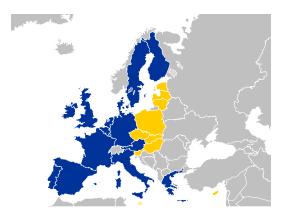
Goods and Factor Market Integration: A Quantitative Assessment of the EU Enlargement

Lorenzo Caliendo, Yale University
Luca David Opromolla¹, Banco de Portugal
Fernando Parro, Johns Hopkins University
Alessandro Sforza, London School of Economics

November, 2017

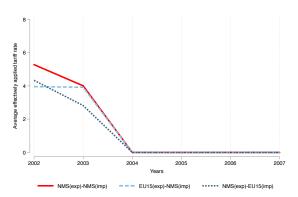

¹The analysis, opinions, and findings represent the views of the authors, they are not necessarily

Introduction

- ► The aggregate and distributional consequences of economic integration are a central theme in economics
 - Considerable advances on the quantification and understanding of the gains from economic integration
 - ▶ Most of the focus has been on goods market
- ▶ Develop a dynamic GE model for trade and migration policy
- ► Use the EU 2004 enlargement to study the gains from trade and migration

EU 2004 enlargement

- Agreement between member states of the European Union (EU) and New Member States (NMS)
- Trade policy and migration policy shocks


Note: EU-15 member states in blue, NMS countries in yellow

Trade policy shock

- ▶ Integration in the goods market: zero tariffs starting in 2004
- NMS countries resigned to previous FTA and joined EU FTA's

Figure: Tariff rates between EU-15 and NMS, and within NMS, 2002-2007

Migration policy shock

- ▶ Different from trade policy: the associated change in migration costs is not directly measurable
- ▶ Diff-in-diff approach, consistent with our model, identifies the change in migration costs due to the enlargement by exploiting the timing variation in the enlargement
 - UK granted access to NMS nationals in 2004, IT/ES/PT/GR in 2006
 - AT/BE/DK/DE/FR in 2008 or 2011

Approach

- Structural dynamic model of trade and migration
 - Dynamic model: welfare includes the option value of migration
 - ► Large degree of heterogeneity: skills, nationalities, trade & migration costs, agglomeration & congestion forces, infrastructures
 - Key focus: interaction between trade and migration policy
- Measure the changes in trade and migration costs
- Counterfactuals: quantify the migration and welfare effects of the EU enlargement
- Main findings:
 - Gradual response in migration
 - ► Largest winners: New Member States (NMS) unskilled workers
 - Interaction between trade and migration quantitatively matters
 - Without trade policy changes the EU-15 would have been worse off

Literature

- ► Static models of trade and migration: Davis and Weinstein (2002), di Giovanni et al. (2015), Burstein et al. (2017)
- Quantitative trade policy analysis: Caliendo and Parro (2015) and Ossa (2016)
- ▶ Labor reallocation and spatial distribution of economic activity: Redding (2016), Caliendo, Parro, Rossi-Hansberg, and Sarte (2017), Tombe and Zhu (2015)
 - ► Trade and labor market dynamics: Artuc et al. (2010); Dix-Carneiro (2014); Dix Carneiro and Kovak (2017), Caliendo, Dvorkin, Parro (2017)
- ▶ Studies on the effect of immigration on wages and employment of natives: Hanson and Slaughter (2002), Hanson and Slaughter (2016); Ottaviano and Peri (2012); Ottaviano et al. (2013) and many more
- ► Studies on the EU enlargement Baldwin (1995), Baldwin et al. (1997), Dustmann and Frattini (2011), and Kennan (2017)

Quantitative Trade and Migration Model

Household's problem - Dynamic migration decision

▶ Value of a *n* **national** of skill *s* in country *i* at time *t*

$$v_{n,s,t}^{i} = log(C_{s,t}^{i}) + \max_{\{j\}_{j=1}^{N}} \{\beta E[v_{n,s,t+1}^{j}] - m_{n,s,t}^{ij} + \nu \epsilon_{n,s,t}^{j}\}$$

- migration costs $m_{n,s,t}^{ij} = \tilde{m}_{n,s,t}^{ij} + mpol_{n,s,t}^{ij}$
- i.i.d Gumbel preference shocks $\epsilon_{n,s,t}^j; \ \nu > 0$ is the migration cost elasticity
- Migration share from i to j

$$\mu_{n,s,t}^{ij} = \frac{\exp(\beta V_{n,s,t+1}^{j} - m_{n,s,t}^{ij})^{1/\nu}}{\sum_{k=1}^{N} \exp(\beta V_{n,s,t+1}^{k} - m_{n,s,t}^{ik})^{1/\nu}}$$

