AN EQUILIBRIUM MODEL OF NOMINAL EXCHANGE RATES, CURRENT ACCOUNTS AND ASSET FLOWS

Marcus Hagedorn

University of Oslo and CEPR

ESSIM 2017 May 26, 2017

MAIN OBJECTIVE

I show that three assumptions

- 1. Asset markets within each country are incomplete.
- 2. Presence of aggregate risk in each country.
- 3. Assets are nominal.

imply nominal exchange rate determinacy.

<u>Then:</u> What are the determinants of the nominal exchange rate? (Total Assets, NFAs, Productivity, Monetary policy, ...)

EXCHANGE RATE INDETERMINACY

- ► The simple type of indeterminacy
 - ► World (Home and Foreign) is in steady state.
 - Monetary policy sets nominal interest rates i_H and i_F .
 - ▶ Nominal exchange rate ϵ .
 - ▶ One good. Real exchange rate = 1.
 - ▶ Uncovered interest rate parity condition :

$$\frac{E_t \epsilon_{t+1}}{\epsilon_t} = \frac{1+i_H}{1+i_F}$$

 \hookrightarrow Expected change determined. Level NOT.

► Kareken & Wallace (1981) add more subtle type of indeterminacy. LATER.

Monetary Policy

- ► Textbook:
 - ► Sets Money Supply
 - + money not freely mobile across countries
 - \hookrightarrow Determinacy
- ► Standard: Sets nominal interest rates
 - \hookrightarrow Indeterminacy

- ► Here:
 - No restrictions to aggressive Taylor rules, to locally determinate equilibria or selected equilibria
 - ► Can consider interest rate pegs, coordinated monetary/fiscal policy ...
 - ► Overcomes several puzzles in liquidity trap:
 - ► Forward guidance puzzle
 - ► Technological Regress ⇒ Output ↑
 - ▶ Price stickiness $\uparrow \Rightarrow$ Fiscal Multiplier \uparrow

WHY IS DETERMINACY IMPORTANT?

- ▶ Otherwise: Key price in open macro is set by assumption.
 - \Rightarrow should be equilibrium response.
 - ► Nominal rigidities:

Nominal indeterminacy \rightarrow real indeterminacy.

 \hookrightarrow exports, imports, output, employment at home and abroad.

- ▶ How to manage the equilibrium exchange rate?
- ightharpoonup Exchange Rates \leftrightarrow International Asset Flows.
- ▶ Monetary Unions, Fiscal and monetary policy spillovers, ...

OVERVIEW

- ► Exchange Rate Level Determinacy in Incomplete Market Models with Aggregate Risk
- ► Overcoming Indeterminacy: Role of Assumptions
- ▶ Determinants of the Long-Run Exchange Rate

Exchange Rate Level Determinacy

REMEMBER MAIN OBJECTIVE

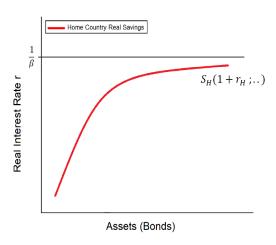
Show that three assumptions

- 1. Asset markets within each country are incomplete.
- 2. Presence of aggregate risk in each country.
- 3. Assets are nominal.

imply nominal exchange rate determinacy.

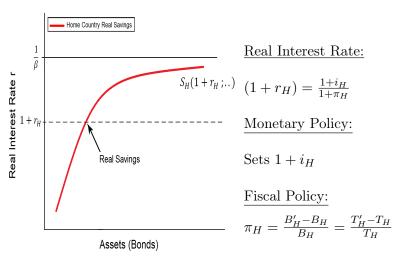
ASSUMPTION 3: ASSETS ARE NOMINAL

Only asset are nominal government bonds (capital irrelevant for determinacy).


Assumption is clearly necessary:

Fully price-indexed Assets

 \rightarrow No role for nominal prices.

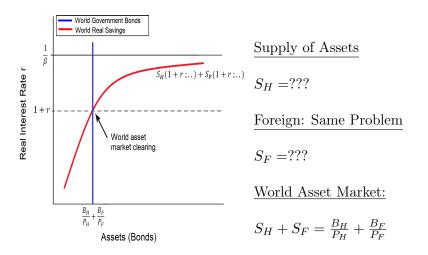

ASSUMPTION 2: MARKETS ARE INCOMPLETE

HUGGETT ECONOMY: AGGREGATE COUNTRY SAVINGS

Assumption 2: Markets are incomplete

Huggett Economy: Aggregate Country Savings

i : nominal interest rate
r : real interest rate


B: nominal bonds

 π : inflation rate

T: nominal tax revenue

Assumption 2: Markets are incomplete

HUGGETT ECONOMY: SUPPLY SIDE

i : nominal interest rate
r : real interest rate

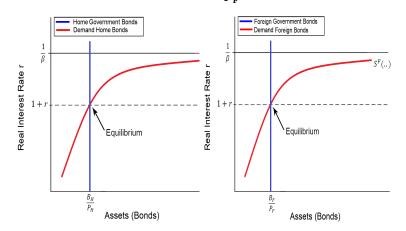
B: nominal bonds
T: nominal tax revenue

 π : inflation rate

ASSUMPTION 1: AGGREGATE COUNTRY RISK

- ► Standard finance theory \hookrightarrow Well-defined Portfolio Choices
- ▶ Here: Consider limit of vanishing aggregate country risk
- ► Home has demand

