Surprise indexes and nowcasting: why do markets react to macroeconomic news?

Alberto Caruso

Confindustria and Université libre de Bruxelles

Conference on Real-Time Data Analysis, Methods and Applications Banco de España, Madrid, October 2017

Outline

- Introduction: surprise indexes
- 2 Methodology
- Model and Data
- 4 Results
- Conclusions

Outline

- Introduction: surprise indexes
- 2 Methodology
- Model and Data
- Results
- Conclusions

Macroeconomic news → market reactions

Established result! Among the others see Andersen et al. (2003, 2007); Ehrmann and Fratzscher (2005); Gürkaynak et al. (2005); Faust et al. (2007); Gürkaynak and Wright (2013).

The effect is persistent and amplified at lower frequencies, explaining more than one third of the quarterly fluctuations of bond yields (Altavilla et al., 2017).

How to aggregate macro news? Different concepts, units, importance.

Solutions so far:

How to aggregate macro news? Different concepts, units, importance.

Solutions so far:

• Surprise indexes (e.g. Citi, Altavilla et al., 2017) use market forecast to construct the news, weighting them on the basis of their effect on assets.

How to aggregate macro news? Different concepts, units, importance.

Solutions so far:

- Surprise indexes (e.g. Citi, Altavilla et al., 2017) use market forecast to construct the news, weighting them on the basis of their effect on assets.
- **Nowcasting** (Giannone et al., 2008; Banbura et al., 2013): look at the impact of news on the update of the assessment of the current state of the economy.

How to aggregate macro news? Different concepts, units, importance.

Solutions so far:

- Surprise indexes (e.g. Citi, Altavilla et al., 2017) use market forecast to construct the news, weighting them on the basis of their effect on assets.
- **Nowcasting** (Giannone et al., 2008; Banbura et al., 2013): look at the impact of news on the update of the assessment of the current state of the economy.

This work

I merge the two approaches and study the relationship between surprise indexes and nowcasting

How to aggregate macro news? Different concepts, units, importance.

Solutions so far:

- Surprise indexes (e.g. Citi, Altavilla et al., 2017) use market forecast to construct the news, weighting them on the basis of their effect on assets.
- Nowcasting (Giannone et al., 2008; Banbura et al., 2013): look at the impact of news on the update of the assessment of the current state of the economy.

This work

I merge the two approaches and study the relationship between surprise indexes and nowcasting

Other "hybrid" examples: Scotti (2016); Grover et al. (2016); Gilbert et al. (2017)

To construct surprise indexes, we can combine:

To construct surprise indexes, we can combine:

Market news: (actual - survey forecast)

To construct surprise indexes, we can combine:

Market news: (actual - survey forecast) Model news: (actual - model forecast)

To construct surprise indexes, we can combine:

Market news: (actual - survey forecast)

Model news: (actual - model forecast)

Market weights: impact on asset prices (FX or 10y yields)

To construct surprise indexes, we can combine:

Market news: (actual - survey forecast)

Model news: (actual - model forecast)

Market weights: impact on asset prices (FX or 10y yields)

Model weights: importance assigned by a model

To construct surprise indexes, we can combine:

Market news: (actual - survey forecast)

Model news: (actual - model forecast)

Market weights: impact on asset prices (FX or 10y yields)

Model weights: importance assigned by a model

$$News_{i,t} \equiv x_{i,t} - \mathbb{E}[(x_{i,t}|Info_{\nu})]$$

$$SI_t \equiv \sum_{s=t-win}^t \sum_{i \in I} W_{i,s} News_{i,s}$$

	News	
Market		
		_

Weights

Market Model

Market	Model
Citi; Altavilla et al.	THIS PAPER
Grover et al.; Scotti; Gilbert et al.	THIS PAPER

		News		
		Market	Model	
eights,	Market	Citi; Altavilla et al.	THIS PAPER	
	Model	Grover et al.; Scotti; Gilbert et al.	THIS PAPER	
Š				

Model weights:

- Grover et al. (2016): weights from regressions of market news on GDP (predictive content)
- Scotti (2016): contributions of the variables in forecasting the factor
- Gilbert et al. (2017): regression coefficients of announcements multiplied by Kalman gain matrix

