Clearing the Fog: The Predictive Power of Weather for Employment Reports and their Asset Price Responses

Daniel Wilson

(Federal Reserve Bank of San Francisco)

19 October, 2017 Conference on Real-Time Data Analysis, Methods and Applications Banco de España

^{*}The views expressed in this paper are those of the authors should not be attributed to the Federal Reserve Bank of San Francisco or the Federal Reserve System.

Introduction

- Short-run fluctuations in macroeconomic data are often attributed to weather aberrations
 - nonfarm payroll employment [Boldin & Wright 2015, Bloesch & Gourio 2015], GDP [Lazo et al 2011], retail sales [Starr-McCluer 2000]
 - And many studies on weather's effects on **local** economic outcomes:
 - annual crop yields [Deschênes & Greenstone 2007], annual income [Deryugina & Hsiang 2014], time use [Connolly 2008 and Graff-Zivin & Neidell 2014]
- Implies weather, measurable in real-time, should be useful in "nowcasting" contemporaneous macroeconomic data
- Such predictive power would be highly valuable to:
 - policymakers, discerning strength of economic conditions
 - financial markets, given asset price sensitivity to macro data releases

Introduction

- Surprisingly, little if any evidence on predictive power of weather for macro data surprises and asset price responses
- This paper develops methodology for using geographically granular real-time data to predict weather's impact on the latest month's national payroll employment growth prior to its release
- Evaluates how well such **nowcasts** predict actual employment growth, employment growth surprises, and stock and bond market reactions to employment reports

Preview of Findings

- 1. Nowcasts have strong positive association with employment growth *surprises* (actual minus median forecast)
 - Can explain ~15% of monthly variation
- 2. Nowcasts have strong predictive power for stock market returns and Treasury yield changes on employment report days

Outline of Talk

- 1. Intro
- 2. Methodology
- 3. Results
- 4. Conclusion

Overview of Methodology

- 1. Estimate county-level panel data model of monthly employment growth as function of weather
 - temperature, precipitation, snowfall
 - current month plus 3 lags
- 2. Use fitted county model to obtain estimates of weather's employment growth effects for every county in any given month
 - Generate weather effect estimates from both full 1980ml-2015ml2 sample (*backcasts*) and rolling out-of-sample estimation (*nowcasts*)
- 3. Aggregate to national level

Step 1: Estimate County Panel Model

Data

County Employment

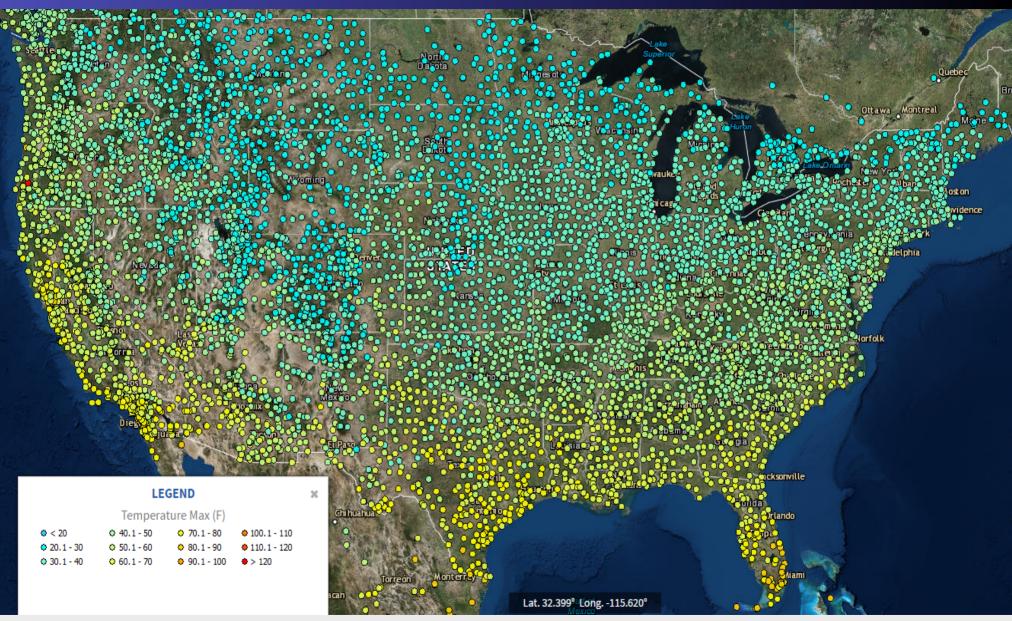
- BLS Quarterly Census of Employment and Wages (QCEW)
 - Based on state unemployment insurance administrative records
- Monthly Nonfarm Employment Counts by County
 - Number of workers for pay period including 12th of the month (same as BLS Payroll Survey)
- Not seasonally-adjusted
- Jan. 1980 Dec. 2015