 - S^H_H(...) for home bonds.
 S^F_H(...) for foreign bonds.
- ► Foreign has demand
 - $S_F^F(\ldots)$ for foreign bonds.
 - $\triangleright S_F^H(\ldots)$ for home bonds.
- ▶ Demand for home bonds:


$$S^H(\ldots) = S_H^H(\ldots) + S_F^H(\ldots).$$

▶ Demand for foreign bonds:

$$S^F(\ldots) = S_F^F(\ldots) + S_H^F(\ldots).$$

ALL ASSUMPTIONS

Home Asset Market \rightarrow Home Price Level: $\frac{B_H}{\mathbf{P_H}} = S^H$. Foreign Asset Market \rightarrow Foreign Price Level: $\frac{B_F}{\mathbf{P_F}} = S^F$. Nominal Exchange Rate: $\epsilon = \frac{\mathbf{P_H}}{\mathbf{P_F}}$.

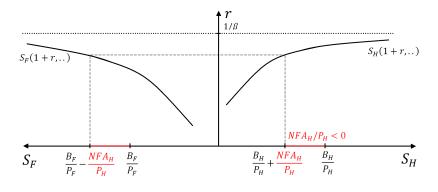
Overcoming

Indeterminacy:

Role of Assumptions

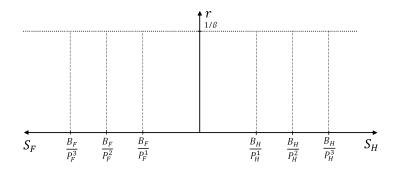
Equivalent Characterization using NFA

Definitions of Net Foreign Assets (NFA):


$$\begin{split} \frac{NFA_H}{P_H} &=& S_H^F - S_F^H, \\ \frac{NFA_F}{P_F} &=& S_F^H - S_H^F = -\frac{NFA_H}{P_H}. \end{split}$$

Country Asset Market clearing:

$$\frac{B_H + NFA_H}{\mathbf{P_H}} = S_H^H + S_H^F = S_H,$$


$$\frac{B_F + NFA_F}{\mathbf{P_F}} = \frac{B_F}{P_F} - \frac{NFA_H}{P_H} = S_F^F + S_F^H = S_F.$$

Equivalent Characterization using NFA

$$\frac{B_H + NFA_H}{\mathbf{P_H}} = S_H^H + S_H^F = S_H,
\frac{B_F + NFA_F}{\mathbf{P_F}} = \frac{B_F}{P_F} - \frac{NFA_H}{P_H} = S_F^F + S_F^H = S_F.$$

DETERMINACY: WHY INCOMPLETE MARKETS ARE NEEDED

World Asset Market Clearing:

$$S_H + S_F = \frac{B_H}{P_H} + \frac{B_F}{P_F}$$

World Asset Market Clearing:

$$S_H + S_F = \frac{B_H}{P_H} + \frac{B_F}{P_F}$$

Equilibrium Net Foreign Assets

$$\frac{NFA_H}{P_H} = S_H - \frac{B_H}{P_H}$$
$$\frac{NFA_F}{P_F} = S_F - \frac{B_F}{P_F}$$

World Asset Market Clearing:

$$S_H + S_F = \frac{B_H}{P_H} + \frac{B_F}{P_F}$$

Continuum of equilibrium prices!

Equilibrium Net Foreign Assets

$$\frac{NFA_H}{P_H} = S_H - \frac{B_H}{P_H}$$
$$\frac{NFA_F}{P_F} = S_F - \frac{B_F}{P_F}$$

World Asset Market Clearing:

$$S_H + S_F = \frac{B_H}{P_H \uparrow} + \frac{B_F}{P_F \downarrow}$$

Continuum of equilibrium prices!

Equilibrium Net Foreign Assets

$$\frac{NFA_H}{P_H} = S_H - \frac{B_H}{P_H}$$
$$\frac{NFA_F}{P_F} = S_F - \frac{B_F}{P_F}$$

World Asset Market Clearing:

$$S_H + S_F = \frac{B_H}{P_H \uparrow} + \frac{B_F}{P_F \downarrow}$$

Continuum of equilibrium prices!

Equilibrium Net Foreign Assets

$$\begin{array}{ll} \frac{NFA_H}{P_H} & = S_H - \frac{B_H}{P_H \uparrow} \\ \\ \frac{NFA_F}{P_F} & = S_F - \frac{B_F}{P_F \downarrow} \end{array}$$

World Asset Market Clearing:

$$S_H + S_F = \frac{B_H}{P_H \uparrow} + \frac{B_F}{P_F \downarrow}$$

Continuum of equilibrium prices!

