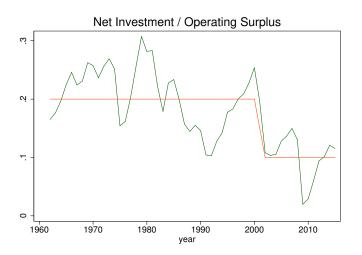

# Declining Competition and Investment in the U.S.

German Gutierrez and Thomas Philippon


NYU, NBER, CEPR

May 2017, ESSIM

## Stylized Fact #1: Increased Concentration

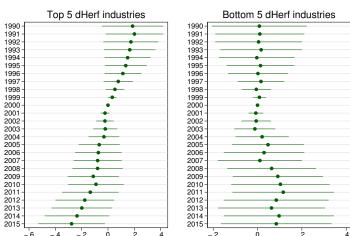



# Stylized Fact #2: Profits Are High But Investment Is Low



Notes: Annual data for Non financial Business sector (Corporate and Non corporate).

# Fact #2: I/K is low while Q is High




# Theory

- Theories that predict low I/K because they predict low Q
  - E.g.: spreads & risk premia, low expected TFP growth, low expected demand, etc.
  - Solve the wrong puzzle: Q is high, but  $I/\kappa$  is low.
- Theories that predict a gap between Q and  $I/\kappa$ 
  - monopoly rents
  - governance issues
  - intangible investment?

# Motivation: Investment gap largest for concentrating industries

#### Capital Gap vs. Q



#### Identification Issue: Model

- Monopolistic competition, firm i in industry j
  - Fixed entry cost  $\kappa_{j,t-1}^e$
  - Production

$$y_{i,t} = A_{j,t} k_{i,t}^{\alpha} I_{i,t}^{1-\alpha}$$

Industry demand

$$Y_{j,t}^D = D_{j,t} P_{j,t}^{-\sigma}$$

Aggregator

$$Y_{j,t}^{\mathcal{S}} \equiv \left(\int_{0}^{N_{j,t-1}} y_{i,t}^{\frac{\varepsilon_{j}-1}{\varepsilon_{j}}} di\right)^{\frac{\varepsilon_{j}}{\varepsilon_{j}-1}}$$

### Industry Equilibrium

• Entry in industry j = 1..J

$$\begin{split} \frac{\varepsilon_{j} - \sigma}{\varepsilon_{j} - 1} \log N_{t-1} = & \log \left(\mu_{j} - 1\right) \mu_{j}^{-\sigma} + \log \mathbb{E}_{t-1} \left[ \chi_{j,t}^{1-\sigma} D_{j,t} \right] \\ & - \log \left(1 + r_{t-1}\right) \kappa_{j,t-1}^{e} \end{split}$$

Investment

$$\log K_{j,t} = \log \alpha \frac{\chi_{j,t}^{1-\sigma}}{\rho_t} + \log D_{j,t} - \sigma \log \mu_j + \frac{\sigma - 1}{\varepsilon_j - 1} \log N_{j,t-1}$$

# Competitive Limit with Anticipated Demand Shocks

• Entry in industry j = 1..J

$$\log N_{j,t-1}^c = \log \frac{\psi \chi_t^{1-\sigma}}{1+r_{t-1}} + \log \mathbb{E}_{t-1} \left[ \frac{D_{j,t}}{D_{j,t}} \right]$$

Investment

$$\log K_{j,t} = \log \alpha \frac{\chi_{j,t}^{1-\sigma}}{\rho_t} + \log \frac{D_{j,t}}{\rho_t} + \log N_{j,t-1}$$

- Prop 1
  - Cross-industry OLS regression of log-investment on log-Herfindahl gives a slope of minus one.

# Industry Equilibrium & Identification

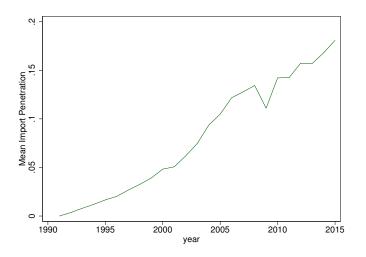
• Entry in industry j = 1..J

$$\begin{split} \frac{\varepsilon_{j} - \sigma}{\varepsilon_{j} - 1} \log N_{t-1} = & \log \left(\mu_{j} - 1\right) \mu_{j}^{-\sigma} + \log \mathbb{E}_{t-1} \left[ \chi_{j,t}^{1-\sigma} D_{j,t} \right] \\ & - \log \left(1 + r_{t-1}\right) \kappa_{j,t-1}^{e} \end{split}$$