Labor allocations

$$L_{n,s,t+1}^{i} = \sum_{j=1}^{N} \mu_{n,s,t}^{ji} L_{n,s,t}^{j}, \quad \textit{for all } n, s$$

Static production problem

Perfect competition, CRS technology, idiosyncratic productivity $z^i \sim Fr\acute{e}chet(1,\theta)$, deterministic TFP A^i_t (Eaton and Kortum 2002)

$$q_t^i(z^i) = z^i A_t^i \left[\left(\delta^i \right)^{\frac{1}{\rho}} \left(L_{h,t}^i \right)^{\frac{\rho-1}{\rho}} + \left(1 - \delta^i \right)^{\frac{1}{\rho}} \left(L_{l,t}^i \right)^{\frac{\rho-1}{\rho}} \right]^{\frac{\rho(1-\gamma')}{\rho-1}} \left(H^i \right)^{\gamma^i}$$

- $A_t^i = \phi_t^i L_t^i \Rightarrow$ scale effects, H^i fixed factor \Rightarrow congestion effect
- Costly trade $\kappa_t^{ij} = (1 + \tau_t^{ij})d_t^{ij}$
 - Ad-valorem tariffs $au_t^{ij} \geq 0$, with $au_t^{ii} = 0$
 - lacktriangle Iceberg trade costs $d_t^{ij} \geq 1$, with $d_t^{ii} = 1$

Closure of the model

Do not even think of clicking in case of 25 minutes presentations

Data and Estimation

Data and Estimation

- From the European labour force survey (EU-LFS) confidential micro data...
- ...build a new dataset of bilateral gross flows by nationality & skill over 2002-2007 (soon till 2016)
 - ► EU15: Austria, Belgium, Germany, Denmark, Spain, France, UK, Greece, Italy, Portugal
 - ► NMS: Cyprus, Czech Republic, Estonia, Hungary, Lithuania, Latvia, Poland
- Construct migration flows based on info. on past year residence
 - ▶ Distinguish between "EU15", "NMS" and "Other" nationals
 - Define skilled workers as college educated, and unskilled labor as those with high school or less

Example: change in migration costs from NMS to U.K.

- ► Treated flows: NMS nationals from NMS to UK
- ► Control flows: NMS nationals from NMS to EU5, EU5 to UK
 - ► EU5: Austria, Belgium, Denmark, France, and Germany, countries that did not open before 2008
- ▶ Difference-in-difference approach, guided by the model

$$\log \frac{\mu_{n,s,t}^{ij}}{\mu_{n,s,t}^{ii}} = -\frac{1}{\nu} \left(\mathbf{m}_{n,s,t}^{ij} - \mathbf{m}_{n,s,t}^{ii} \right) + \frac{\beta}{\nu} V_{n,s,t+1}^{j} - \frac{\beta}{\nu} V_{n,s,t+1}^{i}$$

Estimation- Changes in migration policy/cost

▶ Migration costs structure ($i \in NMS$):

$$m_{n,s,t}^{ij} = \tilde{m}_{n,s,t}^{ij} + mpol_{n,s,t}^{ij},$$

where

$$\tilde{m}_{n,s,t}^{ij} = \bar{m}_{n,s,t}^{i} + \bar{m}_{n,s,t}^{j} + \bar{m}_{n,s,t}^{ij}$$

Estimating equation

$$\log \frac{\mu_{n,s,t}^{y}}{\mu_{n,s,t}^{ii}} = \underbrace{-\frac{1}{\nu} \bar{m}_{n,s,t}^{i} - \frac{\beta}{\nu} V_{n,s,t+1}^{i}}_{\text{origin-time-nationality-skill FE}} \underbrace{-\frac{1}{\nu} \bar{m}_{n,s,t}^{j} + \frac{\beta}{\nu} V_{n,s,t+1}^{j}}_{\text{origin-time-nationality-skill FE}} \underbrace{-\frac{1}{\nu} \bar{m}_{n,s,t}^{ij}}_{\text{dummy UK-NMS before-after}} \underbrace{-\frac{1}{\nu} \bar{m}_{n,s,t}^{ij}}_{\text{dummy UK-NMS}} + \underbrace{\epsilon_{n,s,t}^{ij}}_{\text{error term}}$$

