Y_{H,t} + Y_{F,t}$
- We estimate the regression

$$\frac{Y_t^u - Y_{t-2}^u}{Y_{t-2}^u} = \beta_N \frac{G_t^u - G_{t-2}^u}{Y_{t-2}^u} + \epsilon_t.$$

	Output	Consumption	Investment	Employment
National Fiscal Multiplier	0.94	0.84	-0.90	1.38
Δ National Fiscal Multiplier if Share Young People Rises by 1%	1.1%	1.3%	-0.1%	1%

Implications of Population Aging

- U.S. population has progressively shifted towards older ages
- The share of young people dropped by 30%
- Feed the model with these shares & compare the response to govt spending shock

Implications of Population Aging

- U.S. population has progressively shifted towards older ages
- The share of young people dropped by 30%
- Feed the model with these shares & compare the response to govt spending shock
- In 1980 the model yields a fiscal multiplier of 1.12
- In 2015 the fiscal multiplier dropped by 36%, down to 0.72
- In 2100 the fiscal multiplier will be 0.44
- Population aging reduces substantially the size of fiscal multipliers

Outline

- Introduction
- 2 Empirical Evidence
- Model
- Quantitative Analysis
- Conclusions

Conclusion

- We document that fiscal multipliers depend on demographics
- Local fiscal multipliers increase with the share of young people in total population
- We rationalize this fact with a life-cycle open-economy New Keynesian model with:
 - credit market imperfections
 - age-specific differences in labor supply
- Model explains 61% of the link between demographics & local fiscal multipliers
- Also national fiscal multipliers depend on the age structure of an economy
- US population aging has reduced fiscal multipliers by 36% over the last 30 years

APPENDIX

Data

- Annual data from 1967 until 2015 across 50 U.S. states & District of Columbia
- GDP from BEA
- Employment from CES-BLS
- Military spending from the U.S. Statistical Abstract & usaspending.gov
 - Data on allocation across states of national military spending
 - Based on electronic database of procurements of U.S. Department of Defense
 - Cover procurements above 25,000\$
- Population from Surveillance, Epidemiology & End Results Program
 - ▶ Young white males: 20-30 years old
- Birth rates from Census Bureau

Response of Output - Robustness Checks

	(4)	(0)	(0)	(4)	(5)	(6)	(=)
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Baseline	Baseline	No IV Birth Rates	Share Age 15-29	Birth Rates 25 Year Lag	All Men	Men & Women
	IV	OLS	Partial IV	IV	IV	IV	IV
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	1.511***	0.109	1.515***	1.251***	1.451***	1.664***	1.613***
7,1-2	(0.409)	(0.112)	(0.468)	(0.394)	(0.396)	(0.432)	(0.435)
$\frac{\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}\times}{\left(D_{i,t}-\bar{D}\right)}$	0.047***	0.011*	0.067**	0.051**	0.051***	0.066**	0.060**
$(D_{i,t}^{r,t}-\bar{D})$	(0.017)	(0.006)	(0.028)	(0.024)	(0.017)	(0.028)	(0.025)
$D_{i,t}$	0.002*** (0.001)	0.002*** (0.001)	0.002*** (0.001)	0.003*** (0.001)	0.001 (0.001)	0.002** (0.001)	0.002** (0.001)
R^2	0.374	0.390	0.330	0.382	0.411	0.362	0.364
N. Observations	2374	2397	2397	2374	2366	2374	2374