Investment

$$\log K_{j,t} = \log \alpha \frac{\chi_{j,t}^{1-\sigma}}{\rho_t} + \log D_{j,t} - \sigma \log \mu_j + \frac{\sigma - 1}{\varepsilon_j - 1} \log N_{j,t-1}$$

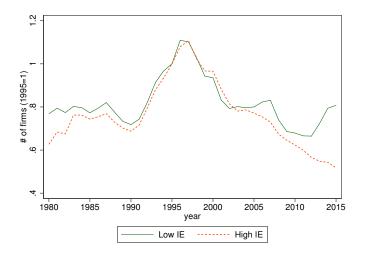
• **Prop 2**: Variation in entry costs  $\kappa_j^e$  that are uncorrelated with future demand  $D_{j,t}$  and productivity  $A_{j,t}$  would be valid instruments for concentration.


## Our Strategy

- Natural experiment
  - Chinese import competition
- Instrument for Herfindahl
  - Excess entry in the 1990s
- Explaining the broad increase in concentration in the 2000's
  - Regulations, etc.

### Chinese Competition

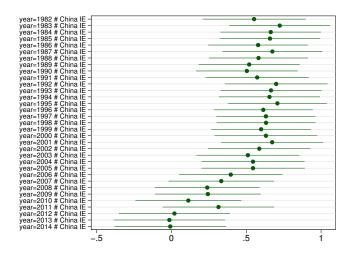
- Good
  - Orthogonal to industry demand & supply shocks
- Bad
  - Ambiguous effect on domestic industry investment
  - Test firm-level predictions
- Write model of vertical differentiation with heterogenous firms
  - Leader has higher quality / lower cost
- Prop 3:
  - The more efficient the leader, the more it reacts to competition by increasing investment.
  - Domestic industry investment ambiguous because laggards exit or downsize.


#### Average China Import Competition



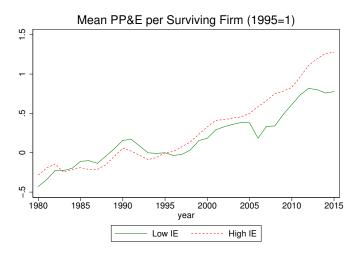
Note: Annual data. Import penetration defined as  $\Delta IP_{jt} = \frac{\Delta M_{jt}}{Y_{j,\mathbf{91}} + M_{j,\mathbf{91}} - E_{j,\mathbf{91}}}$ 




### Number of US Firms, by Exposure to China



Notes: Annual data. US incorporated firms in manufacturing industries only. Industries assigned to exposure based on median 91-11 exposure. (1995 = 1)




#### Impact of Exposure to China on N firms



Notes: Plot shows  $\beta_t$  from  $log(N_{i,t}) = \mu_i + \eta_t + \beta_t \Delta I P_{i,99-11} \times 1 \{ year \} + \varepsilon_{i,t}$ .

## PP&E of Surviving Firms



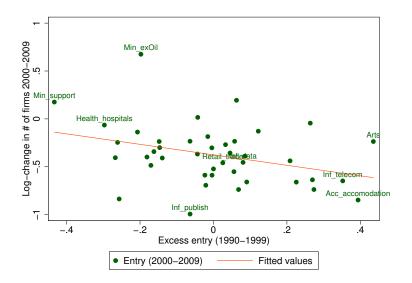
Notes: Annual data. US incorporated firms in manufacturing industries only. Industries assigned to exposure based on median 91-11 exposure. Similar patterns for Assets, Intangibles, etc.