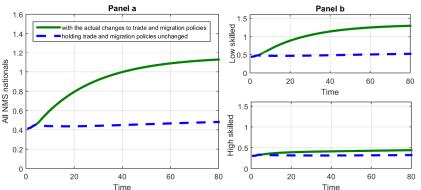
Levels of migration costs depends on nationality and skills

dummy UK-NMS before-after

▶ Placebo: We expect the costs of migrating from NMS to the U.K not to have changed for EU-15 nationals

Counterfactuals

Counterfactuals


- ▶ What are the migration and welfare effects of the EU enlargement?
 - ▶ Baseline (EU enlargement) vs. counterfactual (no change in tariffs and migration costs) economies
- Two attractive properties:
 - 1. Given data $\{L_t, \mu_t, \pi_t, X_t\}_{t=0}^{\infty}$, elasticities $(\nu, \theta, \beta, \rho)$, and a sequence of counterfactual changes in policy $\{\hat{\Upsilon}_t\}_{t=0}^{\infty}$, solving the model does not require to identify the evolution of the fundamentals
 - 2. The baseline economy matches exactly the observed sequence of gross migration flows, trade flows, and all the observed labor market allocations and wages

➤ To: Equilibrium in "hats"

Migration effects

Figure: Stocks of NMS nationals in EU-15 due to the enlargement

- Gradual increase in stocks
 - ► Stock of NMS nationals in EU-15 increases by 3 percentage points (pp) in 3 years, 21pp in 10 years, and 63pp in SS

Migration effects

- ► EU enlargement primarily increases the migration of unskilled NMS workers to EU-15, and to a much lesser extent the migration of skilled workers
 - Stock of NMS unskilled increases 0.75pp (2.8 mill) in SS
 - Stock of NMS skilled increases 0.14pp (521 thous) in SS
- We find that trade policy helps mitigate congestion effects by reducing migration
 - About 300 thousand more migrants in SS in the absence of trade policy

Welfare effects from trade and migration policy

- ▶ The largest winners are the NMS countries, in particular unskilled workers
- Migration without changes to trade policy would have resulted in welfare losses for EU15

		EU	Only changes to	Only changes to
		enlargement (%)	trade policy (%)	migration policy (%)
r.	High skill	0.503	0.439	0.060
EU-15	Low skill	0.386	0.442	-0.055
ш	Aggregate	0.409	0.441	-0.032
S	High skill	1.191	1.098	0.090
NMS	Low skill	1.715	1.073	0.615
	Aggregate	1.653	1.076	0.554
	Europe	0.622	0.550	0.068

Welfare effects from migration policy

► Welfare effect of migration policy depends on trade openness

			Changes to	Changes to
		Changes to	migration policy	migration policy
		migration policy (%)	under trade autarky (%)	under free trade (%)
2	High skill	0.060	0.071	0.058
EU-15	Low skill	-0.055	-0.049	-0.056
_	Aggregate	-0.032	-0.025	-0.033
	High skill	0.090	0.043	0.098
NMS	Low skill	0.615	0.563	0.625
	Aggregate	0.554	0.502	0.563
	Europe	0.068	0.065	0.068

Mechanisms & Extensions

- Role of scale effect, trade, and fixed factors
 - Without scale effects:
 - NMS welfare 0.3pp larger,
 - ► EU-15 welfare 0.06pp smaller
 - ► Textbook model: without trade, scale, and congestion effects → significantly different welfare evaluation of migration policy
 - Europe's welfare 0.06% instead of 0.62%
 - ► EU-15 countries has welfare losses
 - NMS welfare 0.4% instead of 1.65%

▶ results

► Role of congestion effects coming from the provision of public goods

Conclusion

- Develop a dynamic model for trade and migration policy analysis
 - take into account role of tariff revenues, public goods, congestion effects, changes in migration costs, stock v/s flow of migrants
 - model guides the estimation of changes in migration costs as a consequence of changes in migration policy
- ► Compute the effects of actual changes in trade and migration policy as a consequence of the EU enlargement of 2004
 - results show welfare gains, heterogeneous across skill groups
 - unskilled NMS nationals are the largest winners
 - gradual employment adjustment
 - trade policy crucial for mitigating negative effects from congestion

Thank you!