Response of Employment Rate - Robustness Checks

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Baseline	Baseline	No IV Birth Rates	Share Age 15-29	Birth Rates 25 Year Lag	All Men	Men & Women
	IV	OLS	Partial IV	IV	IV	IV	IV
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	1.095***	0.180**	1.046***	0.959***	1.097***	1.091***	1.075***
7,1-2	(0.215)	(0.076)	(0.236)	(0.210)	(0.210)	(0.226)	(0.220)
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}} \times$	0.034***	0.001	0.025**	0.038**	0.035***	0.038**	0.039**
$(D_{i,t}-\bar{D})$	(0.011)	(0.005)	(0.010)	(0.016)	(0.010)	(0.017)	(0.016)
$D_{i,t}$	0.001 (0.001)	0.001 (0.001)	0.001 (0.001)	0.001** (0.001)	0.001 (0.001)	0.001 (0.001)	0.001 (0.001)
R^2	0.621	0.635	0.590	0.627	0.627	0.625	0.624
N. Observations	2374	2397	2397	2374	2366	2374	2374

Response of Output - National Controls

	(1)	(2)	(3)	(4)	(5)
	Oil Price	Households' Debt	Federal Debt	Real Interest Rate	Ramey News
	IV	IV	IV	IV	IV
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	1.311***	1.661***	1.511***	1.500***	1.508***
1,1-2	(0.333)	(0.451)	(0.443)	(0.395)	(0.416)
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}\times \left(D_{i,t}-\bar{D}\right)$	0.039**	0.065***	0.041**	0.048***	0.039**
1,1-2	(0.015)	(0.022)	(0.017)	(0.017)	(0.018)
$D_{i,t}$	0.001** (0.001)	0.002** (0.001)	0.002*** (0.001)	0.001** (0.001)	0.002*** (0.001)
R^2	0.446	0.371	0.397	0.405	0.389
N. Obs.	2374	2374	2374	2374	2374

Response of Employment Rate - National Controls

	(1)	(2)	(3)	(4)	(5)
	Oil Price	Households' Debt	Federal Debt	Real Interest Rate	Ramey News
	IV	IV	IV	IV	IV
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	1.104***	1.070***	1.025***	1.069***	1.073***
1,1-2	(0.207)	(0.013)	(0.216)	(0.211)	(0.222)
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}} \times (D_{i,t}-\bar{D})$	0.033***	0.040***	0.034***	0.032***	0.035***
1,1-2	(0.011)	(0.013)	(0.011)	(0.011)	(0.011)
$D_{i,t}$	0.001 (0.001)	0.001 (0.001)	0.001 (0.001)	0.001 (0.001)	0.001 (0.001)
R^2	0.630	0.635	0.641	0.639	0.625
N. Obs.	2374	2374	2374	2374	2374

Response of Output - State Controls

	(1)	(2)	(3)	(4)
	House Price	Personal Taxes	Unempl. Rate	Unempl. Benefits
	IV	IV	IV	IV
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	0.795***	1.468***	0.627	1.500***
1,1-2	(0.398)	(0.401)	(0.412)	(0.406)
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}} \times (D_{i,t}-\bar{D})$	0.066***	0.048***	0.049***	0.047***
-,	(0.016)	(0.016)	(0.016)	(0.016)
$D_{i,t}$	0.001*** (0.001)	0.001** (0.001)	0.001** (0.001)	0.002*** (0.001)
R^2	0.441	0.378	0.451	0.375
N. Obs.	2031	2374	2374	2031

Response of Employment Rate - State Controls

	(1)	(2)	(3)	(4)
	House Price	Personal Taxes	Unempl. Rate	Unempl. Benefits
	IV	IV	IV	IV
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	0.416**	1.071***	0.325	1.084***
1,1-2	(0.220)	(0.218)	(0.220)	(0.217)
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}} \times (D_{i,t}-\bar{D})$	0.043***	0.035***	0.035***	0.035***
	(800.0)	(0.011)	(0.009)	(0.011)
$D_{i,t}$	-0.001 (0.001)	0.001 (0.001)	-0.001** (0.001)	0.001 (0.001)
R^2	0.723	0.624	0.726	0.622
N. Obs.	2031	2374	2031	2374