Data

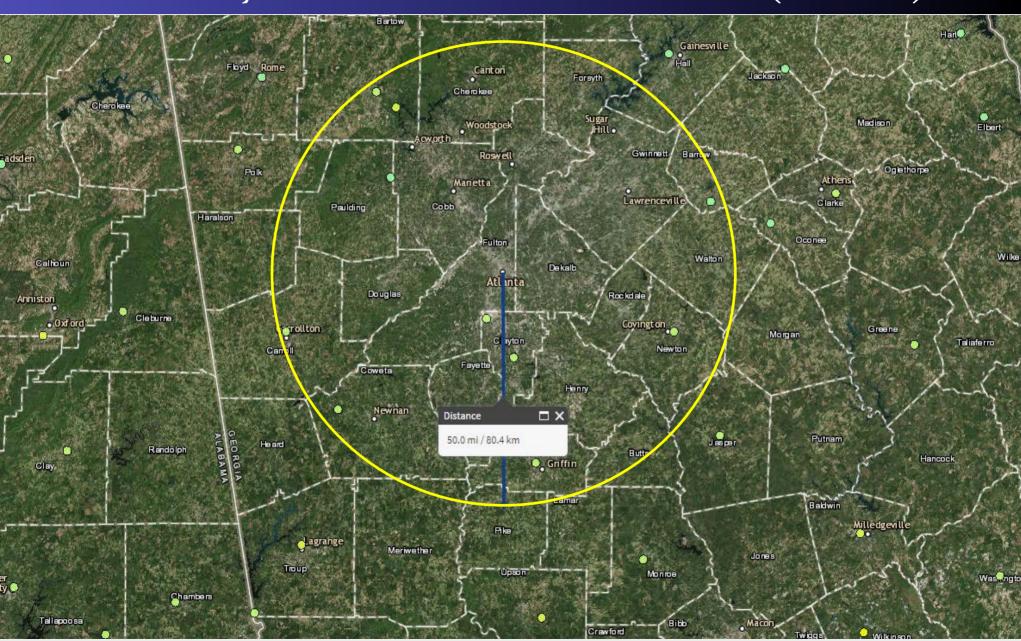
Weather

- NOAA/National Climatic Data Center, Global Historical Climate Network Daily Summaries (GHCN-Daily)(map)
- Daily weather variables by county measured by inverse-distance weighted average of measurements from weather stations within 50 miles (and 1000 feet elevation) (example)
- First, aggregate to weekly frequency:
 - Average Daily Max Temperature
 - Average Daily Precipitation
 - Average Daily Snowfall
 - # of Days with Max Temp > 90°F (32.2°C)
 - # of Days with Min Temp $< 30^{\circ}F (-1.1^{\circ}C)$
- Then, aggregate to monthly via weighted averages across weeks
 - Estimate weights on weeks 1-4 in first step of panel regression analysis

Locations of GHCN-Daily Weather Stations (1/1/2006)



GHCN-Daily Weather Stations near Atlanta (1/1/2006)



Estimating Weekly Weights

Baseline Dynamic Panel Data (DPD) Model:

$$\Delta l_{ct} = \sum_{k=1}^{K} \left(\delta_1^k w_{c,t,1}^k + \delta_2^k w_{c,t,2}^k + \delta_3^k w_{c,t,3}^k + \delta_4^k w_{c,t,4}^k \right) + \gamma_t + \alpha_{c,m(t),d(t)} + \epsilon_{ct}$$

for county (c) and month (t).