Outline

- Introduction: surprise indexes
- 2 Methodology
- Model and Data
- 4 Results
- Conclusions

Outline

- Introduction: surprise indexes
- 2 Methodology
- Model and Data
- Results
- Conclusions

Nowcasting: model-based news and weights

Let y_t^Q be the GDP at time t, and Ω_{ν} the information set at time ν , where ν is a vintage of data. The nowcast is the projection of y_t^Q using the available data, $\mathbb{E}[y_t^Q|\Omega_{\nu}]$. At any release, the information set expands : $\Omega_{\nu}\subset\Omega_{\nu+1}$, and it is possible to decompose the new forecast in:

$$\underbrace{\mathbb{E}[y_t^Q | \Omega_{\nu+1}]}_{\text{new forecast}} = \underbrace{\mathbb{E}[y_t^Q | \Omega_{\nu}]}_{\text{old forecast}} + \underbrace{\mathbb{E}[y_t^Q | \mathit{I}_{\nu+1}]}_{\textit{revision}}$$

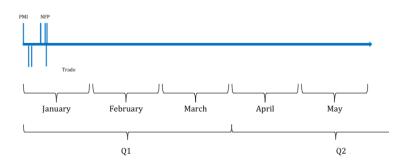
Where $I_{\nu+1}$ is the information in $\Omega_{\nu+1}$ orthogonal to Ω_{ν} . Express the revision as:

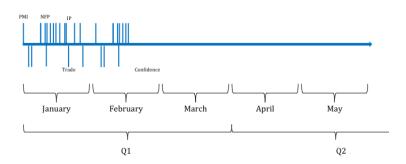
$$\underbrace{\mathbb{E}[y_t^Q|\Omega_{\nu+1}] - \mathbb{E}[y_t^Q|\Omega_{\nu}]}_{revision} = \sum_{j \in J_{\nu+1}} w_{j,t,\nu+1} \underbrace{\left(x_{i_j,t_j} - \mathbb{E}[x_{i_j,t_j}|\Omega_{\nu}]\right)}_{news}$$

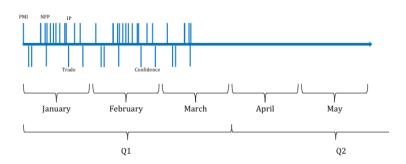
Nowcasting: model-based news and weights

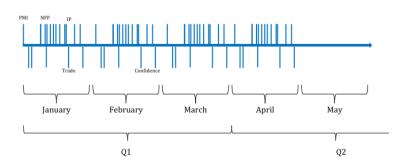
Let y_t^Q be the GDP at time t, and Ω_{ν} the information set at time ν , where ν is a vintage of data. The nowcast is the projection of y_t^Q using the available data, $\mathbb{E}[y_t^Q|\Omega_{\nu}]$. At any release, the information set expands : $\Omega_{\nu}\subset\Omega_{\nu+1}$, and it is possible to decompose the new forecast in:

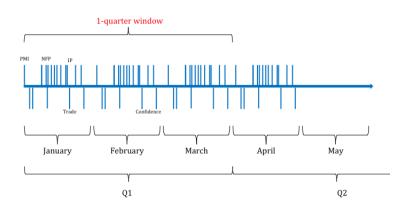
$$\underbrace{\mathbb{E}[y_t^Q | \Omega_{\nu+1}]}_{\text{new forecast}} = \underbrace{\mathbb{E}[y_t^Q | \Omega_{\nu}]}_{\text{old forecast}} + \underbrace{\mathbb{E}[y_t^Q | \mathit{I}_{\nu+1}]}_{\textit{revision}}$$

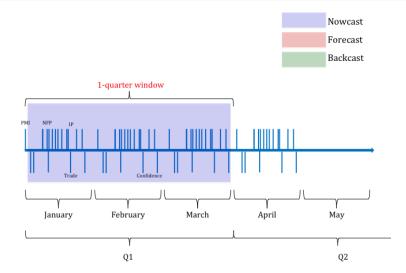

Where $I_{\nu+1}$ is the information in $\Omega_{\nu+1}$ orthogonal to Ω_{ν} . Express the revision as:

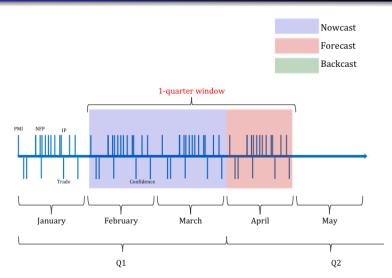

$$\underbrace{\mathbb{E}[y_t^Q|\Omega_{\nu+1}] - \mathbb{E}[y_t^Q|\Omega_{\nu}]}_{revision} = \sum_{j \in J_{\nu+1}} w_{j,t,\nu+1} \underbrace{\left(x_{i_j,t_j} - \mathbb{E}[x_{i_j,t_j}|\Omega_{\nu}]\right)}_{news}$$

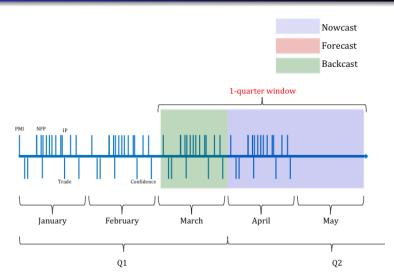

The weights represent the importance given by the model to a macro news in the update of the backcast-nowcast-forecast.


Nowcasting is a fixed event forecast and refers to GDP in a specific quarter: we should not use the nowcast directly!


I use a rolling window with a **consistent weighting scheme**.







News Index construction: Weighting the weights

Let $w_{i,t}^{BC}$, $w_{i,t}^{NC}$, $w_{i,t}^{FC}$ be the weights corresponding to the updates in the Backcast, Nowcast and Forecast.

Temporally weight them \longrightarrow **coherent** weights. Call d the distance from the beginning of the reference quarter.

If
$$0 \le d \le 33$$
, then $W_{i,t} = \frac{33+d}{66} * w_{i,t}^{NC} + \frac{33-d}{66} * w_{i,t}^{BC}$
If $33 \le d \le 66$, then $W_{i,t} = \frac{99-d}{66} * w_{i,t}^{NC} + \frac{d-33}{66} * w_{i,t}^{FC}$

This weighting scheme gives us the right "rolling assessment" of macro surprises.

Advantages of a model-based index:

• it weights surprises in a coherent way

Advantages of a model-based index:

- it weights surprises in a coherent way
- model expectations are judgement-free, transparent, not prone to mood, herding and strategic behaviour

Advantages of a model-based index:

- it weights surprises in a coherent way
- model expectations are judgement-free, transparent, not prone to mood, herding and strategic behaviour
- it can be used for every country, also when market expectations are not available

Advantages of a model-based index:

- it weights surprises in a coherent way
- model expectations are judgement-free, transparent, not prone to mood, herding and strategic behaviour
- it can be used for every country, also when market expectations are not available
- In this sample model expectations are more efficient.

Outline

- Introduction: surprise indexes
- 2 Methodology
- Model and Data
- Results
- Conclusions

Nowcasting model

Dynamic factor model, REAL TIME out-of-sample exercise (mixed frequency, exact calendar of macro releases) for US GDP QoQ growth rate.

I estimate with Maximum Likelihood within a Expectation-Maximization algorithm: it allows for autocorrelation of idio. and restrictions, consistent and feasible even in case of an approximate factor model.

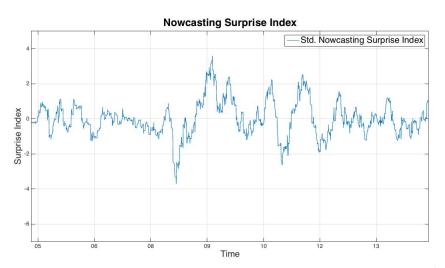
► Model and estimation details

See Giannone et al. (2008); Doz et al. (2011, 2012); Banbura et al. (2013).

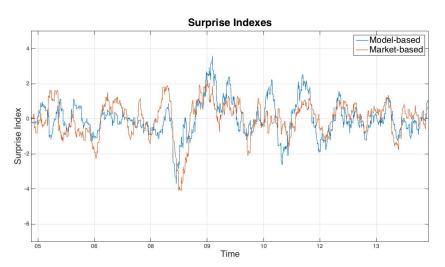
Estimation starts in 1991; evaluation period: 2005-2014; 1 factor, 2 lags (results are robust to changes in the specification).