Response of Output - Labor Market

	(1)	(2)	(3)	(4)
	Skilled Workers	Young Skilled Workers	Female Workers	Young Female Workers
	IV	IV	IV	IV
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	1.125** (0.480)	1.177** (0.478)	1.147** (0.477)	1.138** (0.470)
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}\times \left(D_{i,t}-\bar{D}\right)$	0.070*** (0.018)	0.070*** (0.018)	0.071*** (0.017)	0.067*** (0.017)
$D_{i,t}$	0.001* (0.001)	0.001** (0.001)	0.001* (0.001)	0.001** (0.001)
R^2	0.348	0.351	0.349	0.352
N. Observations	1982	1982	1982	1982

Response of Employment Rate - Labor Market

	(1)	(2)	(3)	(4)
	Skilled Workers	Young Skilled Workers	Female Workers	Young Female Workers
	IV	IV	IV	IV
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	0.537* (0.298)	0.611** (0.300)	0.581* (0.301)	0.591** (0.298)
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}} imes \left(D_{i,t}-\bar{D}\right)$	0.298)	0.046***	0.046***	0.045***
$\gamma_{i,t-2}$ \cdots $(-1,t-1)$	(0.010)	(0.011)	(0.011)	(0.011)
$D_{i,t}$	-0.001* (0.001)	-0.001 (0.001)	-0.001 (0.001)	-0.001 (0.001)
R^2	0.664	0.660	0.660	0.663
N. Observations	1982	1982	1982	1982

2 Year Cumulative Local Fiscal Multiplier

	(1)	(2)
	Output per Capita	Employment Rate
$\frac{\left(\sum_{j=1}^{2} G_{i,t+1-j} - 2G_{i,t-2}\right)}{Y_{i,t-2}}$	1.453***	1.019***
$r_{i,t-2}$	(0.405)	(0.212)
$\frac{\left(\sum_{j=1}^{2} G_{i,t+1-j} - 2G_{i,t-2}\right)}{Y_{i,t-2}} \times \left(D_{i,t} - \bar{D}\right)$	0.046***	0.033***
r _{i,t-2}	(0.016)	(0.011)
$D_{i,t}$	0.003*** (0.001)	0.001 (0.001)
R^2	0.369	0.618
N. Observations	2374	2374

Response of Population

	(1)	(2)	(3)	(4)
	Overall Population	Young Population	Mature Population	Old Population
	IV	IV	IV	IV
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	-0.179	1.145***	-0.398	-0.070
1,1-2	(0.303)	(0.399)	(0.403)	(0.212)
R^2	0.611	0.654	0.584	0.790
N. Observations	2295	2295	2295	2295

Response of Hours

- We use CPS data from 1977 on to build state measures of hours worked for:
 - all workers
 - young workers (between 20 and 30 years old)
 - older workers (above 30 years old)

	(1)	(2)	(3)
	All Workers	Young Workers	Older Workers
	IV	IV	IV
$\frac{G_{i,t}-G_{i,t-2}}{Y_{i,t-2}}$	0.656**	1.036	0.449
,,, _	(0.294)	(0.711)	(0.407)
R^2	0.176	0.100	0.121
N. Observations	1887	1887	1887

Structure & Production

- 2 states (Home & Foreign) under same monetary policy rule
- ullet The home economy has a population N_t and foreign N_t^* , such that $N_t + N_t^\star = N_{U,t}$
- In each economy there is a final goods firm & a continuum of intermediate firms
- In the home economy:

$$Y_{H,t} = \left(\int_0^1 Y_{H,t}^i \frac{\varepsilon - 1}{\varepsilon} di\right)^{\frac{\varepsilon}{\varepsilon - 1}} \qquad P_{H,t} = \left(\int_0^1 P_{H,t}^i e^{1 - \varepsilon} di\right)^{\frac{1}{1 - \varepsilon}}$$

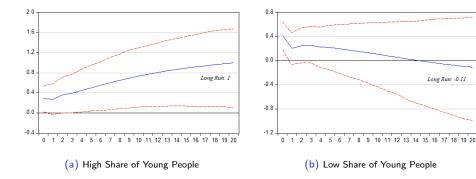
In each economy consumption & investment bundle goods produced in both states