Equilibrium Net Foreign Assets

$$\frac{NFA_H}{P_H} \uparrow = S_H - \frac{B_H}{P_H \uparrow}$$

$$\frac{NFA_F}{P_F} \downarrow = S_F - \frac{B_F}{P_F \downarrow}$$

World Asset Market Clearing:

$$S_H + S_F = \frac{B_H}{P_H \uparrow} + \frac{B_F}{P_F \downarrow}$$

Continuum of equilibrium prices!

Equilibrium Net Foreign Assets

Prices P_H and P_F define NFAs

$$\frac{NFA_H}{P_H} \uparrow = S_H - \frac{B_H}{P_H \uparrow}$$

$$\frac{NFA_F}{P_F} \downarrow = S_F - \frac{B_F}{P_F \downarrow}$$

No aggregate risk \Longrightarrow NFA Indifference \Longrightarrow Many Equilibria

World Asset Market Clearing:

$$S_H + S_F = \frac{B_H}{P_H} + \frac{B_F}{P_F}$$

Equilibrium Net Foreign Assets

Prices P_H and P_F define NFAs

$$\frac{NFA_H}{P_H} = S_H - \frac{B_H}{P_H}$$
$$\frac{NFA_F}{P_F} = S_F - \frac{B_F}{P_F}$$

 $Aggregate risk \implies No NFA Indifference \implies One Equilibrium$

Determinants of the

Long-Run

Exchange Rate

LONG-RUN EXCHANGE RATE EFFECTS OF

- 1. Higher Long-Run Government Debt
 - ▶ If Absorbed by Home ⇒ Depreciation
 - ▶ If Absorbed by Foreign \Longrightarrow Appreciation

2. Productivity Increase

 \Longrightarrow Appreciation

3. Long-Run Portfolio Adjustment

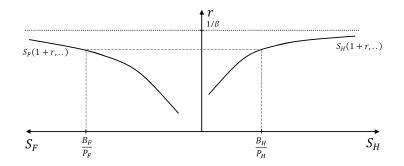
More NFAs \Longrightarrow Appreciation

LONG-RUN EXCHANGE RATE EFFECTS OF

- 1. Higher Long-Run Government Debt
 - ▶ If Absorbed by Home \Longrightarrow Depreciation
 - ightharpoonup If Absorbed by Foreign \Longrightarrow Appreciation

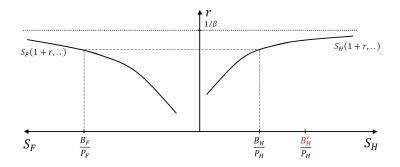
2. Productivity Increase

 \Longrightarrow Appreciation


3. Long-Run Portfolio Adjustment

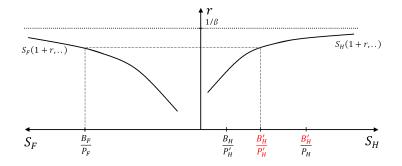
More NFAs \Longrightarrow Appreciation

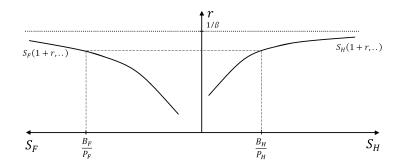
IMPORTANT:


All Partial Effects Comparison Across Steady-States

LONG RUN: DEBT EXPANSION HOME ABSORPTION

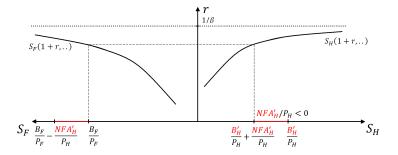
LONG RUN: DEBT EXPANSION HOME ABSORPTION


- ▶ Home bonds $B'_H > B_H$.
- ▶ Nominal NFA_H unchanged (Home Absorption).


LONG RUN: DEBT EXPANSION

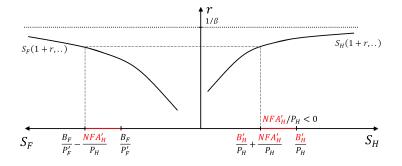
Home Absorption

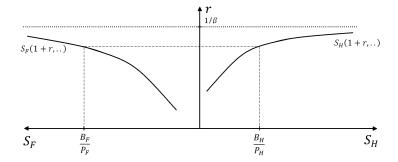
- ▶ Home bonds $B'_H > B_H$.
- ▶ Nominal NFA_H unchanged (Home Absorption).
- ▶ Home price level $P'_H > P_H$; foreign price level $P'_F = P_F$
- ▶ NER $\epsilon' = \frac{P'_H}{P'_F} > \epsilon = \frac{P_H}{P_F}$ (Depreciation).