Household's problem

- Households supply a unit of labor inelastically
 - ▶ Receive a competitive market wage $w_{s,t}^i$
- Consumption aggregator

$$C_{s,t}^i = \left(\frac{G^i}{L_t^i}\right)^{\alpha_i} \left((1-\tau_L^i)\frac{w_{s,t}^i}{P_t^i}\right)^{1-\alpha_i},$$

where P_t^i is the local price index, and α_i is the fraction of public goods in total consumption

- ▶ $\frac{G^i}{L^i_t}$ is per capita provision of public goods => congestion effect
- ▶ Government finance spending with: tariff revenues, labor taxes (τ_L^i) , lump sum transfer from structure owners

All the rest

- ► Goods & labor market clearing (matching global imbalances)
- State of the economy $L_t = \left\{L_{n,h,t}^i, L_{n,l,t}^i\right\}_{n=1,i=1}^{N,N}$
- ▶ Fundamentals $\Theta_t \equiv (\{d_t^{ij}\}, \{\tilde{m}_{n,h,t}^{ij}\}, \{\tilde{m}_{n,l,t}^{ij}\}, \{\phi_t^i\}, \{H^i\})_{i=1,j=1}^{N,N}$
- ▶ Policies $\Upsilon_t \equiv (\{\tau_t^{ij}\}, \{mpol_{n,h,t}^{ij}\}, \{mpol_{n,l,t}^{ij}\})_{n=1,i=1,j=1}^{N,N,N}$
- ▶ Given $(L_t, \Theta_t, \Upsilon_t)$, the **temporary equilibrium** is a set of factor prices $\{\omega_{s,t}^i(L_t, \Theta_t, \Upsilon_t)\}_{i=1}^N$ for $s = \{h, l\}$ that solves the static sub-problem given by the equilibrium conditions
- ▶ Given an initial allocation of labor L_0 , a sequence of fundamentals $\{\Theta_t\}_{t=0}^{\infty}$, and a sequence of policies $\{\Upsilon_t\}_{t=0}^{\infty}$, a **sequential** competitive equilibrium is a sequence $\{L_{n,s,t},\mu_{n,s,t},V_{n,s,t},\omega_{s,t}^i(L_t,\Theta_t,\Upsilon_t)\}_{n=1,t=0}^{N,\infty}$ for $s=\{h,l\}$, that solves the HH dynamic problem and the temporary equilibrium at each

Solving for counterfactuals

Proposition Given data $\{L_t, \mu_t, \pi_t, X_t\}_{t=0}^{\infty}$, elasticities $(\nu, \theta, \beta, \rho)$, and a sequence of counterfactual changes in policy $\{\hat{Y}_t\}_{t=0}^{\infty}$, solving the model does not require $\{\Theta_t\}_{t=0}^{\infty}$, and solves

$$\hat{u}_{n,s,t}^{i} = \hat{C}_{s,t}^{i} \left(\sum\nolimits_{j=1}^{N} {{{{\mu }_{n,s,t-1}^{ij}}\dot{\mu }_{n,s,t}^{ij}} \left({{\hat{m}}_{n,s,t}^{ij}} \right)^{-1/\nu} \left({{\hat{u}}_{n,s,t+1}^{j}} \right)^{\beta/\nu}} \right)^{\nu},$$

$$\mu'^{ij}_{n,s,t} = \frac{\mu'^{ij}_{n,s,t-1} \dot{\mu}^{ij}_{n,s,t} \left(\hat{m}^{ij}_{n,s,t} \right)^{-1/\nu} \left(\hat{u}^{j}_{n,s,t+1} \right)^{\beta/\nu}}{\sum_{k=1}^{N} \mu'^{ik}_{n,s,t-1} \dot{\mu}^{ik}_{n,s,t} \left(\hat{m}^{ik}_{n,s,t} \right)^{-1/\nu} \left(\hat{u}^{k}_{n,s,t+1} \right)^{\beta/\nu}},$$

$$L'^{i}_{n,s,t+1} = \sum_{i=1}^{N} \mu'^{ji}_{n,s,t} L'^{j}_{n,s,t} ,$$

for all n, and s, where $\dot{\mu}^{i}_{n,s,t}^{j}$ is the observed (data) change in migration flows over time, and $\hat{C}^{i}_{s,t}=\hat{\omega}^{i}_{s,t}(\widehat{L}_{t},\widehat{\Upsilon}_{t})$ is obtained from solving the temporary equilibrium conditions.