# China IV regressions: NTR Gap

|                                          | (1)          | (2)          | (3)            | (4)          | (5)          | (6)            |
|------------------------------------------|--------------|--------------|----------------|--------------|--------------|----------------|
|                                          | $\log(AT_t)$ | $log(PPE_t)$ | $log(Intan_t)$ | $\log(AT_t)$ | $log(PPE_t)$ | $log(Intan_t)$ |
|                                          | ≥1980        | ≥1980        | ≥1980          | ≥1980        | ≥1980´       | ≥1980 ´        |
|                                          |              |              |                |              |              |                |
| Post $01 	imes NTR$ Gap                  | -0.693**     | -0.911**     | -0.552         | -1.265**     | -1.519**     | -1.167+        |
| ·                                        | [-3.38]      | [-2.99]      | [-0.90]        | [-5.77]      | [-4.83]      | [-1.81]        |
| $Post01 \times NTR Gap \times Lead_{99}$ | 3            |              |                | 1.164**      | 1.239**      | 1.321**        |
|                                          |              |              |                | [7.65]       | [7.46]       | [4.47]         |
| $\log(Age_{t-1})$                        | 0.240**      | 0.340**      | 0.01           | 0.240**      | 0.340**      | 0.019          |
|                                          | [8.01]       | [9.79]       | [0.13]         | [8.17]       | [10.26]      | [0.25]         |
|                                          |              |              |                | -            | -            |                |
| Observations                             | 49971        | 49831        | 29698          | 49971        | 49831        | 29698          |
| Within R <sup>2</sup>                    | 0.457        | 0.223        | 0.352          | 0.468        | 0.234        | 0.356          |
| Overall $R^2$                            | 0.093        | 0.078        | 0.096          | 0.113        | 0.103        | 0.108          |
| Industry controls†                       | YES          | YES          | YES            | YES          | YES          | YES            |
| Year FE                                  | YES          | YES          | YES            | YES          | YES          | YES            |
| Firm FE                                  | YES          | YES          | YES            | YES          | YES          | YES            |

Notes: T-stats in brackets. + p < 0.10, \* p < 0.05, \*\* p < 0.05. Standard errors clustered at industry-level. § Leaders defined as firms with above-median Q as of 1999 within each NAICS Level 4 industry

<sup>†</sup> Industry controls include measures of industry-level production structure (e.g., K/Emp) as of 1991






# Competition & Investment: Beyond Manufacturing

- Chinese import competition
  - clean identification
  - but experiment is an increase in competition in one sector
- Excess entry in 1990s
  - we can show it varies a lot across sectors, and it is orthogonal to future demand
  - VCs, entry costs, etc.

# IV: Entry post-2000 vs. Excess entry in 1990s



# Entry (sometimes) predicts sales but Excess Entry does not

|                                | (1)                        | (2)     | (3)                         | (4)     |  |
|--------------------------------|----------------------------|---------|-----------------------------|---------|--|
|                                | $\Delta log(Sale)_{99-04}$ |         | $\Delta log(V.Add)_{99-04}$ |         |  |
| $\Delta log(\# firms)_{94-99}$ | 0.102<br>[0.85]            |         | 0.321*<br>[2.64]            |         |  |
| Excess $Entry_{90-99}(i)$      |                            | -0.08   |                             | -0.06   |  |
|                                |                            | [-0.40] |                             | [-0.28] |  |
|                                |                            |         |                             |         |  |
| Observations                   | 43                         | 42      | 43                          | 42      |  |
| $R^2$                          | 0.017                      | 0.004   | 0.145                       | 0.002   |  |

Notes: T-stats in brackets. + p<0.10, \* p<0.05, \*\* p<.01

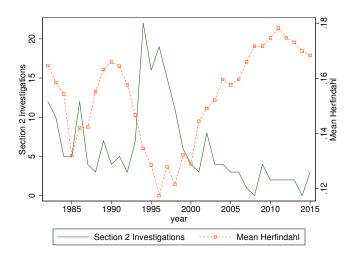
### IV: Panel Regression Results

|                                                          | (1)           | (2)      | (3)           | (4)      |
|----------------------------------------------------------|---------------|----------|---------------|----------|
|                                                          | 1st St.       | 2nd St.  | 1st St.       | 2nd St.  |
|                                                          | $HHI_{j,t-1}$ | Net I/K  | $HHI_{j,t-1}$ | Net I/K  |
|                                                          | $\geq$ 2000   | ≥2000    | ≥2000         | ≥2000    |
| Mean Stock Q (t-1)                                       | 0.01          | 0.036**  | 0.03**        | 0.043**  |
| , ,                                                      | [1.34]        | [7.42]   | [3.53]        | [6.89]   |
| Excess Inv <sub>90–99</sub>                              | -1.51**       |          | ' '           |          |
| 30 33                                                    | [-2.82]       | [-3.48]  |               |          |
| Excess Entry <sub>90<math>-99</math></sub> (i)           | -0.11**       | 1        |               |          |
| 390 99( )                                                | [-3.04]       |          |               |          |
| Excess Entry <sub>90–99</sub> (i) × Med HHI <sub>t</sub> | []            |          | 2.66**        |          |
| =xeese = x x y 90 = 99 (1) x x x ea 1 x x x 2            |               |          | [3.22]        |          |
| $HHI_{i,t-1}$                                            |               | -0.504** | [5.22]        | -0.602** |
| / // //,t=1                                              |               | [-5.81]  |               | [-5.17]  |
| A                                                        |               |          |               |          |
| Age controls                                             |               | es       |               | es       |
| Year FE                                                  | No            |          | Yes           |          |
| Industry FE                                              | No            |          | Yes           |          |
| Observations                                             | 672           | 672      | 672           | 672      |
| $R^2$                                                    |               | 0.052    |               | 0.036    |
|                                                          |               | ode and  |               |          |

Notes: T-stats in brackets. + p<0.10, \* p<0.05, \*\* p<0.01.