LONG RUN: DEBT EXPANSION FOREIGN ABSORPTION

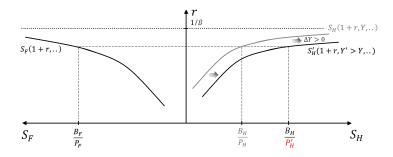
LONG RUN: DEBT EXPANSION FOREIGN ABSORPTION


- ▶ Home bonds $B'_H > B_H$.
- ▶ Nominal $NFA'_H < NFA_H$ falls (Foreign Absorption).

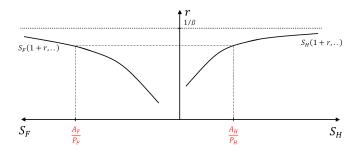

LONG RUN: DEBT EXPANSION

Foreign Absorption

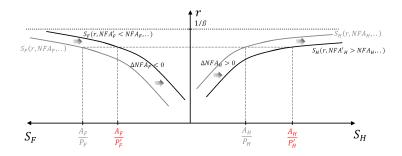
- ▶ Home bonds $B'_H > B_H$.
- ▶ Nominal $NFA'_H < NFA_H$ falls (Foreign Absorption).
- ▶ Home price level $P'_H = P_H$; foreign price level $P'_F > P_F$
- ▶ NER $\epsilon' = \frac{P'_H}{P'_F} < \epsilon = \frac{P_H}{P_F}$ (Appreciation).



LONG RUN: PRODUCTIVITY INCREASE


Long Run: Productivity Increase

- ▶ Productivity increase Y' > Y
- ▶ Home Savings Increase: $S'_H(Y',...) > S_H(Y,...)$
- ▶ Home price level $P'_H < P_H$; foreign price level $P'_F > P_F$
- ▶ NER $\epsilon' = \frac{P'_H}{P'_F} < \epsilon = \frac{P_H}{P_F}$ (Appreciation).


Portfolio Adjustment

- ▶ Total Nominal Assets A_H and A_F Unchanged
- ▶ Home Portfolio Switch: $NFA'_H > NFA_H$.
- ► Home Wealth and Savings up.

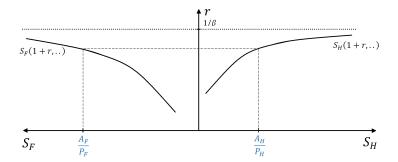
Portfolio Adjustment

- ▶ Total Nominal Assets A_H and A_F Unchanged
- ▶ Home Portfolio Switch: $NFA'_H > NFA_H$.
- ► Home Wealth and Savings up.
- ▶ Home price level $P'_H < P_H$; foreign price level $P'_F > P_F$
- ▶ NER $\epsilon' = \frac{P'_H}{P'_F} < \epsilon = \frac{P_H}{P_F}$ (Appreciation).

Temporary Shocks and Long-Run Effects

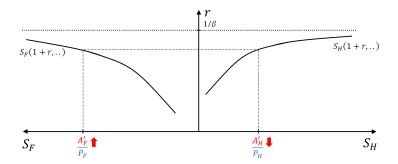
SHORT-RUN ← LONG-RUN

▶ Interest rate parity condition, $\epsilon_t = \frac{1+i_{F,t+1}}{1+i_{H,t+1}} \epsilon_{t+1}$, connects short-run and long-run exchange rate response:

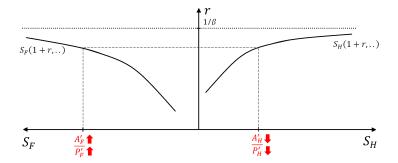

$$\epsilon_t = \Big(\prod_{s=t+1}^{\infty} \frac{1+i_{F,s}}{1+i_{H,s}}\Big)\epsilon_{\infty}.$$

- ▶ Well defined since ϵ_{∞} is determinate.
- ► Two step procedure:
 - 1. Find effect on long-run exchange rate.
 - 2. Apply Interest rate parity condition backwards to obtain short-run response.

Some Dilemmas


ASSET INFLOW (TRIFFIN'S DILEMMA)

▶ Initial Asset Holdings: A_H and A_F .


ASSET INFLOW (TRIFFIN'S DILEMMA)

- ▶ Initial Asset Holdings: A_H and A_F .
- ▶ Asset Inflow: Foreign buys home assets. $NFA_H < 0$

ASSET INFLOW (TRIFFIN'S DILEMMA)

- ▶ Initial Asset Holdings: A_H and A_F .
- ▶ Asset Inflow: Foreign buys home assets. $NFA_H < 0$
- ▶ Home price level $P'_H < P_H$; foreign price level $P'_F > P_F$
- ▶ NER $\epsilon' = \frac{P'_H}{P'_F} < \epsilon = \frac{P_H}{P_F}$ (Appreciation).

TETRALEMMA: LOSS OF FISCAL POLICY INDEPENDENCE

- ► Classic policy trilemma in international economics
 - ► Unrestricted capital mobility
 - ► Fixed exchange rate implies monetary policy independence:

$$1 + i_H = (1 + i_F) \frac{E_t \epsilon_{t+1}}{\epsilon_t} = 1 + i_F.$$

- ▶ Unanticipated asset outflow / negative prod. shock
 ⇒ Leads to depreciation.
- ► How to maintain exchange rate peg?
- \hookrightarrow Monetary policy cannot be used $(i_H = i_F)$.
- ⇒ Fiscal policy has to stabilize the exchange rate.
 - \Longrightarrow Loss of fiscal policy independence.

