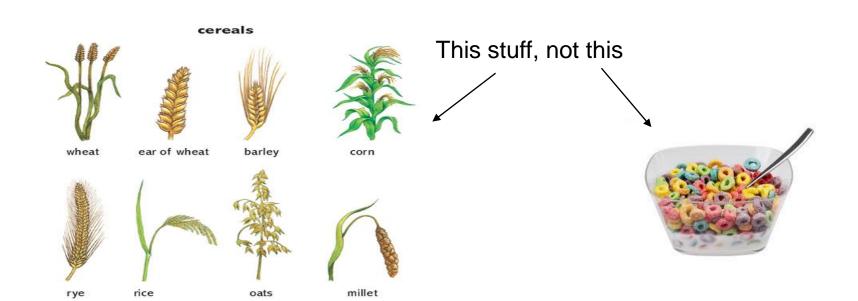
## Cereals, Appropriability and Hierarchy

Joram Mayshar Hebrew University of Jerusalem


Omer Moav University of Warwick & IDC

Zvika Neeman Tel-Aviv University

Luigi Pascali UPF & University of Warwick

# Cereals, Appropriability and Hierarchy

Joram Mayshar Omer Moav Zvika Neeman Luigi Pascali Hebrew University of Jerusalem University of Warwick & IDC Tel-Aviv University UPF & University of Warwick



### The emergence of hierarchy

Following the Neolithic Revolution some regions of the world developed complex hierarchies, leading to city-states and the great civilizations of antiquity

- How did farming trigger this change?
- Why did some regions remain with only simple hierarchy, in spite of adopting farming?

# Existing literature: the emergence of hierarchy

Neolithic Revolution →
 Increased productivity →
 Food surplus → (various mechanisms)
 An elite that did not produce food (hierarchy) →
 The emergence of the state

"In short, plant and animal domestication meant much more food ... The resulting food *surpluses* ... were a *prerequisite* for the development of settled, *politically centralized, socially stratified*, economically complex, technologically innovative societies." (Jared Diamond, 1997)

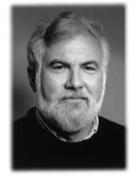
 Differences in agricultural productivity across regions generate differences in surplus and, therefore, in hierarchical complexity.

### Our criticism

Surplus is not necessary for appropriation






Surplus is not sufficient for appropriation





Surplus unlikely to emerge following Neolithic transition





### Our explanation

Neolithic Revolution →
 Increased appropriability (disproportionally more in regions suitable for cereals but not for roots/tubers) →
 Cereals could be taxed or stolen →
 An elite that did not produce food (hierarchy) →

The emergence of the state

 Differences in land suitability for cereals/roots/tubers across regions generates difference in appropriability and, therefore, in hierarchical complexity.

### The model (sketch)

#### Organizations:

- Anarchy
  - Roving bandits
- Hierarchy
  - Monopoly of violence, No bandits
  - Fixed cost of organizing the state (army)
  - The state employs tax collectors

#### Agents

- Farmers
  - Choose the percentage of their land to allocate to tubers and cereals.
  - Cereals are more productive but they are appropriable (they can be taxed in hierarchy, stolen in anarchy).
- Non farmers
  - Choose whether to be foragers (and earn an exogenous income) or bandits/tax collectors

### The model (sketch)

#### Expropriation technology:

- Anarchy
  - Expropriation rates are an increasing/concave function of the number of bandits
  - Non-farmers will become bandits until the revenues from foraging and banditry are equalized
- Hierarchy
  - Tax rates are an increasing/concave function of the number of tax collectors.
  - State maximizes net tax revenues (tax revenues-collection costs)

#### Main exogenous parameter:

Relative productivity of cereals vs tubers

#### Definition of an equilibrium:

- Percentage of land allocated to cereals
- Expropriation rates of cereals (anarchy)
- Tax rates on cereals (hierarchy)
- <-Farmers' optimization
- <-Non-farmers' optimization
- <-State optimization

### The model (sketch)

#### Distortions:

- Farmers might decide to cultivate the less productive crop
- Non-famers might decide to be bandits/tax collectors rather than foragers

#### Results:

 If the relative productivity of cereals vs tubers is very low a state cannot exists (and cereals are not planted)

(Intuition: it is difficult to impose decent tax rates, as the the farmers can easily switch to the non-appropriable crop. Therefore, the fixed costs to set-up a state are above the maximum achievable net tax revenues)

 If cereals are productive enough to support a state, than hierarchy Pareto dominates anarchy.

(Intuition: Lower expropriation rates under hierarchy. This implies that farmers will always cultivate the more productive crop and there will be less non-farmers that do not engage in foraging.

#### Data

#### Murdock's Ethnographic Atlas

Database of 1,267 pre-colonial societies from around the world.

- Jurisdictional Hierarchy Beyond Local Community
- Major Crop Type
- Dependence on agriculture
- Farming surplus
- Other controls (e.g. population density)

#### Food and Agriculture Organization – GAEZ

- Land productivity
- Productivity advantage of cereals vs roots and tubers
- Other controls (e.g. precipitation, temperature, elevation etc.)

#### Hierarchy Index (Borcan et al, 2014)

Cover 159 modern day countries for every half century from 1000 CE to 2000 CE.

#### Archeological evidence (authors from several sources)

Cover 1x1 decimal degrees raster points. Data on ancient cities and archaeological ruins.

