The Information Content of News Announcements

Burçin Kısacıkoğlu

Bilkent University
Department of Economics
Conference on Real-Time Data Analysis, Methods and Applications
Bank of Spain

Introduction

- Asset prices move sharply around macro announcements
- Understanding financial market responses to macroeconomic news is important for policy, private sector and academics.

Typical Interpretation of Jumps in Yields

Change in non-farm payrolls is lower than expected:

"Treasury bonds strengthened on Friday as a smaller-than-expected increase in October nonfarm payrolls bolstered expectations that the Federal Reserve would be in no hurry to raise official interest rates." - WSJ, 11/7/2014

"As for the market, ... the quick drop in bond yields, which move inversely to prices, was a commentary on expectations for the economy." - CNBC, 10/2/2015

Introduction

- Typical interpretation has two features:
 - Based on some conventional macro model.
 - Gives little if any role to changing term premia.

Issues

- Not checked whether the stories we tell for bond yield jumps are consistent with the models we derive the stories from.
- No reason to think term premia are fixed around macro news.

My Questions

- Are the market moves collectively consistent with the models we use to interpret them?
- If so, do changing term premia play a role

Quick Answers

- Are the market moves collectively consistent with the models we use to interpret them?

 Yes.
- If so, do changing term premia play a role
 Term premia are often at least half of the story.

Building Blocks

- Macro Model
- Imperfect information about the state of the economy
- No-arbitrage term structure model with macro factors
- Estimate the model by keeping track of the days of information arrival.

Macro Model

- Simple three-equation new Keynesian model:
 - ▶ IS curve
 - Phillips curve
 - Short rate equation

The Model

 Representative household has CRRA utility function with habit formation and a preference shock:

$$\frac{(C_t H_t^{\eta})^{(1-\gamma)}}{1-\gamma} Q_t - \frac{N_t^{(1+\varphi)}}{1+\varphi}$$

 H_t : Habit formation ($H_t = C_{t-1}$)

Qt: Preference shock

• Key variable: Qt.

The Model

- Typical specification of preference shocks helps us fit macro variables.
 - Baxter and King (1991), Ireland (2004), Smets and Wouters (2005,2007)
- However doesn't help with risk premia.
 - In power utility models, volatility of marginal utility is far too low to explain average risk premia on assets.

Time varying risk premia

- Shocks to Q_t raise the volatility of marginal utility.
 - $ightharpoonup Q_t$ loads linearly on output and inflation shocks.
 - ➤ To capture time-varying risk premia, model has time-varying sensitivity of Q_t to shocks.
- Preference shocks capture:
 - Sentiment shocks
 - Demand for safe and liquid assets
 - Higher demand from foreign central banks

The Model

- Monopolistically competitive firms:
 - A fraction of the firms set prices following the Calvo mechanism and the rest follow a "rule of thumb" (Gali and Gertler (1999)).
 - Identical Cobb-Douglas production function with labor.
 - Aggregate technology: $a_t = \rho a_{t-1} + \varepsilon_t^a$

Policy

• Short rate is set to minimize the following loss function:

$$L_{t} = E_{t} \left[\sum_{k=0}^{\infty} \beta^{k} [\lambda_{y} (y_{t+k} - \bar{y}_{t+k})^{2} + (\pi_{t+k} - \pi_{t+k}^{*})^{2} + \lambda_{i} (i_{t+k} - i_{t+k-1})^{2} \right]$$

Potential output:

$$\bar{y}_t = \bar{a}y_{t-1} + \bar{b}a_t + \bar{c}q_t$$

Long run inflation follows an AR(1) process:

$$\pi_t^* = \rho_{\pi^*} \pi_{t-1}^* + \varepsilon_t^{\pi^*}$$

The Log-linearized Model

• The IS curve:

$$y_t = \mu E_t y_{t+1} + (1 - \mu) y_{t-1} - \chi (i_t - E_t \pi_{t+1} + E_t \Delta q_{t+1}) + \varepsilon_t^y$$

• The Phillips curve:

$$\pi_t = \alpha E_t \pi_{t+1} + (1 - \alpha) \pi_{t-1} + \kappa m c_t + \varepsilon_t^{\pi}$$

$$m c_t = (\gamma + \varphi) y_t + (\eta - \eta \gamma) y_{t-1} + (1 + \varphi) a_t - q_t$$

Perfect Information Solution

 If the agents (households, investors and policy makers) observe the true state of the economy the solution is:

$$X_t = \Gamma X_{t-1} + \Sigma \varepsilon_t$$

 X_t : State of the economy

 ε_t : Structural shocks

Decision rules depend on the true state.