- where Δl_{ct} is employment growth (log-change)
- K = 5 weather variables
- $w_{c,t,i}^k$ is weather variable k in week i (i = 1, 2, 3, 4)
- Time (sample-month) fixed effects to absorb common global/national shocks
- Fixed effects by county*calendar-month*decade to capture county-specific seasonality

Estimated Weekly Weights

Effects of Weather by Week on Monthly Employment Growth

	(1)	(2)	(3)	(4)	(5)	(6)
	Daily-High Temp	Precipitation	Snowfall	% days > 90F	% days < 30F	Average Implied Weight
Week 1	0.004***	-0.004***	-0.037***	-0.054**	-0.027	0.297
	(0.001)	(0.001)	(0.006)	(0.025)	(0.021)	
Week 2	0.007^{***}	-0.004***	-0.040***	-0.102***	-0.007	0.341
	(0.001)	(0.001)	(0.006)	(0.025)	(0.022)	
Week 3	0.002^{***}	-0.002**	-0.015**	-0.016	-0.020	0.152
	(0.001)	(0.001)	(0.006)	(0.026)	(0.021)	
Week 4	0.002**	-0.005***	-0.002	-0.049*	-0.032	0.211
	(0.001)	(0.001)	(0.006)	(0.027)	(0.023)	

^{***}p<0.01, **p<0.05, *p<0.10

Empirical Model

Baseline Dynamic Panel Data (DPD) Model:

$$\Delta l_{ct} = \sum_{k=1}^{K} \sum_{\tau=0}^{3} \beta_{\tau}^{k} w_{c,t-\tau}^{k} + \gamma_{t} + \alpha_{c,m(t),d(t)} + \epsilon_{ct}$$

for county (c) and month (t).

- where Δl_{ct} is employment growth (log-change)
- K = 5 weather variables, current + 3 lags of monthly weather $(w_{c,t,i}^k)$
- Time (sample-month) fixed effects to absorb common global/national shocks
- Fixed effects by county*calendar-month*decade to capture county-specific seasonality

Implementation

- Allow effects of average daily high temperature to vary by season
- Estimate 3 versions of model:
 - Baseline
 - Baseline plus regional heterogeneity
 - Baseline plus spatial lags
- Model estimated with weighted least squares (employment)

Baseline Results – All Private Industries *No Regional Heterogeneity*

Contemporaneous and Lagged Weather Effects on Employment Growth All Private Industries

	(1)	(2)	(3)	(4)	(5)
	Contemporaneous	1st lag	2nd lag	3rd lag	Cumulative effect
Avg. daily high temp - Spring	0.109***	-0.068***	-0.046***	0.005	0.001
	(0.009)	(0.009)	(0.008)	(0.008)	(0.013)
Avg. daily high temp - Summer	0.081^{***}	-0.049***	-0.022**	-0.014	-0.004
	(0.013)	(0.011)	(0.010)	(0.009)	(0.017)
Avg. daily high temp - Fall	0.032***	-0.012	-0.028**	0.018	0.010
	(0.010)	(0.011)	(0.012)	(0.013)	(0.019)
Avg. daily high temp - Winter	0.085^{***}	-0.021**	-0.016	-0.017	0.031^{*}
	(0.010)	(0.011)	(0.011)	(0.011)	(0.018)
Precipitation (mm)	-0.025***	0.025***	0.011***	0.011***	0.021^{***}
	(0.003)	(0.004)	(0.003)	(0.003)	(0.006)
Snowfall (cm)	-0.035***	0.016^{***}	0.007**	-0.003	-0.014**
	(0.004)	(0.004)	(0.003)	(0.003)	(0.006)
% days high temp >90 F	-0.024***	-0.010	-0.013	-0.006	-0.053***
	(0.009)	(0.009)	(0.009)	(0.008)	(0.014)
% days low temp < 30 F	-0.024*	-0.021	0.006	0.012	-0.027
	(0.013)	(0.013)	(0.013)	(0.012)	(0.021)
N	1329900		,		
Counties	3100				
Months	429				
R2	0.553				