Data: 13 variables compatible with Bloomberg

Name	Bloomberg	Transformation
Building Permits	✓	MoM
Capacity Utilization	✓	Diff
Civilian Unemployment Rate	✓	Diff
Conference Board: Consumer Confidence	✓	Level
Consumer Price Index	✓	MoM
Housing Starts	✓	MoM
Industrial Production	✓	MoM
ISM Mfg: PMI Composite Index	✓	Level
Producer Price Index	✓	MoM
Real Gross Domestic Product	✓	MoM
Total Nonfarm Employment	✓	Diff
Trade balance	✓	MoM
University of Michigan: Consumer Sentiment	✓	Level


Data: additional variables for robustness

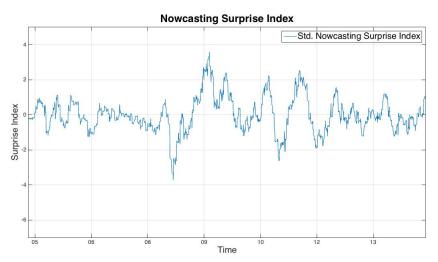
Name	Bloomberg	Transformation
Building Permits	✓	MoM
Capacity Utilization	✓	Diff
Civilian Unemployment Rate	✓	Diff
Conference Board: Consumer Confidence	✓	Level
Consumer Price Index	✓	MoM
Housing Starts	✓	MoM
Industrial Production	✓	MoM
ISM Mfg: PMI Composite Index	✓	Level
Producer Price Index	✓	MoM
Real Gross Domestic Product	✓	MoM
Total Nonfarm Employment	✓	Diff
Trade balance	✓	MoM
University of Michigan: Consumer Sentiment	✓	Level
3-Month Treasury Bill		Diff
10-Year Treasury Constant Maturity Rate		Diff
All Employees: Total Private Industries		MoM
Average Weekly Hours Mfg		MoM
Commercial and Industrial Loans		MoM
Disposable Personal Income		MoM
Inventories to Sales Ratio		Diff
M2 Money Stock		MoM
Mfg New Orders: Durable Goods		MoM
Personal Consumption Expenditures		MoM
Retail Sales		MoM
Total Business Inventories		MoM


Outline

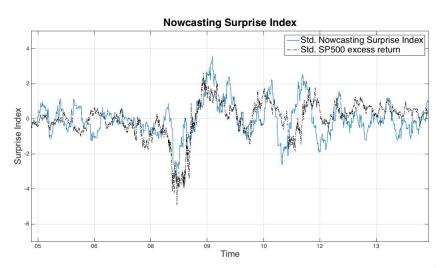
- Introduction: surprise indexes
- 2 Methodology
- Model and Data
- 4 Results
- Conclusions

Nowcasting Surprise Index

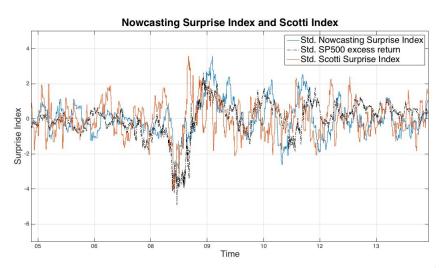
Surprise Indexes: market and model-based



Surprise Indexes: market and model-based


The indexes are very similar!

- Similar news: the model replicates market forecasts Detail
- Similar weights: market reaction is related to the impact of news in changing the assessing the state of the economy (and to its consequences, e.g. monetary policy?)


Nowcasting Surprise Index

Nowcasting Surprise Index and S&P 500 excess return

Nowcasting Surprise Index, S&P 500 and Scotti Index

Correlations - different frequencies

	Nowcasting Surprise Index				
Correlations	1-month	2-months	Quarterly		
Change in 10y yields	0.23 / 0.19*	0.33 / 0.30*	0.36 / 0.41*		
S&P 500 excess returns	0.23 / 0.23*	0.37 / 0.36*	0.42 / 0.45*		

		Market Surprise Index	<
Correlations	1-month	2-months	Quarterly
Change in 10y yields	0.33	0.40	0.45
S&P 500 excess returns	0.19	0.33	0.46

^{*} Larger model with 26 variables

Other benchmarks

Regressions

I regress asset prices (change in 10y and S&P500 excess returns) on Surprise Indexes at different frequencies:

$$\Delta^{w} AssetPrices_{i,t} = \alpha + \beta_{i} (SurpriseIndex_{t}^{w}) + \epsilon_{i,t}$$

Where the w can be 22, 44 or 66 working days.