Conclusions

CONCLUSIONS

- ► I showed that three assumptions
 - 1. Asset markets within each country are incomplete.
 - 2. Presence of aggregate risk in each country.
 - 3. Assets are nominal.

imply nominal exchange rate determinacy.

- ► Discussed Implications for
 - ► Exchange Rate Management
 - ► Asset flows and exchange rate
 - ► Sterilization/Exchange Rate Stabilization
 - ► Tetralemma: Loss of independent fiscal policy

TEMPORARY TIGHTENING OF HOME MONETARY POLICY

- ▶ Increase in Home nominal interest rate i_H .
 - \hookrightarrow Foreign country accumulates home assets.
 - \hookrightarrow Affects long-run asset distribution.
 - \hookrightarrow Temporary policy has long-run effects.
 - \implies Leads to long-run appreciation of Home exchange rate.
 - \Longrightarrow Short-run appreciation.

TEMPORARY INCREASE OF FOREIGN LIQUIDITY DEMAND

- ► Temporary increase in asset demand by Foreign.
 - \hookrightarrow Foreign country buys home assets.
 - \hookrightarrow Temporary policy has again long-run effects.
 - \hookrightarrow Affects long-run asset distribution.
 - \implies Leads to long-run appreciation of Home exchange rate.
 - \Longrightarrow Short-run appreciation.

Empirical Evidence

EMPIRICAL PREDICTION AND SPECIFICATION

$$\epsilon_t = \mathcal{E}(A_{H,t}, NFA_{H,t}, R_{H,t}, Y_{H,t}).$$

$$(+) \qquad (-) \qquad (-) \qquad (-)$$

- ▶ Total Assets $A_H = B_H + NFA_H$.
- \triangleright B_H : Federal US Total Public Debt.
- ▶ NFA_H : US Net Foreign Debt from Gourinchas & Rey.
- $ightharpoonup R_H$: Effective US Federal Funds Rate
- ▶ Y_H : US-GDP divided by employment

Specification:

$$\Delta \log(\epsilon_t)$$
= $\gamma_0 + \gamma^A \Delta \log(A_{H,t}) + \gamma^{NFA} \Delta \log(NFA^{H,t}) + \gamma^Y \Delta \log(Y_{H,t}) + \gamma^R \log(R_{H,t-1})$
+ η_t

EMPIRICAL PREDICTION AND SPECIFICATION

$$\Delta \log(\epsilon_t)$$
= $\gamma_0 + \gamma^A \Delta \log(A_{H,t}) + \gamma^{NFA} \Delta \log(NFA^{H,t}) + \gamma^Y \Delta \log(Y_{H,t}) + \gamma^R \log(R_{H,t-1})$
+ η_t

Assets A_{US}	NFA_{US}	FFR_{US}	Productivity Y_{US}
0.3497***	-0.1585***	-0.0034***	-0.3687***
(0.0006)	(0.0000)	(0.0000)	(0.0035)

Quarterly Observations: 124, R^2 : 0.1749

1973:Q1 to 2004:Q1 Robust pval in parentheses *** p<0.01, ** p<0.05, * p<0.1

EMPIRICAL SPECIFICATION: LONGER HORIZONS

- Define: $\Delta_k x_t = x_t x_{t-k}$
- Specification with k- period difference:

$$\Delta_k \log(\epsilon_t)$$
= $\gamma_0 + \gamma_k^A \Delta_k \log(A_{H,t}) + \gamma^{NFA} \Delta_k \log(NFA^{H,t}) + \gamma_k^Y \Delta \log(Y_{H,t}) + \gamma_k^R \log(R_{H,t-k})$
+ $\eta_{k,t}$.

	(1)	(2)	(3)	(4)	(5)
VARIABLES	$\stackrel{\cdot}{\mathrm{k=4q}}$	k=6q	k=8q	k=10q	${\mathrm{k=12q}}$
A_{US}	0.3252***	0.3635**	0.3700***	0.3192**	0.3093**
	(0.0035)	(0.0173)	(0.0075)	(0.0269)	(0.0357)
NFA_{US}	-0.1629**	-0.2210**	-0.2604***	-0.3254***	-0.4131***
	(0.0122)	(0.0172)	(0.0081)	(0.0019)	(0.0005)
R_{US}	-0.0122***	-0.0163***	-0.0207***	-0.0210***	-0.0228***
	(0.0000)	(0.0000)	(0.0000)	(0.0016)	(0.0064)
Y_{US}	-0.8464**	-0.9634*	-1.2129*	-1.2454	-1.0771
	(0.0106)	(0.0820)	(0.0986)	(0.1717)	(0.2479)
Observations	121	119	117	115	113
R^2	0.2393	0.2675	0.3281	0.3713	0.4482
Robust pval in parentheses					

