Discussion of "Fiscal policy and forward guidance with preferences over wealth" by Ansgar Rannenberg

Dennis Bonam

De Nederlandsche Bank

1st Annual Workshop of ESCB Research Cluster 2 Banco de España, 17 November 2017

The views expressed do not necessarily reflect the official position of De Nederlandsche Bank or the Eurosystem.

Aim of the paper

- Study the effects of fiscal policy and forward guidance
- New Keynesian model in which households gain utility from real bond holdings, i.e. have 'preference over wealth' (POW)
- Focus on (post) zero lower bound (ZLB) episodes
- Include credit-constrained (rule-of-thumb) households

Main mechanism in one equation

• Linerearized Euler equation, iterated forward *n* periods:

$$\hat{C}_{O,t} = E_t \left\{ \sum_{i=0}^{n} -\sigma_H \left[\theta \left(\hat{R}_{t+i} - \hat{\pi}_{t+i+1} \right) - \underbrace{\sigma_B \left(1 - \theta \right) \hat{b}_{O,t+i}}_{\text{wealth effect}} \right] \right\} + \underbrace{\theta^{n+1} E_t \hat{C}_{O,t+n+1}}_{\text{discount effect}}$$

with $\hat{C}_{O,t}$ consumption, \hat{R}_t nominal interest rate, $\hat{\pi}_t$ inflation and $\hat{b}_{O,t}$ real debt, and where

$$\theta = \frac{\text{market rate}}{\text{private (discount) rate}} = \frac{R/\pi}{\beta^{-1}} \leq 1$$

Main mechanism in one equation

• Linerearized Euler equation, iterated forward *n* periods:

$$\hat{C}_{O,t} = E_t \left\{ \sum_{i=0}^{n} -\sigma_H \left[\theta \left(\hat{R}_{t+i} - \hat{\pi}_{t+i+1} \right) - \underbrace{\sigma_B \left(1 - \theta \right) \hat{b}_{O,t+i}}_{\text{wealth effect}} \right] \right\} + \underbrace{\theta^{n+1} E_t \hat{C}_{O,t+n+1}}_{\text{discount effect}}$$

with $\hat{C}_{O,t}$ consumption, \hat{R}_t nominal interest rate, $\hat{\pi}_t$ inflation and $\hat{b}_{O,t}$ real debt, and where

$$\theta = rac{ ext{market rate}}{ ext{private (discount) rate}} = rac{R/\pi}{eta^{-1}} \leq 1$$

- For $\theta < 1$:
 - Discount effect: since accumulating wealth matters, future consumption less important for current consumption
 - Wealth effect: increase in wealth (i.e. higher $\hat{b}_{O,t}$) lowers marginal utility from wealth, which raises current consumption

Results: temporary fiscal contraction (at ZLB)

- Without preferences over wealth:
 - Consumption falls, more so for longer ZLB duration
 - Real interest rate channel can explain this result (Woodford, 2011)

Results: temporary fiscal contraction (at ZLB)

- Without preferences over wealth:
 - Consumption falls, more so for longer ZLB duration
 - Real interest rate channel can explain this result (Woodford, 2011)
- With preferences over wealth:
 - Response of consumption to higher real interest rate weaker than case without POW (discount effect)
 - ► Rise in real debt due to lower inflation, which lowers marginal utility from wealth and thereby raises consumption (wealth effect)

Results: temporary fiscal contraction (at ZLB)

- Without preferences over wealth:
 - Consumption falls, more so for longer ZLB duration
 - Real interest rate channel can explain this result (Woodford, 2011)
- With preferences over wealth:
 - Response of consumption to higher real interest rate weaker than case without POW (discount effect)
 - ► Rise in real debt due to lower inflation, which lowers marginal utility from wealth and thereby raises consumption (wealth effect)
- Hence, POW mutes effects of fiscal policy at ZLB

Results: permanent fiscal contraction (at and beyond ZLB)

- Without preferences over wealth:
 - Aggregate demand falls, but...
 - ...expect future monetary easing once economy escapes ZLB
 - Raises consumption today, which attenuates fall in demand

Results: permanent fiscal contraction (at and beyond ZLB)

- Without preferences over wealth:
 - Aggregate demand falls, but...
 - ...expect future monetary easing once economy escapes ZLB
 - ▶ Raises consumption today, which attenuates fall in demand
- With preferences over wealth:
 - Response of consumption to expected monetary easing weaker than case without POW (discount effect)
 - ► Fall in debt due to permanent fiscal contraction, which raises marginal utility from wealth and lowers consumption (wealth effect)

Results: permanent fiscal contraction (at and beyond ZLB)

- Without preferences over wealth:
 - Aggregate demand falls, but...
 - ...expect future monetary easing once economy escapes ZLB
 - Raises consumption today, which attenuates fall in demand
- With preferences over wealth:
 - Response of consumption to expected monetary easing weaker than case without POW (discount effect)
 - ► Fall in debt due to permanent fiscal contraction, which raises marginal utility from wealth and lowers consumption (wealth effect)
- Hence, POW strengthens effects of fiscal policy at and beyond ZLB
 - \Rightarrow fiscal policy effective at stimulating economy at ZLB, if committed to remain expansionary even when economy escapes ZLB