Government

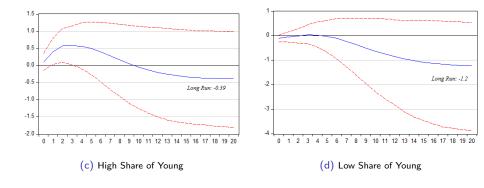
- Monetary authority follows a union-level Taylor rule
- Fiscal authority purchases home goods $G_{H,t}$ and foreign goods $G_{F,t}$
- Purchases $G_{H,t}$ and $G_{F,t}$ follow exogenous AR(1) processes
- Government finances its expenditures with:
 - revenues of one-period non-contingent bond B_{g,t}
 - lump-sum taxes in home state T_t & foreign state T_t^*
 - proceeds from dividend taxation
- Fiscal rule determines the response of debt & tax to govt spending shocks

$$\frac{\widehat{B}_{g,t+1}}{Y_{SS}^u} = \rho_{bg} \frac{\widehat{B}_{g,t}}{Y_{SS}^u} + \phi_G \frac{\widehat{P_{H,t}G_{H,t}}}{Y_{SS}^u} + \phi_G \frac{\widehat{P_{F,t}G_{F,t}}}{Y_{SS}^u} + \phi_T \frac{\widehat{P_tT_t}}{Y_{SS}^u} + \phi_T \frac{\widehat{P_tT_t}}{Y_{SS}^u}$$

Intermediate Goods Firms


- Production function: $Y_{H,t}^i = L_t^{i\alpha} K_t^{i1-\alpha}$
- \bullet Firms' nominal profits: $D_t^i = P_{H,t}^i Y_{H,t}^i W_t L_t^i R_{k,t} K_t^i$
- ullet Calvo pricing frictions: firms can adjust prices with probability $1-\zeta$
- $\bullet \ \, \text{Optimal price setting problem:} \ \, \max_{P_{H,t}^{j}} \mathbb{E}_{t} \left\{ \sum_{s=0}^{\infty} \zeta^{s} Q_{m,t,t+s} \frac{D_{t+s}^{i} \left(P_{H,t}^{i}\right)}{P_{t+s}} \right\}$
- $\bullet \text{ Optimal reset price: } P_{H,t}^{\#} = \frac{\varepsilon}{\varepsilon 1} \frac{\mathbb{E}_{t} \sum_{s=0}^{\infty} \zeta^{s} Q_{m,t,t+s} \Phi_{t+s}^{l} P_{H,t+s}^{\varepsilon} P_{t+s}^{-1} Y_{t+s}}{\mathbb{E}_{t} \sum_{s=0}^{\infty} \zeta^{s} Q_{m,t,t+s} P_{t,t+s}^{\varepsilon} P_{t+s}^{-1} Y_{t+s}}$
- Law of motion of prices: $P_{H,t}^{1-arepsilon}=\left(1-\zeta\right)P_{H,t}^{\#}^{\ 1-arepsilon}+\zeta P_{H,t-1}^{1-arepsilon}$

National Fiscal Multipliers


- We study how national fiscal multipliers depend on demographics
- We estimate fiscal multipliers with a panel SVAR
- Quarterly data on output & govt spending across countries Ilzetzki, Mendoza, and Vegh (2013)
- Identify govt spending shocks with restriction a la Blanchard and Perotti (2002)
- Govt spending shocks react with a delay of a quarter to other variables
- We consider a panel of developed countries & a panel of developing countries
 19 developed countries & 25 developing countries
- We split countries in two groups, depending on the shares of young people

National Fiscal Multipliers - Developed Countries

National Fiscal Multipliers - Developing Countries

Age-Specific Labor Supply

- In the data the volatility of hours worked (& hourly wages) depends on age
- The standard deviation of hours worked is highest for old workers (65+ years old) and young workers (20-30 years old)
- We use CPS data and find that the local hours worked fiscal multiplier of young workers is much higher than for older workers