^{***}p<0.01, **p<0.05, *p<0.10

Summary of local weather effect estimates

- Average daily-high temperature has *positive* contemporaneous effect
 - Contemporaneous boost occurs in all seasons, but strongest in Spring:
- Very hot days, precipitation and snowfall have negative contemporaneous effects
- Lagged effects tend to be offsetting (mean reversion)
- Alternative models show:
 - Modest degree of regional heterogeneity
 - Spatially lagged weather tends to affect own-county employment growth similarly to own-county weather (amplifying effect)

Steps 2-3: Generate County Weather Effect Backcasts & Nowcasts and Aggregate to National

Generate Implied National Weather Effects

First, use fitted model(s) to get county weather effects:

$$\Omega_{ct} = \hat{\Delta l}_{ct}(\mathbf{w_{ct}}) - \hat{\Delta l}_{ct}(\bar{\mathbf{w}_{c,m(t),d(t)}})$$

for county (c) and month (t); **w** is vector of weather variables.

Aggregate county growth effects to national level:

$$\Omega_t = \sum_{c} \left(\frac{L_{ct}}{L_t}\right) \Omega_{ct}$$

- Can generate Ω_t using $\hat{\Delta l}_{ct}()$ estimated from:
 - full sample Backcasts
 - Rolling end-month samples Nowcasts (using real-time w data)

Evaluating Predictive Power of Weather Effect Estimates

Estimate National Model for Comparison

• First, for comparison I construct alternative weather effect estimates based on parallel national time series model:

$$\Delta l_t^{CES} = \sum_{k=1}^K \sum_{\tau=0}^3 \beta_{i\tau}^k \tilde{w}_{t-\tau}^k + \alpha_{S(t)} + \epsilon_t$$

- where Δl_t^{CES} is log-change in seasonally adjusted nonfarm payroll employment from BLS payroll survey (CES),
- includes same weather variables as county model, but averaged (population-weighted) across counties
- includes season (S(t)) fixed effects (to account for residual seasonality)

National Time-Series Model – Results

Sample: 1980ml – 2015ml2

	(1)	(2)	(3)	(4)	(5)
	Contemporaneous	1st lag	2nd lag	3rd lag	Cumulative effect
Avg. daily high temp - Spring	0.017	-0.040	-0.012	-0.046	-0.081
	(0.056)	(0.054)	(0.051)	(0.049)	(0.094)
Avg. daily high temp - Summer	0.084	-0.068	-0.048	-0.044	-0.076
	(0.111)	(0.075)	(0.060)	(0.056)	(0.144)
Avg. daily high temp - Fall	-0.027	0.031	-0.110	-0.066	-0.172
	(0.059)	(0.083)	(0.126)	(0.109)	(0.172)
Avg. daily high temp - Winter	0.007	-0.064	-0.090	-0.045	-0.192**
	(0.050)	(0.055)	(0.057)	(0.062)	(0.096)
Precipitation (mm)	-0.064	0.010	-0.062	-0.043	-0.158*
	(0.045)	(0.044)	(0.046)	(0.045)	(0.092)
Snowfall (cm)	0.003	0.097^{*}	0.145***	0.092*	0.337***
	(0.056)	(0.054)	(0.055)	(0.054)	(0.102)
% days high temp >90 F	-0.032	0.051	0.167	0.086	0.273
	(0.105)	(0.096)	(0.119)	(0.106)	(0.183)
% days low temp <30 F	-0.178	-0.288*	-0.336**	-0.360**	-1.162***
	(0.140)	(0.150)	(0.147)	(0.143)	(0.287)
N	429	-		-	
R2	0.287				
RMSE	0.218				

^{***}p<0.01, **p<0.05, *p<0.10

• How well do weather effect estimates predict changes in national employment and other outcomes?