► Transition matrix (migration flows) $\{\mu_t^{ij}\}_{t=0}^T$, **Data**

$$\mu_{n,s,,t}^{ij} = \frac{\exp(\beta V_{n,s,t+1}^{j} - m_{n,s,t}^{ij})^{1/\nu}}{\sum_{k=1}^{N} \exp(\beta V_{n,s,t+1}^{k} - m_{n,s,t}^{ik})^{1/\nu}}$$

► Transition matrix (migration flows) $\{\mu_t^{ij}\}_{t=0}^T$, **Data**

$$\mu_{\textit{n,s},,t}^{\textit{ij}} = \frac{\exp(\beta V_{\textit{n,s},t+1}^{\textit{j}} - m_{\textit{n,s},t}^{\textit{ij}})^{1/\nu}}{\sum_{k=1}^{\textit{N}} \exp(\beta V_{\textit{n,s},t+1}^{\textit{k}} - m_{\textit{n,s},t}^{\textit{ik}})^{1/\nu}}$$

lacktriangle Transition matrix at t, from Model given counterfactual policy $m_t^{'}$

$$\mu_{n,s,t}^{'ij} = \frac{\exp(\beta V_{n,s,t+1}^{'j} - m_{n,s,t}^{'ij})^{1/\nu}}{\sum_{k=1}^{N} \exp(\beta V_{n,s,t+1}^{'k} - m_{n,s,t}^{'ik})^{1/\nu}}$$

► Transition matrix (migration flows) $\{\mu_t^{ij}\}_{t=0}^T$, **Data**

$$\mu_{\textit{n,s},,t}^{\textit{ij}} = \frac{\exp(\beta V_{\textit{n,s},t+1}^{\textit{j}} - m_{\textit{n,s},t}^{\textit{ij}})^{1/\nu}}{\sum_{k=1}^{\textit{N}} \exp(\beta V_{\textit{n,s},t+1}^{\textit{k}} - m_{\textit{n,s},t}^{\textit{ik}})^{1/\nu}}$$

lacktriangle Transition matrix at t, from Model given counterfactual policy $m_t^{'}$

$$\mu_{n,s,t}^{'ij} = \frac{\exp(\beta V_{n,s,t+1}^{'j} - m_{n,s,t}^{'ij})^{1/\nu}}{\sum_{k=1}^{N} \exp(\beta V_{n,s,t+1}^{'k} - m_{n,s,t}^{'ik})^{1/\nu}}$$

▶ Take the differences at each t. Model relative to data

$$\mu_{n,s,t}^{'jj} = \frac{\mu_{n,s,t}^{ij} exp(V_{n,s,t+1}^{'j} - V_{n,s,t+1}^{j})^{\beta/\nu} exp(m_{n,s,t+1}^{'j} - m_{n,s,t+1}^{j})^{-1/\nu}}{\sum_{k=1}^{N} \mu_{n,s,t}^{ik} exp(V_{n,s,t+1}^{'k} - V_{n,s,t+1}^{k})^{\beta/\nu} exp(m_{n,s,t+1}^{'k} - m_{n,s,t+1}^{k})^{-1/\nu}}$$

▶ Denote by:

$$\begin{split} \hat{u}_{n,s,t}^{i} &= \dot{u}_{n,s,t}^{'i} / \dot{u}_{n,s.t}^{i} = \frac{\exp(V_{n,s,t+1}^{i'} - V_{n,s,t+1}^{i})}{\exp(V_{n,s,t}^{i'} - V_{n,s,t}^{i})} \\ \hat{m}_{n,s,t}^{ij} &= \exp(m_{n,s,t}^{'ij} - m_{n,s,t}^{ij}) / \exp(m_{n,s,t-1}^{'ij} - m_{n,s,t-1}^{ij}) \\ \dot{\mu}_{n,s,t}^{ij} &= \mu_{n,s,t}^{ij} / \mu_{n,s,t-1}^{ij} \end{split}$$