 Response of Hours
- To capture these patterns, we assume that the Frisch elasticity depends on age
- In the calibration, we set $\nu_o > \nu_y >> \nu_m$
- Young workers are more reactive to govt spending shocks than prime-age individuals

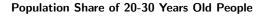
Calibration - Standard Parameters

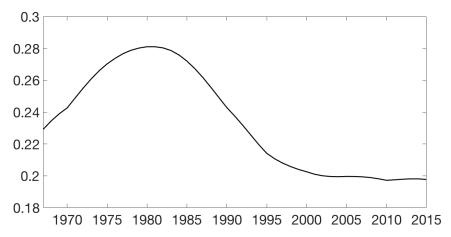
Parameter	Value	Target/Source
Time Discount Factor	$\beta = 0.995$	Standard Value
Elasticity Intertemporal Substitution	$\eta = -9$	EIS = 0.1
Capital Depreciation Rate	$\delta = 0.025$	Standard Value
Capital Adjustment Cost	$\kappa=135$	Two-Year National Investment Fiscal Multiplier $=$ -0.9
Home Bias in Consumption & Investment	$\lambda = 0.69$	Nakamura and Steinsson (2014)
Elasticity Substitution Home & Foreign Consumption	$\psi_c=2$	Nakamura and Steinsson (2014)
Elasticity Substitution Home & Foreign Investment	$\psi_i=2$	$\psi_i = \psi_c$
Elasticity Substitution Across Varieties	$\epsilon=7$	Standard Value
Capital Share in Production	$\alpha = 0.33$	Standard Value
Calvo Parameter	$\zeta=0.75$	Standard Value

Calibration - Standard Parameters

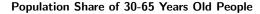
Parameter	Value	Target/Source
Dividend Taxation Rate	$ au_d=0.9394$	Mature Agents Receive 60% Total Dividends
Steady-State Government Spending to Output Ratio	$\frac{G_{H,SS} + G_{F,SS}}{Y_{SS}^U} = 0.2$	Data
Persistence Government Spending Shock	$ ho_{\it G}=0.933$	Data
Inertia of Government Debt	$ ho_{\mathit{bg}} = 0.95$	Dynamic Response to Spending of Government Debt
Response to Spending of Government Debt	$\phi_G = 4.5$	Dynamic Response to Spending of Government Debt
Response to Spending of Taxation	$\phi_{T}=0.01$	Dynamic Response to Spending of Taxation
Inertia of Taylor Rule	$\psi_R=0.8$	Clarida et <i>al.</i> (2000)
Taylor Rule Response to Inflation	$\psi_\pi=1.5$	Clarida et <i>al.</i> (2000)
Taylor Rule Response to Output Gap	$\psi_Y = 0.2$	Clarida et <i>al.</i> (2000)

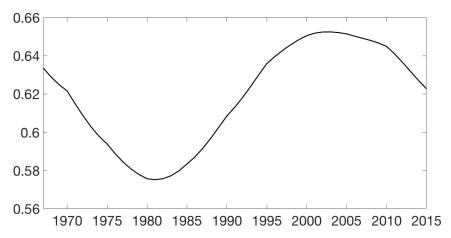
Calibration - Demographics

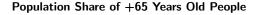

Parameter	Value	Target/Source
Birth Rate of New Young Agents	$\omega_n=0.0241$	Share of Young in Population
Probability Transition from Young to Mature	$1-\omega_y=0.0250$	Avg. Number of Years as Young: 10y
Probability Transition from Mature to Old	$1-\omega_{\it m}=0.0083$	Avg. Number of Years as Mature: 30y
Death Probability of Old Agents	$1-\omega_o=0.0320$	Share of Old in Population
Relative Size Population Home Economy	$N/N^u=0.1$	Relative Size of California