• How well do weather effect estimates predict changes in national employment and other outcomes?

Backcasts

• Estimate models and predict Weather Effects using 1980ml – 2015ml2 sample

• How well do weather effect estimates predict changes in national employment and other outcomes?

Backcasts

• Estimate models and predict Weather Effects using 1980ml – 2015ml2 sample

Nowcasts

- National model:
 - Estimate model iteratively on expanding window with end-month rolling from 2003m12-2016m7
 - Each iteration, predict Weather Effect 1 month out of sample (CES data lag)
- County models:
 - Estimate model iteratively on expanding window with end-month rolling from 2003m5 – 2015m12
 - Each iteration, predict Weather Effect 8 months out of sample (QCEW data lag)

• How well do weather effect estimates predict changes in national employment and other outcomes?

Backcasts

• Estimate models and predict Weather Effects using 1980ml – 2015ml2 sample

Nowcasts

- National model:
 - Estimate model iteratively on expanding window with end-month rolling from 2003m12-2016m7
 - Each iteration, predict Weather Effect 1 month out of sample (CES data lag)
- County models:
 - Estimate model iteratively on expanding window with end-month rolling from 2003m5 - 2015m12
 - Each iteration, predict Weather Effect 8 months out of sample (QCEW data lag)
- ➤ Yields Weather Effect Nowcasts for 2004ml 2016m8

Predictive Power for Nonfarm Employment Growth

• Regress weather effect estimates on payroll employment growth:

In-Sample and Out-of-Sample Explanatory Power of Weather Effects for National Payroll Employment Growth

	County Model RH	R2	County Model no RH	R2	County Model SL	R2	National Model	R2
Backcast	0.457**	0.009	0.414**	0.008	0.091	0.002	1.000***	0.102
	(0.238)		(0.225)		(0.099)		(0.144)	
Nowcast	0.899***	0.043	0.847***	0.043	0.248**	0.020	0.233	0.011
	(0.345)		(0.328)		(0.141)		(0.177)	

Predictive Power for Nonfarm Employment Growth

• Regress weather effect estimates on payroll employment growth:

In-Sample and Out-of-Sample Explanatory Power of Weather Effects for National Payroll Employment Growth

	County Model RH	R2	County Model no RH	R2	County Model SL	R2	National Model	R2
Backcast	0.457**	0.009	0.414**	0.008	0.091	0.002	1.000***	0.102
	(0.238)		(0.225)		(0.099)		(0.144)	
Nowcast	0.899***	0.043	0.847***	0.043	0.248**	0.020	0.233	0.011
	(0.345)		(0.328)		(0.141)		(0.177)	