*** p<0.01, ** p<0.05, * p<0.1

RESULTS 83:Q1 - 04:Q1

$$\Delta \log(\epsilon_t)$$
= $\gamma_0 + \gamma^A \Delta \log(A_{H,t}) + \gamma^{NFA} \Delta \log(NFA^{H,t}) + \gamma^Y \Delta \log(Y_{H,t}) + \gamma^R \log(R_{H,t-1})$
+ η_t

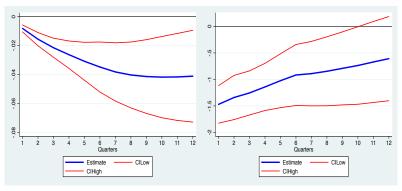
Assets A_{US}	NFA_{US}	FFR_{US}	Productivity Y_{US}
0.4246***	-0.2064***	-0.0048***	-0.5475*
(0.0009)	(0.0005)	(0.0000)	(0.0867)

Observations: 85, R²: 0.1858 1983:Q1 to 2004:Q1 Robust pval in parentheses *** p<0.01, ** p<0.05, * p<0.1

DETERMINANTS OF NET FOREIGN ASSETS

► Theory predicts:

- Changes in nominal interest rate and debt issuance
- \hookrightarrow Accumulation of future net foreign assets
- \blacktriangleright Empirical specification to test these predictions:


$$\begin{split} & \log(NFA_{t+k}) - \log(NFA_t) \\ & = & \delta_k + \delta_k^B(\log(B_{t+k}) - \log(B_t)) + \delta_k^R(\log(R_{US,t-1}) - \log(R_{ROW,t-1})) + \mu_{k,t}, \end{split}$$

► Theory predicts:

- $\delta^B < 0$: Foreign buys some of newly issued home debt.
- $\delta^R < 0$: Foreign buys home debt.

EVIDENCE ON THE DETERMINANTS OF THE US NET FOREIGN ASSET POSITION

$$\begin{split} &\log(NFA_{t+k}) - \log(NFA_t) \\ &= & \delta_k + \delta_k^B(\log(B_{t+k}) - \log(B_t)) + \delta_k^R(\log(R_{US,t-1}) - \log(R_{ROW,t-1})) + \mu_{k,t}, \end{split}$$

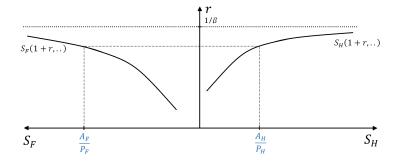
Monetary Policy, $R_{US} - R_{ROW}$

Government Debt, B_{US}

Implications

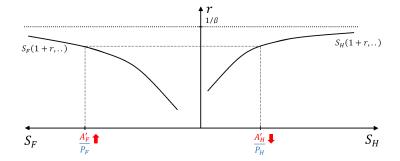
IMPLICATIONS: OVERVIEW

Already seen:

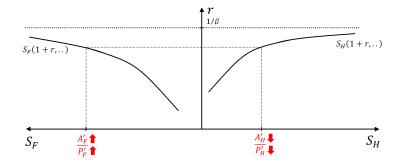

- ► How to manage the exchange rate:
 - ▶ Use increase in govt' bonds to depreciate.
 - ▶ Buy foreign assets to depreciate.

Now:

- ► Effects of asset flows/NFAs on exchange rates.
 - ► Asset Inflow leads to appreciation.
- ► Sterilization/Exchange Rate Stabilization
- ► Tetralemma: Loss of independent fiscal policy

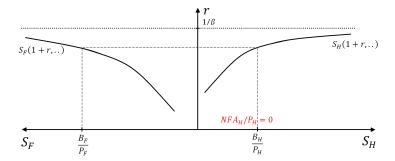

ASSET INFLOW

▶ Initial Asset Holdings: A_H and A_F .


ASSET INFLOW

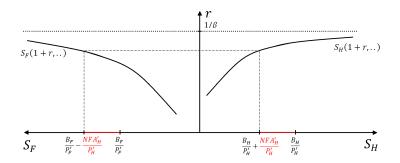
- ▶ Initial Asset Holdings: A_H and A_F .
- ▶ Asset Inflow: Foreign buys home assets. $NFA_H < 0$

ASSET INFLOW


- ▶ Initial Asset Holdings: A_H and A_F .
- ▶ Asset Inflow: Foreign buys home assets. $NFA_H < 0$
- ▶ Home price level $P'_H < P_H$; foreign price level $P'_F > P_F$
- ▶ NER $\epsilon' = \frac{P'_H}{P'_F} < \epsilon = \frac{P_H}{P_F}$ (Appreciation).

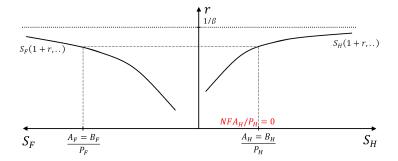
EXCHANGE RATE POLICY

STERILIZATION


▶ Initial $NFA_H = 0$. Both Countries hold own assets.