For example, if w=22, $\Delta^w Asset Prices_{i,t}$ is the monthly return of asset i and $SurpriseIndex_t^w$ is the index aggregated over a month.

Regression - different frequencies

	Nowcasting Surprise Index				
OLS - R ²	1-month	2-months	Quarterly		
Change in 10y yields	0.05 / 0.04*	0.11 / 0.09*	0.17 / 0.17*		
S&P 500 excess return	0.04 / 0.05*	0.08 / 0.13*	0.18 / 0.21*		

		Market Surprise Index	<
OLS - R ²	1-month	2-months	Quarterly
Change in 10y yields	0.11	0.16	0.21
S&P 500 excess return	0.04	0.10	0.19

Other benchmarks

^{*} Larger model with 26 variables

Different kind of indexes and correlations

Recall, we started from here:

		News					
		Market	Model				
ıts	Market	Citi; Altavilla et al.	THIS PAPER				
Veights	Model	Grover et al.; Scotti; Gilbert et al.	THIS PAPER				
ĕ							

I compare the differences in correlation with S&P500 of indexes with model/market news and weights. Market weights: coefficients of the regression of news on asset prices (as in Altavilla et al., 2017).

See market weights

Correlations with S&P500: market and model

Quarterly correlation of model/market based indexes with S&P500.

		News				
		Market	Model			
ights	Market	0.46	0.17			
<u>.</u>	Model	0.40	0.42 / 0.25*			
≶						

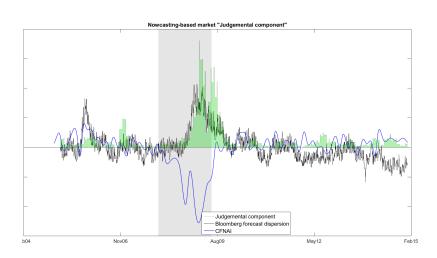
* Nowcast (not rolling; no rolling weights)

Markets and model: extracting the judgemental component

Forecasts differences to be explored: How much and when? (work in progress)

Markets and model: extracting the judgemental component

Forecasts differences to be explored: How much and when? (work in progress)


I define "judgemental component": the part of a survey forecast not implied by a nowcasting model:

$$JC_{i,t} = (BB_{i,t} - \mathbb{E}[x_{i,t}|\Omega_{\nu}])^2$$

 $BB_{i_j,t_j}=$ median of Bloomberg surveys; $\mathbb{E}[(x_{i,t}|\Omega_{
u})]=$ model expectation

I aggregate the deviations between market/model forecast across the variables and smooth it: JC follows disagreement and in specific episodes is more pronounced (non linearities, sentiment).

News analysis - "judgemental" component and disagreement

Outline

- Introduction: surprise indexes
- 2 Methodology
- Model and Data
- Results
- 6 Conclusions

• I study the relationship between surprise indexes and nowcasting constructing a real-time Nowcasting Surprise Index, weighting in a coherent way news about macro indicators.

- I study the relationship between surprise indexes and nowcasting constructing a real-time Nowcasting Surprise Index, weighting in a coherent way news about macro indicators.
- Market-based and model-based indexes give similar results! Robust to change in # of variables and specification.

- I study the relationship between surprise indexes and nowcasting constructing a real-time Nowcasting Surprise Index, weighting in a coherent way news about macro indicators.
- Market-based and model-based indexes give similar results! Robust to change in # of variables and specification.
- Market reacts in correspondence of news that change the assessment of macro conditions.

- I study the relationship between surprise indexes and nowcasting constructing a real-time Nowcasting Surprise Index, weighting in a coherent way news about macro indicators.
- Market-based and model-based indexes give similar results! Robust to change in # of variables and specification.
- Market reacts in correspondence of news that change the assessment of macro conditions.
- Both indexes show good correlation with asset prices: to be explored.