- In sample, national model wins
- Out of sample, county model wins

Other Labor Market Outcomes

County DPD model also helps predict other labor market outcomes

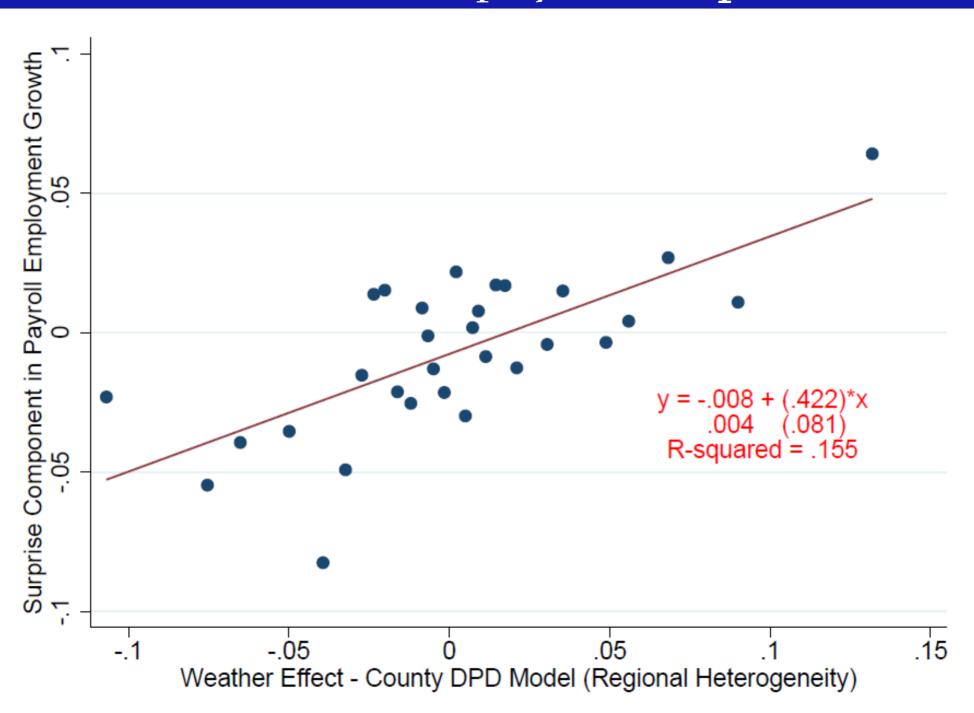
Out-of-Sample Explanatory Power of Weather Effects for Various National Labor Market Outcomes

	County Model (RH)	R2	National Model	R2
Employment Growth, Private Nonfarm, Payroll Survey	0.899***	0.043	0.233	0.011
	(0.345)		(0.177)	
Employment Growth, Private Nonfarm, QCEW (SA)	1.041***	0.037	0.200	0.005
	(0.437)		(0.224)	
Vacancy Rate (monthly change)	0.712***	0.037	0.138	0.006
	(0.295)		(0.151)	
Hires Rate (monthly change)	0.862***	0.077	0.076	0.002
	(0.244)		(0.128)	
Quits Rate (monthly change)	0.222	0.011	0.000	0.000
	(0.174)		(0.088)	
Employment Growth, less than 50 employees	1.059***	0.050	0.572	0.042
	(0.485)		(0.295)	
Employment Growth, 50 to 499 employees	0.869	0.026	$0.854^{'}$	0.060
	(0.616)		(0.367)	
Employment Growth, 500 or more employees	0.567	0.020	0.681***	0.058
	(0.504)		(0.299)	
Weather Absences Rate (monthly change)	-0.683***	0.107	0.017	0.000
, , , , , , , , , , , , , , , , , , , ,	(0.161)		(0.086)	
Non-weather Absences Rate (monthly change)	0.100	0.000	-1.449	0.012
	(2.131)		(1.065)	

Predictive Power for Employment Surprises

- Weather effect nowcasts still can only explain about 4% of monthly employment growth
 - Suggests other factors (e.g., strikes, financial conditions, overall macro conditions) are primary drivers of fluctuations
 - But other factors may be easily observable/predictable
- Do weather effect nowcasts help predict surprise component of employment reports?
 - If market participants do not/cannot fully incorporate real-time weather effects into expectations of macro data releases, weather effects will affect surprises
 - Measure surprise to nonfarm employment growth as difference between:
 - actual, real-time (as first reported) employment growth, and
 - median forecast from survey of economists and market participants conducted in days leading up to employment report
 - Data from January 1990+ from Money Market Services (MMS)/Action Economics

Predictive Power for Employment Surprises



Predictive Power of Weather Effect Nowcasts

Rolling Out-of-Sample (8 months)

	(1) County no RH	R^{2}	(3) County RH	R^{2}	(5) Payroll surprise	R^{2}	(7) N
Real-Time Surprise in Payroll Employment Growth	.375*** (.077)	.136	.422*** (.081)	.155			152