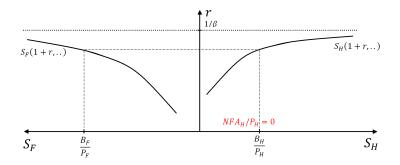
EXCHANGE RATE POLICY

STERILIZATION


- ▶ Initial $NFA_H = 0$. Both Countries hold own assets.
- ▶ Next: Asset Inflow, $NFA_H < 0$. Appreciation.

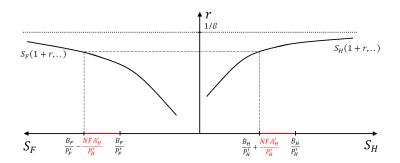
EXCHANGE RATE POLICY

STERILIZATION


- ▶ Initial $NFA_H = 0$. Both Countries hold own assets.
- ▶ Next: Asset Inflow, $NFA_H < 0$. Appreciation.
- ▶ Full Sterilization: Undo NFA Flows $\Rightarrow NFA_H = 0$.
- ▶ All (NER, P_H , P_F , A_H , A_F) unchanged (except portfolio).

STABILIZE EXCHANGE RATE

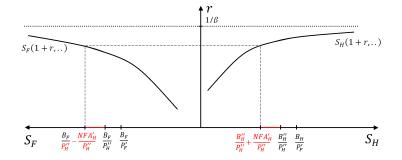
USING BONDS ONLY


▶ Initial $NFA_H = 0$. Both Countries hold own assets.

STABILIZE EXCHANGE RATE

USING BONDS ONLY

- ▶ Initial $NFA_H = 0$. Both Countries hold own assets.
- ▶ Next: Asset Inflow, $NFA_H < 0$. Appreciation.



STABILIZE EXCHANGE RATE

Using Bonds Only

- ▶ Initial $NFA_H = 0$. Both Countries hold own assets.
- ▶ Next: Asset Inflow, $NFA_H < 0$. Appreciation.
- ▶ Issue bonds $B''_H > B_H$ (full home absorption) until

$$\epsilon'' = \frac{P_H''}{P_E''} = \frac{P_H}{P_F} = \epsilon.$$

TETRALEMMA: LOSS OF FISCAL POLICY INDEPENDENCE

- ► Classic policy trilemma in international economics
 - ► Unrestricted capital mobility
 - ► Fixed exchange rate implies monetary policy independence:

$$1 + i_H = (1 + i_F) \frac{E_t \epsilon_{t+1}}{\epsilon_t} = 1 + i_F.$$

- ▶ Permanent asset outflow / negative prod. shock.
 - \hookrightarrow Leads to depreciation.
- ► How to maintain exchange rate peg?
- \hookrightarrow Monetary policy cannot be used $(i_H = i_F)$.
- ⇒ Fiscal policy has to stabilize the exchange rate.
 - \Longrightarrow Loss of fiscal policy independence.

Conclusions

CONCLUSIONS

- ► I showed that three assumptions
 - 1. Asset markets within each country are incomplete.
 - 2. Presence of aggregate risk in each country.
 - 3. Assets are nominal.

imply nominal exchange rate determinacy.

- ► Discussed Implications for
 - ► Exchange Rate Management
 - ► Asset flows and exchange rate
 - ► Sterilization/Exchange Rate Stabilization
 - ► Tetralemma: Loss of independent fiscal policy

Additional Slides

EXCHANGE RATE DETERMINATION:

Non-Vanishing Aggregate Country Uncertainty

- ► A measure one of small countries, each subject to aggregate shocks.
- ► Each country is a Huggett economy.
- ▶ Aggregate income of country c is Y_c . Aggregate world income is constant.
- ▶ Fiscal policy sets nominal bonds B_c (denominated in their own currency), and nominal taxes T_c .
- SS government nominal budget constraints, $B_{c,+1} - (1 + i_c)B_c = T_c$.
- ▶ Bonds are fully mobile across borders and there are no transactions costs.
- ► In steady-state

$$1 + \gamma_c = \frac{B_{c,t+1} - B_{c,t}}{B_{c,t}} = \frac{T_{c,t+1} - T_{c,t}}{T_{c,t}},$$

EXCHANGE RATE DETERMINATION:

World Steady State

► Stationary distribution of country inflation rates

$$1 + \pi_c = \frac{P_{c,t+1} - P_{c,t}}{P_{c,t}} \sim \mu_{\pi}.$$

► Stationary distribution of demand of a country's assets

$$S^c \sim \mu_S$$
.