Imperfect Information

- Agent's cannot observe the state perfectly.
- They observe an announcement or a survey at time t.
 - Announcements and surveys are noisy signals of the truth.
 - Agents estimate the state of the economy using the new information (i.e. Kalman filter setup).
- Decision rules depend on the optimal estimate of the state.

infoset

Imperfect Information Solution

The solution under imperfect information is:

$$\begin{bmatrix} X_t \\ X_{t|t} \end{bmatrix} = \Phi \begin{bmatrix} X_{t-1} \\ X_{t-1|t-1} \end{bmatrix} + \Psi \begin{bmatrix} \varepsilon_t \\ v_t \end{bmatrix}$$

 X_t : True state of the economy

 $X_{t|t}$: Optimal estimate of the true state

 ε_t : Structural shocks

 v_t : One-step ahead prediction errors

Evolution of $X_{t|t}$

- What is left is to describe how the perceived state evolves.
- Standard Kalman updating framework.

Observation Equation

Measurement equation for announcements/surveys:

$$Z_t^{j,m} = DX_t + u_t^{j,m}$$

D picks up the element of the state is being announced.

 $j \in \{GDP, CPI, Nonfarm\}$

 $m \in \{Survey, Announcement\}$

 σ_u^2 varies by topic (GDP vs. CPI vs. Nonfarm) and by type (announcement vs. survey).

Observation Equation

Measurement equation for bond yields:

$$\mathcal{Y}_t^O = \mathcal{Y}_t + u_t^{\mathcal{Y}}$$

 \mathcal{Y}_t^O : Observed yields

 \mathcal{Y}_t : True yields

 $u_t^{\mathcal{Y}}$: Vector of measurement errors

Treatment of Information

- Suppose news arrives at time t.
- There will be a surprise relative to what was expected in both the macro news and yields.
 - $u_t^{j,m}$ and $u_t^{\mathcal{Y}}$ from previous slides.
- The update in the perceived state vector will be linear in the news:

$$X_{t|t} = X_{t|t-1} + K \begin{bmatrix} u_t^{j,m} \\ u_t^{\mathcal{Y}} \end{bmatrix}$$

where K is the Kalman gain.

Closing the Model

Linear decision rule for central bank:

$$i_t = FX_{t|t}$$

state

Details on Bond Pricing

Zero coupon bond pricing:

$$1 = E_t[M_{t+1}R_{t+1}]$$

where
$$R_{t+1} = rac{
ho_{t+1}^{(n-1)}}{
ho_t^{(n)}}$$

 Model implied log-linear nominal stochastic discount factor (SDF):

$$m_{t+1} = \log \beta - \gamma \Delta c_{t+1} + (\gamma \eta - \eta) \Delta c_t - \pi_{t+1} + \Delta q_{t+1}$$

Log of bond prices are an affine function of the state:

$$\log p_t^{(n)} = A_n + B_n \bar{X}_t$$

where
$$\bar{X}_t = [X_t, X_{t|t}]'$$

Data

- Macro announcements and surveys:
 - ► GDP growth (advance), core CPI and non-farm payrolls.
- Yields:
 - ▶ 1-month, 1-year, 2-year, 5-year, 7-year and 10-year nominal zero coupon bonds.
- Inflation expectations:
 - 5-10 year ahead inflation forecasts from Blue Chip.
 - Missing Blue Chip forecasts are interpolated using Michigan Household Survey via Kalman filter.