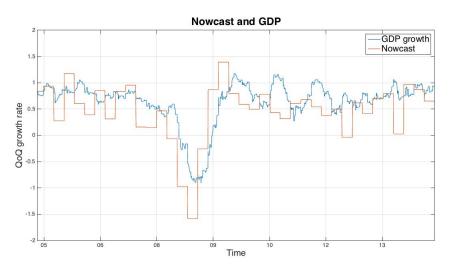
- I study the relationship between surprise indexes and nowcasting constructing a real-time Nowcasting Surprise Index, weighting in a coherent way news about macro indicators.
- Market-based and model-based indexes give similar results! Robust to change in # of variables and specification.
- Market reacts in correspondence of news that change the assessment of macro conditions.
- Both indexes show good correlation with asset prices: to be explored.
- Further research, in progress: predictive regressions; deviations between market/model forecasts in case of particular events.

- Altavilla, C., Giannone, D., and Modugno, M. (2017). Low frequency effects of macroeconomic news on government bond yields. *Journal of Monetary Economics*.
- Andersen, T. G., Bollerslev, T., Diebold, F. X., and Vega, C. (2003). Micro effects of macro announcements: Real-time price discovery in foreign exchange. *The American Economic Review*, 93(1):38–62.
- Andersen, T. G., Bollerslev, T., Diebold, F. X., and Vega, C. (2007). Real-time price discovery in global stock, bond and foreign exchange markets. *Journal of International Economics*, 73(2):251–277.
- Banbura, M., Giannone, D., Modugno, M., and Reichlin, L. (2013). Now-casting and the real-time data flow. *Handbook of Economic Forecasting, Volume 2, ed. by G. Elliott, and A. Timmermann, NBER Chapters. Elsevier-North Holland.*
- Doz, C., Giannone, D., and Reichlin, L. (2011). A two-step estimator for large approximate dynamic factor models based on kalman filtering. *Journal of Econometrics*, 164(1):188–205.
- Doz, C., Giannone, D., and Reichlin, L. (2012). A quasi-maximum like-lihood approach for large, approximate dynamic factor models. *Review of economics and statistics*, 94(4):1014–1024.

- Ehrmann, M. and Fratzscher, M. (2005). Exchange rates and fundamentals: new evidence from real-time data. *Journal of International Money and Finance*, 24(2):317–341.
- Faust, J., Rogers, J. H., Wang, S.-Y. B., and Wright, J. H. (2007). The high-frequency response of exchange rates and interest rates to macroe-conomic announcements. *Journal of Monetary Economics*, 54(4):1051–1068.
- Giannone, D., Reichlin, L., and Small, D. (2008). Nowcasting: The real-time informational content of macroeconomic data. *Journal of Monetary Economics*, 55(4):665–676.
- Gilbert, T., Scotti, C., Strasser, G., and Vega, C. (2017). Is the intrinsic value of a macroeconomic news announcement related to its asset price impact? *Journal of Monetary Economics*, 92:78–95.
- Grover, S. P., Kliesen, K. L., and McCracken, M. W. (2016). A Macroeconomic News Index for Constructing Nowcasts of U.S. Real Gross Domestic Product Growth. *Review*, 98(4):277–296.
- Gürkaynak, R. S., Sack, B., and Swanson, E. (2005). The sensitivity of long-term interest rates to economic news: Evidence and implications for macroeconomic models. *American economic review*, pages 425–436.

- Gürkaynak, R. S. and Wright, J. H. (2013). Identification and inference using event studies. *The Manchester School*, 81(S1):48–65.
- Mariano, R. S. and Murasawa, Y. (2003). A new coincident index of business cycles based on monthly and quarterly series. *Journal of Applied Econometrics*, 18(4):427–443.
- Scotti, C. (2016). Surprise and uncertainty indexes: Real-time aggregation of real-activity macro-surprises. *Journal of Monetary Economics*, 82:1–19.

Appendix: The model


$$x_t = \Lambda f_t + \epsilon_t$$

$$f_t = A_1 f_{t-1} + ... + A_p f_{t-p} + u_t; \ u_t \ i.i.d. \sim \mathcal{N}(0, Q)$$

- x_t : vector of standardized stationary monthly variables
- f_t : unobserved common factors following a VAR(p)
- Λ: factor loadings
- ϵ_t : vector of idiosyncratic components following an AR(1)

Quarterly variables are modelled as monthly variables with periodically missing values; see the approximation of Mariano and Murasawa (2003).