▶ and generically

$$\hat{\Theta_t} = \hat{\Theta_t'} / \hat{\Theta_t}$$

▶ Take the relative time difference to obtain

$$\mu_{n,s,t}^{'ij} = \frac{\mu_{n,s,t-1}^{'ij} \dot{\mu}_{n,s,t}^{ij} \left(\hat{m}_{n,s,t}^{ij} \right)^{-1/\nu} \left(\hat{u}_{n,s,t+1}^{j} \right)^{\beta/\nu}}{\sum_{k=1}^{N} \mu_{n,s,t-1}^{'ik} \dot{\mu}_{n,s,t}^{ik} \left(\hat{m}_{n,s,t}^{ik} \right)^{-1/\nu} \left(\hat{u}_{n,s,t+1}^{k} \right)^{\beta/\nu}}$$

Analogously, trade shares

$$\dot{\pi}_{t}^{ij} = \dot{A}_{t}^{j} \left(\frac{\dot{\kappa}_{t}^{ij}\dot{\omega}_{t}^{j}}{\dot{P}_{t}^{i}}\right)^{-\theta}$$

$$\dot{\pi}_{t}^{'ij} = \dot{A}_{t}^{j} \left(\frac{\dot{\kappa}_{t}^{ij}\dot{\omega}_{t}^{j}}{\dot{P}_{t}^{i}}\right)^{-\theta}$$

$$\hat{\pi}_{t}^{ij} = \left(\frac{\hat{\omega}_{t}^{j}}{\hat{P}_{t}^{i}}\right)^{-\theta}$$

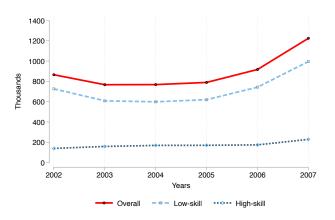
where

$$\hat{P}_t^i = \left(\sum_{j=1}^N \pi_{t-1}^{'ij} \dot{\pi}_t^{ij} (\hat{\omega}_t^j)^{-\theta}\right)^{-\frac{1}{\theta}}$$

Employment effects

	High skill (%)		High skill (thous.)	
	Δ EU enlargement	EU enlargement w/o trade policy		w/o trade po
2002	0	0	0	0
2007	0.014	0.019	53.2	69.4
2015	0.058	0.066	217.8	247.3
Steady state	0.140	0.174	521.1	650.3
	Low skill (%)		Low skill (thous.)	

	Δ EU enlargement	w/o trade policy	Δ EU enlargement	w/o trade po
2002	0	0	0	0
2007	0.066	0.070	245.6	261.7
2015	0.299	0.309	1,115	1,152
Steady state	0.745	0.784	2,780	2,925



Solving the model

- Solving for the model requires information on the whole set of fundamentals and economic policies
 - Levels of migration costs, trade costs, productivities, stock of public goods, stock of infrastructure
- We solve this problem by the Dynamic Hat Algebra method developed in CDP
- Why is this progress?
 - lacktriangle We can solve the model without knowing levels of Θ_t and \varUpsilon_t

Stock of NMS nationals in EU-15

- ► Reduced form regression shows a positive impact of the EU enlargement on the stocks of migrants

Estimation- Changes in migration policy/cost

- Change in migration costs from NMS to NMS
- ▶ We use a Head-Ries index due to the lack of control groups

$$\log \frac{\mu_{t,n}^{ij}}{\mu_{t,n}^{ii}} \frac{\mu_{t,n}^{ji}}{\mu_{t,n}^{ij}} = -\frac{1}{\nu} \left(m_{t,n}^{ij} + m_{t,n}^{ji} \right)$$

- We assume symmetry for costs from NMS to NMS
- ▶ Back

Measuring changes in migration costs

► For migration costs from NMS to NMS, and EU nationals to NMS, we use a Head-Ries index due to the lack of control groups

$$\log \frac{\mu_{n,s,t}^{ij}}{\mu_{n,s,t}^{ii}} \frac{\mu_{n,s,t}^{ii}}{\mu_{n,s,t}^{ij}} = -\frac{1}{\nu} \left(m_{n,s,t}^{ij} + m_{n,s,t}^{ii} \right)$$

- we assume symmetry for costs from NMS to NMS
- we assume no change in migration cost from NMS to EU for EU nationals

Migration effects

	High skill (%)		High skill (thous.)		
	Δ EU enlargement	Δ EU enlargement w/o trade policy		w/o trade policy	
2002	0	0	0	0	
2007	0.014	0.019	53.2	69.4	
2015	0.058	0.066	217.8	247.3	
Steady state	0.140	0.174	521.1	650.3	

Low skill (%)

Low skill (thous.)