Estimation

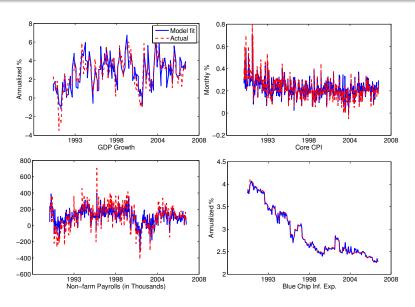
- Estimate the model using Bayesian methods. priors1
 - rs1 priors2

- Mixed frequency
- Pay close attention to the days of macro news releases along with associated bond yields.

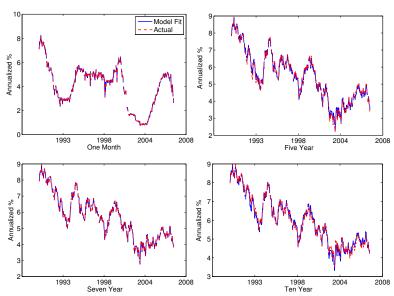
Question #1

Are the market moves collectively consistent with the models we use to interpret them?

Model Fit



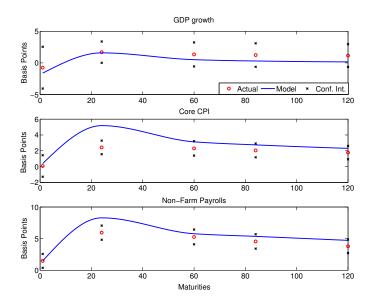
Model Fit



Event Study vs. Model Implied Responses

- Can the model match average responses of bond yields around announcements?
- Event study:
 - Regress bond yield changes around announcements on surprises. (Fleming and Remolona (1999), Beechey and Wright (2009))

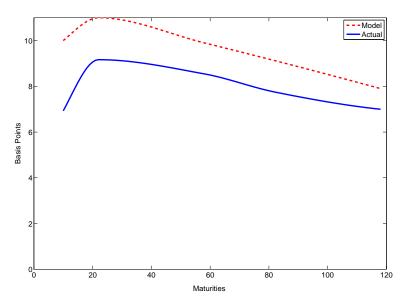
Event Study vs. Model Implied Responses



Volatility of Yield Changes Around News

- Empirical fact:
 - Term structure of interest rate volatility associated with macro news has a hump-shaped pattern. (Fleming and Remolona (1999), Kim and Wright (2015))
- Can the model match this empirical fact?

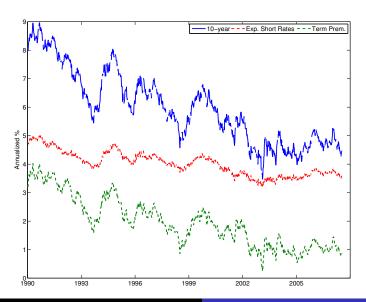
Volatility of Yield Changes Around Nonfarm Payrolls



Question #2

Do changing term premia play a role?

Long Term Bond Yield Decomposition



Variance Decomposition around News

- What is the decomposition of yield reactions into news about expected future short rates and shocks to term premia?
 - Do they vary with macro news?

Variance Decomposition around News

	$std(\Delta 10-year)$	std(∆Exp)	std(∆TP)	$corr(\Delta Exp , \Delta TP)$
GDP	7	5	5	0.12
Core CPI	6	4	5	-0.07
Non-farm	9	5	5	0.51

State1 State2 State3 ES

Conclusion

- First paper to analyze effects of announcements on bond yields in a structural macroeconomic model.
- Model can match yields and macro news.
- Conventional expectations only interpretations miss half the story.

State Variables

$$X_{1,t} = \begin{bmatrix} a_t & y_{t-1} & \pi_{t-1} & n_{t-1} & \varepsilon_t^y & \varepsilon_t^{\pi} & \pi_{t-1}^* & \pi_{t-1}^* & \varepsilon_t^* & i_{t-1} \end{bmatrix}$$

$$X_{2,t} = \begin{bmatrix} y_{t-2} & y_{t-3} & y_{t-4} & y_{t-5} & y_{t-6} & b_t & q_t \end{bmatrix}$$