 \blacktriangleright Asset market clearing for country c bonds:

$$\frac{B_{c,t}}{\mathbf{P_{c,t}}} = S^c.$$

- ▶ Induces stationary distribution for P_c (from μ_{π} and μ_S).
- ▶ Delivers stationary distribution of country $c \tilde{c}$ exchange rates:

$$\epsilon_{c,\tilde{c}} = \frac{P_c}{P_z}.$$

EVIDENCE ON THE DETERMINANTS OF THE US NET FOREIGN ASSET POSITION

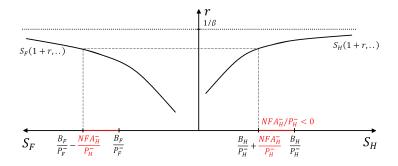
$$\begin{split} &\log(NFA_{t+k}) - \log(NFA_t) \\ &= & \delta_k + \delta_k^B(\log(B_{t+k}) - \log(B_t) + \delta_k^R(\log(R_{US,t-1}) - \log(R_{ROW,t-1})) + \mu_{k,t}, \end{split}$$

VARIABLES	k=1	k=4	k=8	k=12
Debt B	-1.4711***	-1.1416***	-0.8460***	-0.6076
	(0.0000)	(0.0000)	(0.0093)	(0.1263)
$R_{US} - R_{ROW}$	-0.0082***	-0.0263***	-0.0404***	-0.0412***
	(0.0000)	(0.0000)	(0.0004)	(0.0093)
Observations	84	81	77	73
R^2	0.3412	0.3866	0.4011	0.2878
Robust pval in parentheses				
*** p<0.01, ** p<0.05, * p<0.1				

FORECASTING FUTURE EXCHANGE RATES

Past NFAs \Rightarrow current exchange rate:

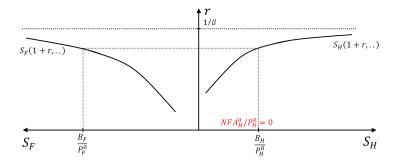
$$\begin{split} \log(\epsilon_{t+4}) - \log(\epsilon_t) &= \kappa_0 + \kappa_1 (\log(NFA_t) - \log(NFA_{t-4})) + \eta_t, \\ \log(\epsilon_{t+4}) - \log(\epsilon_t) &= \kappa_0 + \kappa_1 (\log(NFA_{t-4}) - \log(NFA_{t-8})) + \eta_t. \end{split}$$


	$\log(\epsilon_{t+4})$	$-\log(\epsilon_t)$
$NFA_t - NFA_{t-4}$	-0.2757**	-0.3372**
	(0.0377)	(0.0473)
R^2	0.1805	0.2227
$NFA_{t-4} - NFA_{t-8}$	-0.1143* (0.0958)	-0.2098*** (0.0040)
R^2	0.0466	0.0866
Observations	121	85
Time Period	1973:Q1-	1983:Q1-

Robust pval in parentheses
*** p<0.01, ** p<0.05, * p<0.1

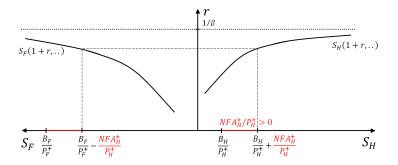
KAREKEN & WALLACE (1981) INDETERMINACY NFA NOT DETERMINED

 $NFA_H^- < 0$, World Asset Market Clears:


$$S_H + S_F = \frac{B_H}{P_H^-} + \frac{B_F}{P_F^-}$$

KAREKEN & WALLACE (1981) INDETERMINACY NFA NOT DETERMINED

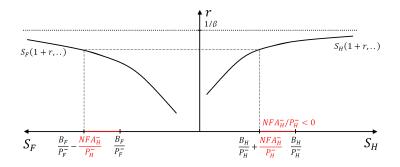
 $NFA_H^0 = 0$, World Asset Market Clears:


$$S_H + S_F = \frac{B_H}{P_H^0} + \frac{B_F}{P_F^0}$$

KAREKEN & WALLACE (1981) INDETERMINACY NFA NOT DETERMINED

 $NFA_H^+ > 0$, World Asset Market Clears:

$$S_H + S_F = \frac{B_H}{P_H^+} + \frac{B_F}{P_F^+}$$

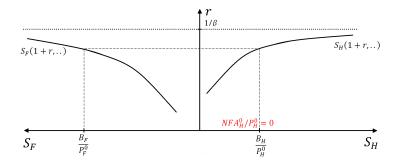

LONG RUN: NFA

Bonds B_H unchanged

$$NFA_H < 0$$

Exchange Rate : ϵ^-

$$\epsilon^- = P_H^-/P_F^-$$

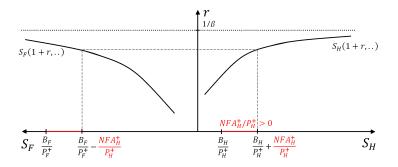

LONG RUN: NFA

Bonds B_H unchanged

$$NFA_H = 0$$

Exchange Rate : $\epsilon^- < \epsilon^0$

$$\epsilon^- = P_H^0/P_F^0$$


LONG RUN: NFA

Bonds B_H unchanged

$$NFA_H > 0$$

Exchange Rate : $\epsilon^- < \epsilon^0 < \epsilon^+$

$$\epsilon^+ = P_H^+/P_F^+$$