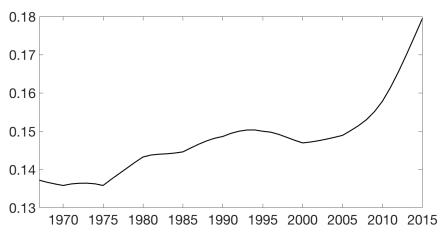

Calibration - Life Cycle

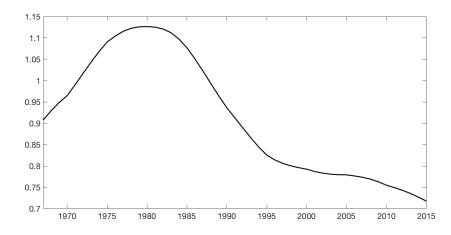
Parameter	Value	Target/Source
Disutility Labor for Young Agents	$\chi_y = 4.9963$	Fraction of Hours Worked = 0.3238
Disutility Labor for Mature Agents	$\chi_m = 490.1585$	Fraction of Hours Worked $= 0.35$
Disutility Labor for Old Agents	$\chi_o=1.6923$	Fraction of Hours Worked $= 0.08$
Efficiency Units of Hours for Young Agents	$\xi_y = 0.68$	$Wage\ Young = 68\%\ Wage\ Mature$
Efficiency Units of Hours for Mature Agents	$\xi_{\it m}=1$	Normalization
Efficiency Units of Hours for Old Agents	$\xi_o=0.72$	Wage Old $= 72\%$ Wage Mature
Frisch Elasticity for Young Agents	$ u_y = 0.71$	Weighted Avg. Frisch Elasticity $= 0.4$
Frisch Elasticity for Mature Agents	$\nu_m = 0.2$	Chetty et <i>al.</i> (2011)
Frisch Elasticity for Old Agents	$ u_o=0.75$	Rogerson and Wallenius (2013)