Standard errors in parentheses

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Predictive Power of Weather Effect Nowcasts

Rolling Out-of-Sample (8 months)

	(1) County no RH	R^{2}	(3) County RH	R^{2}	(5) Payroll surprise	$R^{(6)}$	(7) N
Real-Time Surprise in Payroll Employment Growth	.375*** (.077)	.136	.422*** (.081)	.155			152
S&P 500 daily return	3.075* (1.838)	.019	3.276* (1.912)	.02	3.432* (1.761)	.025	148
Dow Jones Ind. Avg daily return	3.223* (1.703)	.024	3.307* (1.773)	.023	3.937** (1.625)	.039	148

Standard errors in parentheses

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Predictive Power of Weather Effect Nowcasts

Rolling Out-of-Sample (8 months)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	County no RH	R^2	County RH	R^2	Payroll surprise	R^2	N
Real-Time Surprise in Payroll Employment Growth	.375***	.136	.422***	.155			152
	(.077)		(.081)				
S&P 500 daily return	3.075*	.019	3.276*	.02	3.432*	.025	148
	(1.838)		(1.912)		(1.761)		
Dow Jones Ind. Avg daily return	3.223*	.024	3.307*	.023	3.937**	.039	148
	(1.703)		(1.773)		(1.625)		
3-month Treasury Bond daily change	004	0	.013	0	.104*	.023	152
	(.056)		(.059)		(.055)		
1-year Treasury Bond daily change	.064	.005	.14*	.021	.483***	.283	152
	(.075)		(.079)		(.063)		
2-year Treasury Bond daily change	.27**	.032	.366***	.053	.817***	.302	152
	(.121)		(.127)		(.101)		
5-year Treasury Bond daily change	.377***	.044	.465***	.061	.982***	.311	152
	(.143)		(.15)		(.119)		
10-year Treasury Bond daily change	.323**	.042	.382***	.053	.812***	.274	152
	(.126)		(.132)		(.108)		
30-year Treasury Bond daily change	.243*	.03	.269**	.032	.62***	.19	127
	(.123)		(.132)		(.115)		

Standard errors in parentheses

^{*} p < 0.1, ** p < 0.05, *** p < 0.01

Weather Effect Nowcasts and Market Returns

Mean Daily Stock Returns and Treasury Yield Changes

Various Subsamples

	All Days (1/1/2004 to 8/31/2016)	All Release Days	Release Days, Nowcast >0	Release Days, Nowcast <0
Payroll Surprises (%)		-0.78	0.87	-2.29
S&P 500 (%)	0.02	0.02	0.21	-0.14

Notes: The payroll employment surprise and stock returns are in percentage points; Treasury yield changes are in basis points.

Weather Effects and Employment Surprises

Mean Daily Stock Returns and Treasury Yield Changes

Various Subsamples

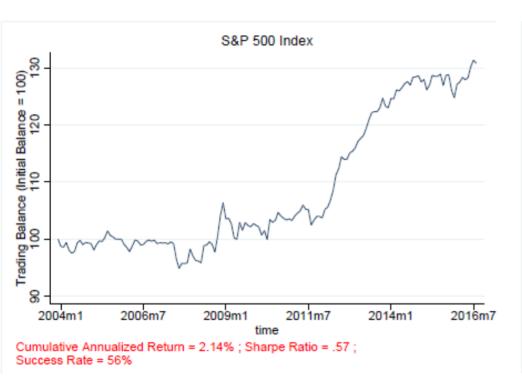
	All Days (1/1/2004 to 8/31/2016)	All Release Days	Release Days, Nowcast >0	Release Days, Nowcast <0
Payroll Surprises (%)		-0.78	0.87	-2.29
S&P 500 (%)	0.02	0.02	0.21	-0.14
Dow Jones (%)	0.02	0.02	0.21	-0.15
1-yr Treasury (bps)	-0.01	-0.03	0.72	-0.64
2-yr Treasury (bps)	-0.02	0.26	2.50	-1.64
5-yr Treasury (bps)	-0.04	0.17	2.95	-2.21
10-yr Treasury (bps)	-0.06	0.32	2.57	-1.57
30-yr Treasury (bps)	-0.05	0.81	2.14	-0.41

Notes: The payroll employment surprise and stock returns are in percentage points; Treasury yield changes are in basis points.