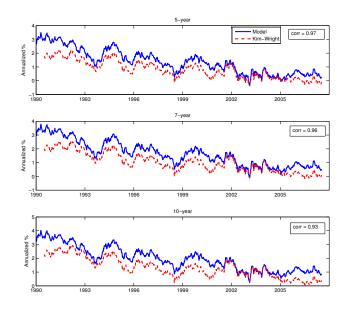
$$X_t = \begin{bmatrix} X_{1,t} & X_{2,t} \end{bmatrix}'$$

signal

System

$$X_{t} = HX_{t} + JX_{t-1|t-1} + C\varepsilon_{t}$$
 $X_{t} = G^{1}X_{t} + (G - G^{1})X_{t|t}$
 $X_{t|t} = X_{t|t-1} + K[Z_{t} - LX_{t|t-1}]$
 $Z_{t} = LX_{t} + v_{t}^{Z}$
 $Y_{t} = T_{1}X_{t} + T_{2}X_{t|t} + v_{t}^{Y}$

transition



Information Set

- The CB can observe relevant macroeconomic variables (output, inflation and employment) with a lag.
- Inflation and employment are sampled monthly:
 - ▶ Announcement at time t is news about t 1.
- Output growth is sampled quarterly:
 - ► Announcement at time *t* is news about the previous quarter growth rate:

$$\Delta y_{t-1}^{Q} = \sum_{i=t-3}^{t-1} y_i - \sum_{i=t-6}^{t-4} y_i$$

imperfectinfo

Priors and Posteriors

	Prior mode	Prior Std. Dev.	Dist.	Post. mean	Post. Std. Dev.
$\overline{\gamma}$	2	0.1	Normal	1.64	0.0353
φ	5	1	Normal	5.14	0.0217
η	1	0.05	Normal	1.01	0.0234
θ	0.9	0.1	Beta	0.94	0.0558
ω	0.3	0.05	Beta	0.17	0.0247
β	0.99	0.03	Beta	0.98	0.0135
ρ	0.5	0.15	Beta	0.51	0.0349
λ_y	0.5	0.1	Beta	0.46	0.0083
λ_i	0.5	0.1	Beta	0.54	0.0137
$ ho_{\pi^*}$	0.95	0.01	Beta	0.93	0.0394
ϕ_1	-	-	Uniform $(0,\infty)$	1.02	0.06
ϕ_2	-	-	Uniform $(0,\infty)$	0.94	0.05
ρ_b	0.95	0.01	Beta	0.95	0.0366
σ_{a}	-	-	Uniform $(0,\infty)$	0.21	0.096
$\sigma_{\it V}$	-	-	Uniform $(0,\infty)$	0.12	0.0928
σ_{π}	-	-	Uniform $(0,\infty)$	0.29	0.01
σ_{π^*}	0.01	0.01	Inverse Gamma	0.4	0.04
σ_b	0.01	0.01	Inverse Gamma	0.09	0.038

Priors and Posteriors

	Prior mode	Prior Std. Dev.	Dist.	Post. mean	Post. Std. Dev.
$\sigma_{v}^{v,cb} \times 12$	-	-	Uniform $(0,\sigma_y)$	0.8	0.02
$\sigma_{\pi}^{oldsymbol{v},cb}$	-	-	Uniform $(0,\sigma_{\pi})$	0.03	0.003
$\sigma_n^{v,cb} \times 1000$	-	-	Uniform $(0,\sigma_n)$	72	3.2
$\sigma_{\pi^*}^{ extit{v,cb}} imes$ 12	0.013	0.1	Inverse Gamma	0.3	0.0032
$\sigma_{v}^{v} \times 12$	-	-	Uniform $(0,\sigma_y)$	1.6	0.08
σ_{π}^{V}	-	-	Uniform $(0, \sigma_{\pi})$	0.05	0.0032
$\sigma_n^{\nu} \times 1000$	-	-	Uniform $(0,\sigma_n)$	132	6.1
$\sigma_{\pi^*}^{m{v}} imes 12$	0.013	0.1	Inverse Gamma	0.44	0.01
$\sigma_{v,survey}^{v} \times 12$	-	-	Uniform $(0,\sigma_y)$	1.09	0.0099
$\sigma_{\pi, \text{survey}}^{\text{V}}$	-	-	Uniform $(0,\sigma_{\pi})$	0.01	0.007
$\sigma_{n,survev}^{v} \times 1000$	-	-	Uniform $(0,\sigma_n)$	28	0.3
$\sigma_{v^{1m}}^{v} \times 1200$	10 bps	0.1	Normal	10 bps	0.46
$\sigma_{\mathcal{Y}^{1m}}^{\mathbf{v}} \times 1200$ $\sigma_{\mathcal{Y}^{1y}}^{\mathbf{v}} \times 1200$	10 bps	0.1	Normal	7 bps	0.022
$\sigma_{\mathcal{Y}^{2y}}^{\check{v}} imes 1200$	10 bps	0.1	Normal	6 bps	0.03
$\sigma_{\gamma 5 \gamma}^{\nu} \times 1200$	10 bps	0.1	Normal	8 bps	0.02
$\sigma_{\mathcal{Y}^{7y}}^{oldsymbol{v}} imes$ 1200 $\sigma_{\mathcal{Y}^{7y}}^{oldsymbol{v}} imes$ 1200	10 bps	0.1	Normal	1 bps	0.0046
$\sigma_{\mathcal{Y}^{10y}}^{v} imes 1200$	10 bps	0.1	Normal	9 bps	0.03