Real time out-of-sample - US GDP nowcast

News analysis

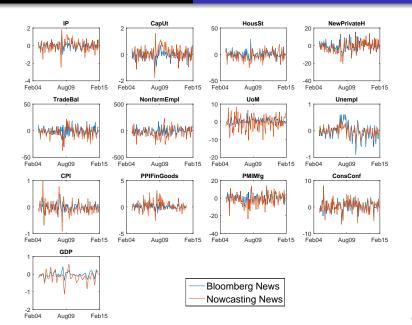
Studies show that market-based forecast are not always efficient (Pierce and Roley, 1985; Balduzzi et al., 2001; Andersen et al., 2001; Scotti, 2016).

I test the efficiency of forecasts F (Bloomberg survey or model-based forecast), testing for $\alpha_i=\beta_i=0$ in the regression (coefficients jointly significant=not efficient):

$$News_{i,t} = \alpha_i + \beta_i F_{i,t} + \epsilon_{i,t}$$
 (1)

News analysis

Bloomberg surveys


	α		β		F		F-pvalue
Industrial Production	-0.300	***	0.781	***	13.849	***	0.000
Capacity Utilization	-0.182	**	0.846	***	15.943	***	0.000
Housing Starts	0.019		0.058	***	8.047	***	0.005
Building Permits	0.022		0.042		1.482		0.226
Trade Balance	0.067		0.000		1.384		0.242
Change in Nonfarm Payrolls	-0.118		-0.001		1.403		0.239
U. of Mich. Sentiment	2.189	***	-0.024	***	8.369	***	0.005
Unemployment Rate	-0.207	**	2.581	***	7.884	***	0.006
CPI	-0.313	***	1.583	***	32.469	***	0.000
PPI	-0.119		0.862	***	34.695	***	0.000
Consumer Confidence Index	-0.072		0.001		0.088		0.767
ISM Manufacturing	1.276		-0.022		1.575		0.212
GDP Annualized	-0.041		-0.024		0.095		0.759

News analysis

Nowcasting forecasts

	α	β		F		F-pvalue
Industrial Production	0.086	-0.610	***	17.067	***	0.000
Capacity Utilization	-0.067	-0.839	***	15.679	***	0.000
Housing Starts	0.020	-0.035		2.376		0.126
Building Permits	0.018	-0.102	*	3.228	*	0.075
Trade Balance	0.009	0.000		0.187		0.666
Change in Nonfarm Payrolls	-0.052	0.001		1.562		0.214
U. of Mich. Sentiment	0.837	-0.011		1.331		0.251
Unemployment Rate	-0.018	1.294		1.736		0.190
CPI	0.085	-0.442		0.532		0.467
PPI	0.099	-0.670	**	3.998	**	0.048
Consumer Confidence Index	0.321	-0.004		1.071		0.303
ISM Manufacturing	0.732	-0.014		0.590		0.444
GDP Annualized	0.090	-0.140		0.146		0.705

News analysis - forecasting professional forecasters

I forecast the median of the surveys conducted by Bloomberg at the moment of the release, using the model prediction updated up to the previous macroeconomic release.

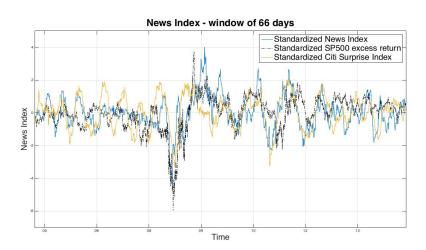
RMSFE relative to random walk

Capacity Utilization	0.81
Housing Starts	0.67
Building Permits	0.72
Trade Balance	1.21
Change in Nonfarm Payrolls	0.87
U. of Mich. Sentiment	0.75
Unemployment Rate	0.73
CPI	0.63
PPI	1.09
Consumer Confidence Index	0.62
ISM Manufacturing	0.44
GDP	1.27

real time out of sample, 2005-2014

Different kind of indexes and correlations

As market weights I take the coefficients of the regression of news on 10y bonds (as in Altavilla et al., 2017).