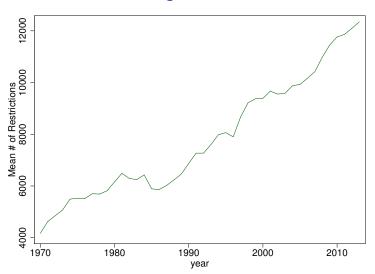
# Competition and Investment: Summary

- Most domestic industries have become MORE concentrated
  - Lower competition/entry means less investment by leaders and less investment at the industry level
- Some manufacturing industries have seen increased competition from China
  - Domestic leaders have increased investment, R&D, and employment
  - But overall effect on domestic investment somewhat negative


## What explains the broad increase in concentration?

- 1. **Enforcement and regulation**: declined antitrust enforcement + increased regulation
- 2. Superstar firms: 'winner-takes-most'; incumbent innovation

#### Other explanations


- 1. Omission of private firms in Compustat
- 2. Foreign competition (other than China)
- 3. Intangible
- 4. Population aging and decreased start-up rates
- -> 1-2 discussed (and discarded) in Grullon-Larkin-Michaely (2016); 3-4 discussed in Gutierrez and Philippon (2016b)

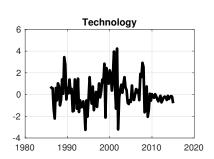
#### Antitrust enforcement

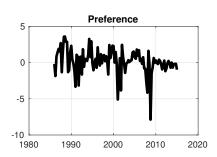


Note: Figure plots the average HHI across BEA industries along with the number of investigations filed by the Department of Justice under Section 2 of the Sherman Act of 1890. See Grullon-Larkin-Michaely (2016).

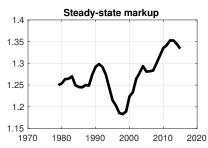
#### Regulation



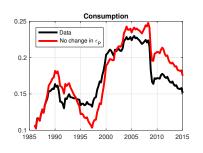

Note: Annual data. Mean number of relevant restrictions across BEA industries in our sample. Based on Mercatus Regulation index.

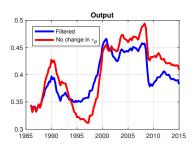

### Regulation & Concentration Across Industries

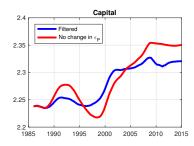
|                         | (1)                | (2)           |
|-------------------------|--------------------|---------------|
|                         | CR4 <sub>i,t</sub> | $HHI_{i,t-1}$ |
|                         | $\geq$ 1980        | $\geq$ 1980   |
| Log(Reg index)MA2_(t-3) | 0.047*             | 0.022*        |
|                         | [2.53]             | [2.29]        |
| Mean Stock Q (t-1)      | 0.031              | 0.026 +       |
|                         | [1.58]             | [1.93]        |
| Mean log(age) (t-1)     | 0.070*             | 0.055*        |
|                         | [2.22]             | [2.30]        |
| Year FE                 | Yes                | Yes           |
| Industry FE             | Yes                | Yes           |
| Observations            | 1004               | 1004          |
| Within $R^2$            | 0.181              | 0.113         |


Notes: T-stats in brackets. + p<0.10, \* p<0.05, \*\* p<.01. Omits Non-durable textile industry

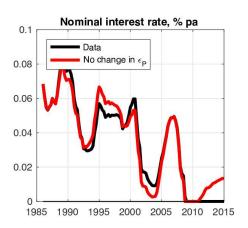
## Macro-Economic Implications (with C. Jones)







#### Counter-Factual







#### Counter-Factual



# EXTRA: Measures of Concentration & Entry

 Traditional Herfindahl + Common ownership adjustment (Azar, et. al. (2016))

$$MHHI = \sum_{j} s_{j}^{2} + \sum_{j} \sum_{k \neq j} s_{j} s_{k} \frac{\sum_{i} \beta_{ij} \beta_{ik}}{\sum_{i} \beta_{ij}^{2}}$$

$$= HHI + HHI^{adj}$$

 Other measures including entry, share of sales by top #10 firms, etc. also significant