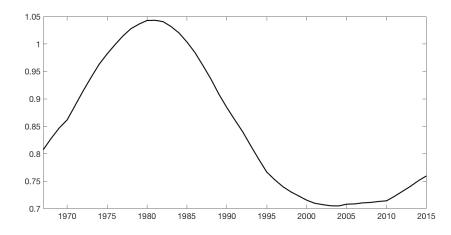

Population Aging



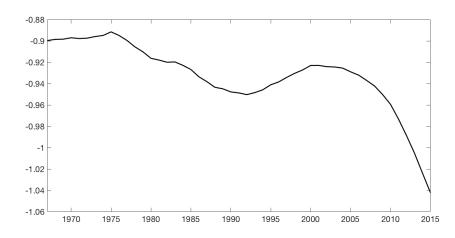

Population Aging



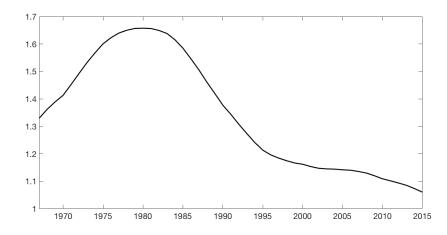

Population Aging



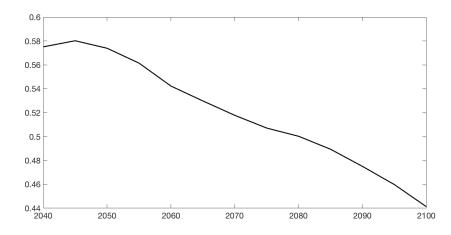
Output Fiscal Multiplier 1967 - 2015

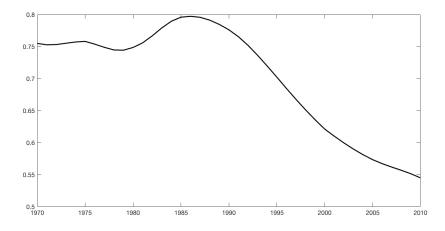


Consumption Fiscal Multiplier 1967 - 2015



Investment Fiscal Multiplier 1967 - 2015




Employment Fiscal Multiplier 1967 - 2015

Output Fiscal Multiplier 2040 - 2100

Output Fiscal Multiplier 1970 - 2010

Validity of Lagged Birth Rates as IV

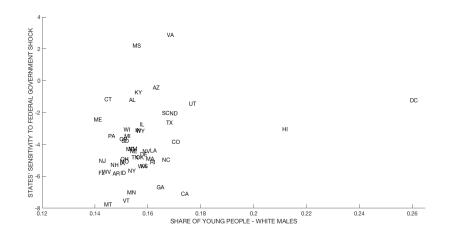
- We report the first-stage regressions of the share of young people on lagged birth rates
- We consider the share of young white males, young males, and all young people
- For each series, we consider four different first-stage regressions
 - ▶ We regress the raw share on raw birth rates and state & year fixed effects
 - ▶ We regress the residual share of young people on residual birth rates w/o fixed effects
 - ▶ The residuals are derived by regressing each raw series on state & year fixed effects
 - ▶ We replicate these two cases for the log share of young people and log birth rates

Share of Young White Males

	(1)	(2)	(3)	(4)
	Raw	Residuals	Log	Log, Residuals
Lagged Birth Rates	0.317*** (0.062)			
Lagged Birth Rates (Residuals)		0.317*** (0.014)		
Lagged Birth Rates (Log)			0.509*** (0.064)	
Lagged Birth Rates (Log, Residuals)				0.509*** (0.018)
State FE	YES	NO	YES	NO
Year FE	YES	NO	YES	NO
R^2	0.938	0.176	0.934	0.259
N. Observations	2374	2374	2374	2374

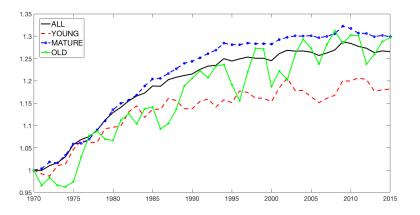
Share of Young Males

	(1)	(2)	(3)	(4)
	Raw	Residuals	Log	Log, Residuals
Lagged Birth Rates	0.280*** (0.062)			
Lagged Birth Rates (Residuals)		0.280*** (0.013)		
Lagged Birth Rates (Log)			0.446*** (0.059)	
Lagged Birth Rates (Log, Residuals)				0.446*** (0.017)
State FE	YES	NO	YES	NO
Year FE	YES	NO	YES	NO
R^2	0.913	0.159	0.915	0.228
N. Observations	2374	2374	2374	2374



Share of Young People

	(1)	(2)	(3)	(4)
	Raw	Residuals	Log	Log, Residuals
Lagged Birth Rates	0.262*** (0.057)			
Lagged Birth Rates (Residuals)		0.262*** (0.012)		
Lagged Birth Rates (Log)			0.427*** (0.057)	
Lagged Birth Rates (Log, Residuals)				0.427*** (0.016)
State FE	YES	NO	YES	NO
Year FE	YES	NO	YES	NO
R^2	0.921	0.159	0.922	0.226
N. Observations	2374	2374	2374	2374


Validity of Lagged Birth Rates as Instrument for Demographics

The Rise of the Female Labor Force Participation

- Unless MPC depends on sex, only difference stems from the Frisch elasticities
- The Frisch elasticity channel in the model is quantitatively not so relevant
- \bullet Bulk of rise in female labor force participation is concentrated in workers aged 30+

The Rise of the Female Labor Force Participation

- We account for the rise of the female labor force participation in a reduced-form
 - ▶ We compute a weighted-average Frisch elasticity by age-group
 - Frisch elasticities of females are 1.5 times larger the Frisch elasticity of males
 - Consider the changes in the relative employment rate of female and male workers
 - ► Compare the change in national output fiscal multipliers between 1980 and 2015