	Δ EU enlargement	w/o trade policy	Δ EU enlargement	w/o trade policy
2002	0	0	0	0
2007	0.066	0.070	245.6	261.7
2015	0.299	0.309	1,115	1,152
Steady state	0.745	0.784	2,780	2,925

Extension: Provision of public goods

 We extend our model to account for additional congestion effects coming from the provision of public goods

$$C_{s,t}^{i} = \left(\frac{G^{i}}{L_{t}^{i}}\right)^{\alpha_{i}} \left(\left(1 - \tau_{L}^{i}\right) \frac{w_{s,t}^{i}}{P_{t}^{i}}\right)^{1 - \alpha_{i}}$$

- Government finance spending with: tariff revenues, labor taxes $(\tau_{L,t}^i)$, lump sum transfer from structure owners
 - We re-estimate ν in a model with public goods ($\nu=1.89$)
 - We calibrate α_i using final government consumption over total final consumption by country from the WIOD

Extension: Provision of public goods

- We find somewhat larger welfare effects for NMS, lower for EU-15, smaller migration effects
 - ▶ In the long run, the stock of NMS skilled workers in EU-15 countries increases by 375.5 thousands (instead of 521 thousands)
 - ► The stock of NMS unskilled workers increases by 2.2 million (instead of 2.8 mm)
 - ► Aggregate NMS welfare increases 1.59% (instead of 1.65%), while EU-15 welfare increases 0.26% (instead of 0.41%).

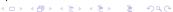
Additional results

		EU enlargement	No scale effects	Autarky, no congestion and scale effects
2	High skill	0.503	0.416	0.090
EU-15	Low skill	0.386	0.331	-0.042
ш	Aggregate	0.409	0.348	-0.016
S	High skill	1.191	1.478	-0.003
NMS	Low skill	1.715	2.020	0.465
	Aggregate	1.653	1.957	0.410
	Europe	0.622	0.623	0.057

▶ back

Estimation- Changes in migration policy/cost

Estimates of $-\frac{1}{
u}\left(m_{n,s,post}^{ij}-m_{n,s,pre}^{ij}
ight)$ for NMS8 and EU nationals


NMS nationals					
	U.K. (2004)	GR (2006)	IT (2006)	ES (2006)	PT (2006)
$eta_{n,post}^{j}$	3.52*** (1.11)	2.29** (0.83)	1.01* (0.55)	0.18 (0.54)	1.01*** (0.49)
R^2	0.96	0.97	0.98	0.97	0.98
Obs.	564	564	564	564	564

Estimation- Changes in migration policy/cost

Estimates of $-\frac{1}{
u}\left(m_{n,s,post}^{ij}-m_{n,s,pre}^{ij}
ight)$ for NMS8 and EU nationals

NMS nationals						
Destination $j o$	U.K. (2004)	GR (2006)	IT (2006)	ES (2006)	PT (2006)	
ai	3.52***	2.29**	1.01*	0.18	1.01***	
$eta_{n,post}^{j}$	(1.11)	(0.83)	(0.55)	(0.54)	(0.49)	
R^2	0.96	0.97	0.98	0.97	0.98	
Obs.	564	564	564	564	564	
	Р	lacebo: EU na	itionals			
Destination $j o$	U.K. (2004)	GR (2006)	IT (2006)	ES (2006)	PT (2006)	
ai	0.74	-0.08	-0.02	0.46	-1.22	
$eta_{n,post}^{J}$	(1.40)	(1.52)	(1.35)	(1.34)	(1.45)	
R^2	0.88	0.90	0.89	0.90	0.90	
Obs.	564	564	564	564	564	

Migration costs

Migration costs have policy and non-policy components

$$m_{n,s,t}^{ij} = \tilde{m}_{n,s,t}^{ij} + mpol_{n,s,t}^{ij},$$

▶ To fix ideas, let us describe the cost of migrating from NMS countries to the U.K. (i = NMS, j = UK)

$$\tilde{m}_{n,s,t}^{iUK} = \bar{m}_{n,s,t}^{i} + \bar{m}_{n,s,t}^{UK} + \bar{m}_{n,s,t}^{iUK}$$

$$mpol_{n,s,t}^{i,UK} = mpol_{NMS,t}^{NMS,UK}$$

- Migration policy is non-discriminatory across NMS countries and across skills
- Levels of migration costs depends on nationality and skills