Results: forward guidance

- Without preferences over wealth:
 - Exponential effect of forward guidance duration on output and inflation
 - Again, real interest rate channel underlies this result

Results: forward guidance

- Without preferences over wealth:
 - ▶ Exponential effect of forward guidance duration on output and inflation
 - Again, real interest rate channel underlies this result
- With preferences over wealth:
 - Weaker response of consumption to pre-announced low interest rates than case without POW (discount effect)
 - Lower real debt due to higher output and inflation, which raises marginal utility from wealth and lowers consumption (wealth effect)

Results: forward guidance

- Without preferences over wealth:
 - Exponential effect of forward guidance duration on output and inflation
 - Again, real interest rate channel underlies this result
- With preferences over wealth:
 - Weaker response of consumption to pre-announced low interest rates than case without POW (discount effect)
 - Lower real debt due to higher output and inflation, which raises marginal utility from wealth and lowers consumption (wealth effect)
- Hence, POW mutes effects of forward guidance
 - ⇒ can potentially solve 'forward guidance puzzle'

Comments

- Very nice paper, well written, sound execution
- Results are clear, intuitive and interesting, and extend to more elaborate model (with financial accelerator, capital, real frictions, etc.)
- Straightforward policy implications

Question: calibration of θ (1/2)

• First-order condition with respect to real debt, $b_{O,t}$:

$$C_{O,t}^{-\sigma_{H}^{-1}} = \beta E_{t} \left[\frac{R_{t}}{\pi_{t+1}} C_{O,t+1}^{-\sigma_{H}^{-1}} \right] + \phi_{B} b_{O,t}^{-\sigma_{B}}$$

• In steady state, defining $\theta \equiv \beta R/\pi$:

$$\theta = 1 - \frac{\phi_B b_O^{-\sigma_B}}{C_O^{-\sigma_H^{-1}}}$$

Question: calibration of θ (1/2)

First-order condition with respect to real debt, b_{O,t}:

$$C_{O,t}^{-\sigma_{H}^{-1}} = \beta E_{t} \left[\frac{R_{t}}{\pi_{t+1}} C_{O,t+1}^{-\sigma_{H}^{-1}} \right] + \phi_{B} b_{O,t}^{-\sigma_{B}}$$

• In steady state, defining $\theta \equiv \beta R/\pi$:

$$\theta = 1 - \frac{\phi_B b_O^{-\sigma_B}}{C_O^{-\sigma_H^{-1}}}$$

- Paper assumes steady-state debt is zero, i.e. $b_O = 0$
- But then
 - $\theta = 1$ if $\sigma_B < 0$
 - $\theta = -\infty$ if $\sigma_B > 0$

Question: calibration of θ (2/2)

$$\theta = 1 - \frac{\phi_B b_O^{-\sigma_B}}{C_O^{-\sigma_H^{-1}}}$$

- Why set $b_O = 0$?
- Natural relationship between θ and b_O , e.g. for $\sigma_B > 0$:
 - ▶ Fiscal consolidation \Rightarrow reduces $b_O \Rightarrow$ lowers θ
 - Reflects excess demand for safe assets which lowers market rate (or raises 'safety premium' or 'convenience yield')
 - Amplifies both discount effect and wealth effect

Question: calibration of θ (2/2)

$$\theta = 1 - \frac{\phi_B b_O^{-\sigma_B}}{C_O^{-\sigma_H^{-1}}}$$

- Why set $b_0 = 0$?
- Natural relationship between θ and b_O , e.g. for $\sigma_B > 0$:
 - ▶ Fiscal consolidation \Rightarrow reduces $b_O \Rightarrow$ lowers θ
 - Reflects excess demand for safe assets which lowers market rate (or raises 'safety premium' or 'convenience yield')
 - Amplifies both discount effect and wealth effect
- Alternative interpretation of calibrated parameters:
 - ightharpoonup Could interpret σ_B as slope of demand curve for safe assets (rather than marginal propensity to save)
 - ► Could interpret $\phi_B b_O^{-\sigma_B}/c_O^{-\sigma_H^{-1}}$ as convenience yield (Krishnamurthy and Vissing-Jorgensen, 2012)

Other questions, remarks and suggestions

- "[POW] assumption limits horizon of households" (Abstract)
 - A tad misleading
 - ▶ POW implications not really the same as in finite horizon models
 - ► Even though households carry less weight to intertemporal substitution, they still care about future savings and accumulation of wealth
- In FG exercise, why not consider deterministic interest rate peg? (Carlstrom et al., 2015)
- r_t^{net} interpreted as 'preference shock', 'risk premium shock', 'natural interest rate shock'
 - Why not consider shock to ϕ_B ?
 - Natural interpretation, i.e. shock to demand for safe assets
 - Empirically relevant for decline in natural interest rate (Del Negro et al., 2017; Gerali and Neri, 2017)