	Baseline Model	Female Labor Force Participation Model
Δ National Fiscal Multiplier 1980-2015	-36%	-31%

Households

- Continuum of households that face life-cycle
- Households belong to three different groups: young (y), mature (m) and old (o)
- Measures of young, mature, and old are such that $N_{y,t} + N_{m,t} + N_{o,t} = N_t$
- In every period:
 - $\omega_n N_{y,t}$ new young agents are born and enter the economy
 - lacktriangle young agents become mature in the next period with a probability $1-\omega_y$
 - lacktriangle mature agents become old in the next period with a probability $1-\omega_m$
 - old agents die with a probability $1 \omega_o$

Households - Idiosyncratic Risk

- Households face idiosyncratic risk of transition to mature, to old, and death
- We introduce perfect annuity market to insure old agents against risk of death
 - Old agents transfer their investment in capital & bonds to financial intermediaries
 - Intermediaries pay back nominal return $a_{z,t}^i$ to surviving old agent

$$a_{z,t}^{i} = \frac{1}{\omega_{o}} \left(R_{k,t} k_{z,t}^{i} + R_{n,t} b_{z,t}^{i} \right)$$

- We assume that each individual is risk neutral
 - ▶ Uncertainty on transition to mature & old does not affect individual choices
 - We assume that Epstein and Zin individual preferences
 - ► Elasticity intertemporal substitution is positive → consumption smoothing
- We can linearly aggregate choices of each individual within each age group
 three representative agents

Households' Problem

• Agent j of age $z = \{y, m, o\}$ chooses consumption, labor, capital & bonds

$$\begin{aligned} \max_{c_{z,t}^{i}, l_{z,t}^{i}, k_{z,t+1}^{i}, b_{z,t+1}^{i}} v_{z,t}^{i} &= \left\{ \left(c_{z,t}^{i} - \chi_{z} \frac{l_{z,t}^{i}}{1 + \frac{1}{\nu_{z}}} \right)^{\eta} + \beta \mathbb{E}_{t} [v_{z',t+1}^{i} \mid z]^{\eta} \right\}^{1/\eta} \\ P_{t} c_{z,t}^{i} &+ P_{l,t} x_{z,t}^{i} + b_{z,t+1}^{i} + P_{t} \tau_{z,t}^{i} &= a_{z,t}^{i} + W_{t} \xi_{z} l_{z,t}^{i} + (1 - \tau_{d}) d_{z,t}^{i} \\ a_{z,t}^{i} &= \left(R_{k,t} k_{z,t}^{i} + R_{n,t} b_{z,t}^{i} \right) \left[1 - \mathbb{I}_{\{z=r\}} \times \left(1 - \frac{1}{\omega_{r}} \right) \right] \\ k_{z,t+1}^{i} &= (1 - \delta) k_{z,t}^{i} + x_{z,t}^{i} - A C_{z,t+1}^{i} \\ k_{z,t+1}^{i} &\geq 0, \quad b_{z,t}^{i} &\geq 0 \\ c_{z,t}^{i} &= \left[(1 - \lambda)^{1/\psi_{c}} c_{H,z,t}^{i} \frac{\psi_{c} - 1}{\psi_{c}} + \lambda^{1/\psi_{c}} c_{F,z,t}^{i} \frac{\psi_{c} - 1}{\psi_{c}} \right] \frac{\psi_{c}}{\psi_{c} - 1} \\ x_{z,t}^{i} &= \left[(1 - \lambda)^{1/\psi_{l}} x_{H,z,t}^{i} \frac{\psi_{l} - 1}{\psi_{l}} + \lambda^{1/\psi_{l}} x_{F,z,t}^{i} \frac{\psi_{l} - 1}{\psi_{l}} \right] \frac{\psi_{l}}{\psi_{l} - 1} \end{aligned}$$

ullet Age-specific Frisch elasticity u_z & borrowing constraint $b_{z,t}^i\geqslant 0$