Preference Shock

 Assume a functional form for the preference shock (following Gallmeyer et al. (2005)):

$$-\Delta q_{t+1} = 0.5 \operatorname{var}_t(\Delta q_{t+1}) + (\phi_1 b_t)(y_{t+1} - E_t y_{t+1}) + (\phi_2 b_t)(\pi_{t+1} - E_t \pi_{t+1})$$

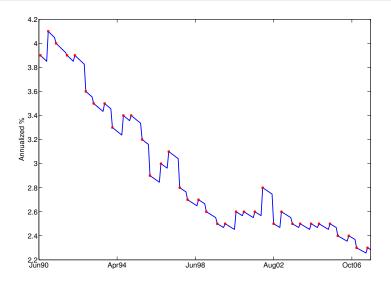
 b_t follows an AR(1) process.

Rewriting the SDF yields:

$$\lambda'_{0,b} = \begin{bmatrix} -1 & -\gamma \end{bmatrix} G \Sigma$$

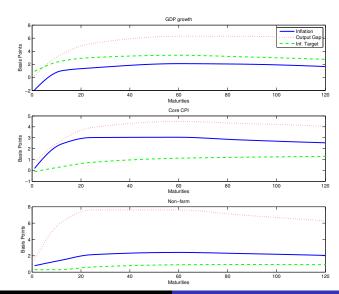
$$\lambda'_{1,b} = \begin{bmatrix} \phi_1 & \phi_2 \end{bmatrix} G \Sigma$$

Interpolated Blue Chip



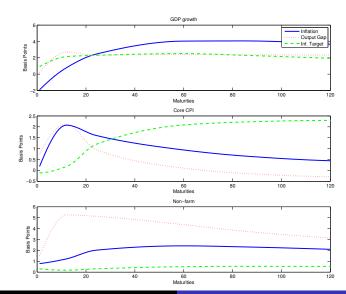
Yield Responses to State Variables

VarDecomp



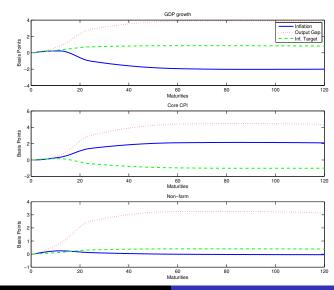
Exp. Short Rate Responses to State Variables

VarDecomp

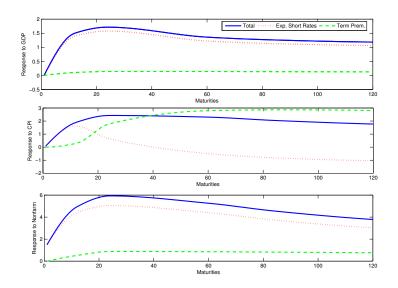


Term Premia Responses to State Variables

VarDecomp



Responses to News



Decomposition