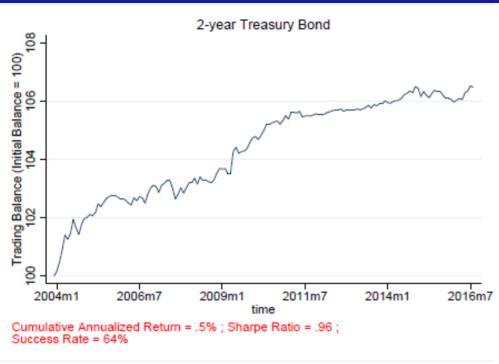
Illustration Based on Simple Trading Strategy

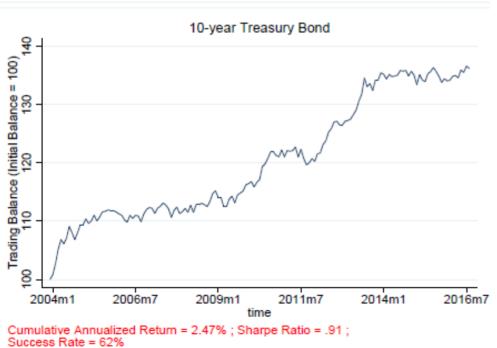
- Another way to illustrate predictive power of weather effect nowcasts is to consider performance of simple weather-based trading strategy:
- Trading Rule:
 - Nowcast > 0, take a long position in equities or short position in bonds
 - Nowcast < 0; take a short position in equities or long position in bonds
- Start with balance of 100 (on 2003m12),
 - trade at end of day prior to employment report
 - Unwind trade (put in cash) at end of day of employment report
- Calculate:
 - Success rate: % of trades earning positive return
 - Cumulative return (annualized)
 - Sharpe Ratio (annualized): mean return divided by std deviation

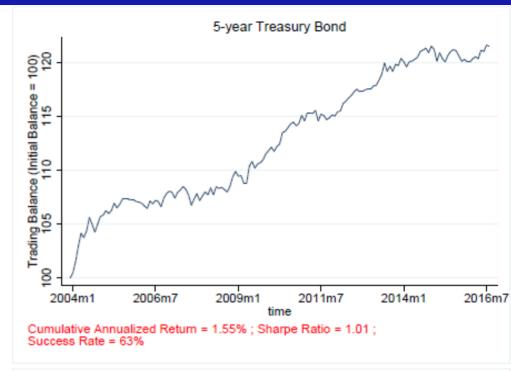
Performance of Nowcast-Based Trading Strategy

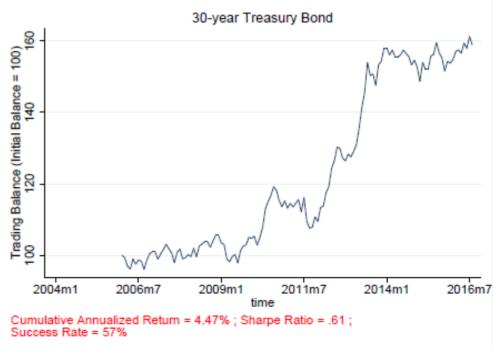


Performance of Nowcast-Based Trading Strategy









Conclusion

- Weather effect nowcasts of national payroll employment growth, based on estimated county panel data model:
 - Explains small share of monthly variation in employment growth
 - Explains large share (~15%) of monthly variation in employment growth surprises
 - Helps predict stock market returns and Treasury bond yield changes on employment report days
- Future research could refine county model to maximize predictive power
 - non-linear temperature effects, weekend vs weekday weather, extreme weather effects, etc.
 - Machine learning techniques for variable selection