Regression of News on daily difference of 10y bonds

	Model-based	AGM (2017)
Industrial Production	-0.983	-0.57
Capacity Utilization: Industry	1.591	1.18 **
Housing Starts	0.842	0.27
New Private Housing Units Authorized	0.952 *	0.65
Trade Balance	0.897 *	1.03 **
Total Nonfarm Employment	1.110	3.59 **
University of Michigan: Consumer Sentiment	0.839	1.23 **
Unemployment Rate	0.001	-0.21
Consumer Price Index	0.702	0.15
Producer Price Index	1.693 ***	-0.13
Cons Conf	-0.211	0.89 **
ISM Mfg: PMI	2.417 ***	2.62 **
GDP	0.150	1.70 **

NB Sample size: Model: 2004-14 / AGM: 2000-16. AGM do a regression with 41 variables.

Nowcasting Surprise Index, S&P 500 and Citi Index

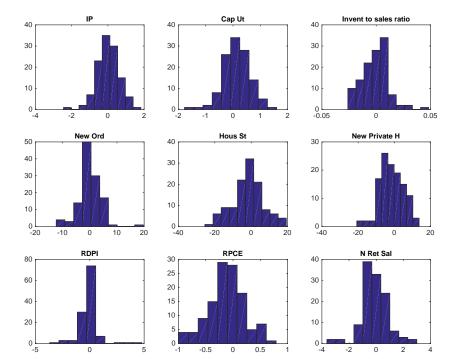
Correlations - different frequencies

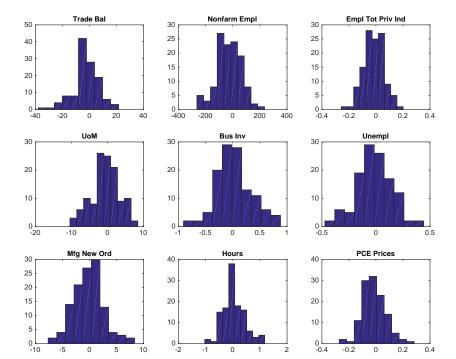
		Scotti Index	
Correlations	1-month	2-months	Quarterly
Change in 10y yields	0.02	-0.05	0.02
S&P 500 excess returns	0.06	0.16	0.21

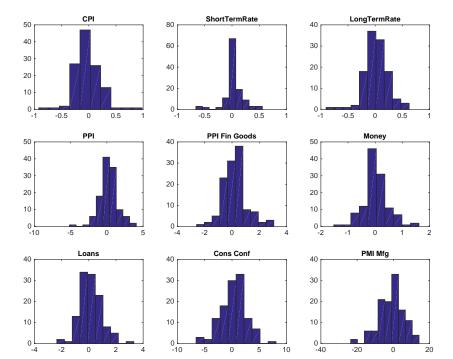
		Citi Index	
Correlations	1-month	2-months	Quarterly
Change in 10y yields	0.27	0.31	0.4
S&P 500 excess returns	0.15	0.19	0.22

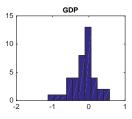
Regression - different frequencies

		Scotti Index	
OLS - R ²	1-month	2-months	Quarterly
Change in 10y yields	0	0	0
S&P 500 excess return	0	0.02	0.04

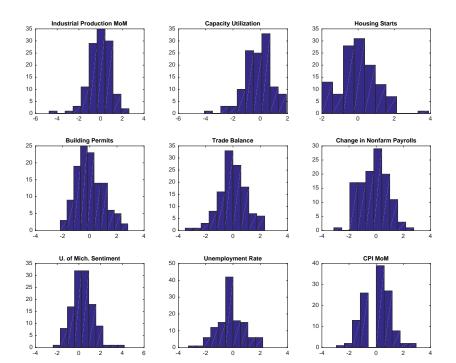

		Citi Index	
OLS - R ²	1-month	2-months	Quarterly
Change in 10y yields	0.07	0.1	0.16
S&P 500 excess return	0.02	0.03	0.05

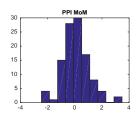


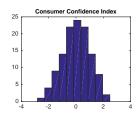

News Analysis: Now-Casting news

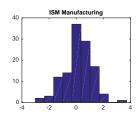

Data description: Histograms

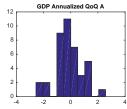
I start from Now-Casting news






News Analysis: Now-Casting news


Data description: Histograms


Bloomberg news