#### Several other sources

 HYDE (Historical population reconstruction), MAP database (Incidence of malaria), Fenske (2013) (several other correlates)

Figure C.3: Optimal crop in terms of caloric yields among cereals, roots and tubers

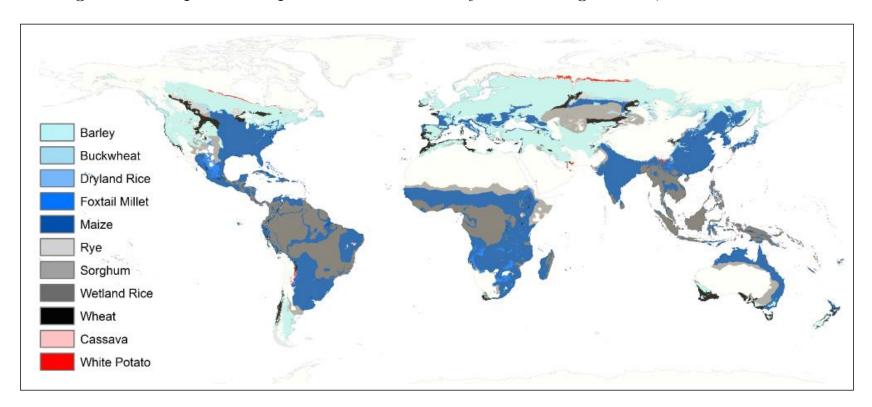



Figure 7: Difference in potential yields (calories per hectare) of cereals versus roots and tubers.

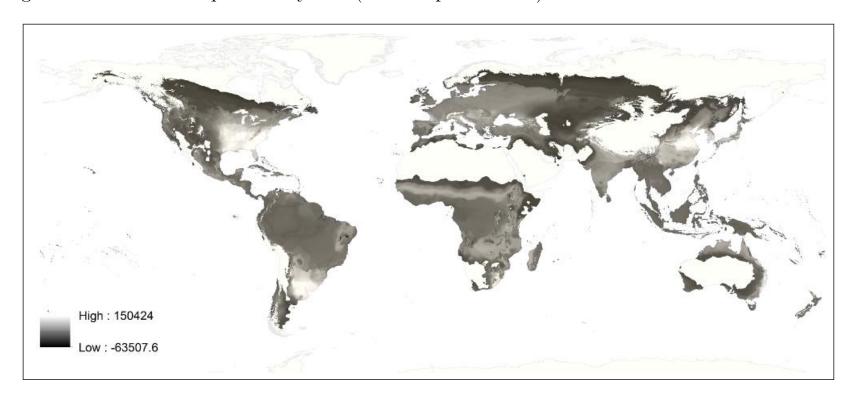



Figure 5: Major crop in pre-colonial societies

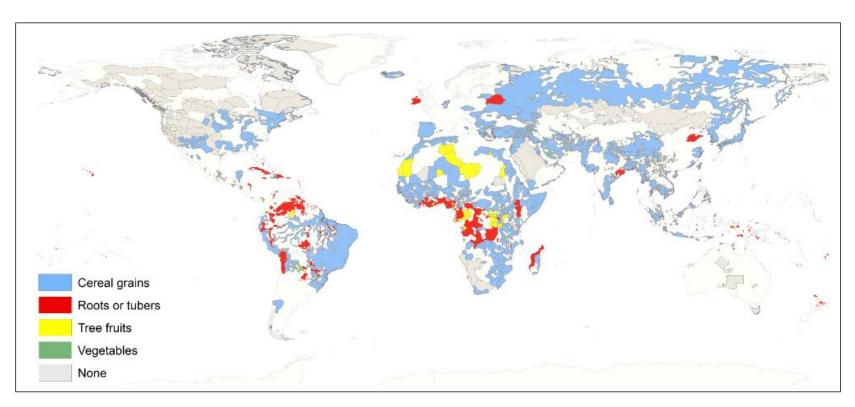



Table 1: Potential Crop Yields, Choice of Crops and Reliance on Agriculture

|                     |             |               |              | Dependen                              | t variable is:          |                                |           |          |
|---------------------|-------------|---------------|--------------|---------------------------------------|-------------------------|--------------------------------|-----------|----------|
|                     | $N_{\cdot}$ | lajor crop is | cereal grain | Relia                                 | Reliance on agriculture |                                |           |          |
| -                   | (1)         | (2)           | (3)          | (4)                                   | $\overline{(5)}$        | $\overline{\qquad \qquad (6)}$ | (7)       | (8)      |
|                     | OLS         | OLS           | OLS          | $\operatorname{Logit}$                | $\operatorname{Logit}$  | OLS                            | OLS       | OLS      |
| CALORIC DIFF        | 0.205***    | 0.210***      | 0.253***     | 1.150***                              | 1.617***                | 0.081***                       | -0.098*** | -0.046** |
| (CER - TUB)         | (0.029)     | (0.063)       | (0.059)      | (0.339)                               | (0.380)                 | (0.022)                        | (0.029)   | (0.022)  |
| MAX CALORIES        |             | -0.007        | -0.137**     | -0.119                                | -0.896**                |                                | 0.230***  | 0.128*** |
| (ALL CROPS)         |             | (0.083)       | (0.069)      | (0.384)                               | (0.407)                 |                                | (0.046)   | (0.035)  |
| CONTINENT FE        | NO          | NO            | YES          | NO                                    | YES                     | NO                             | NO        | YES      |
| Ave marg. effect of |             |               |              | 0.282***                              | 0.385***                |                                |           |          |
| CALORIC DIFF        |             |               |              | (0.081)                               | (0.092)                 |                                |           |          |
| r2                  | 0.132       | 0.132         | 0.359        | · · · · · · · · · · · · · · · · · · · | •                       | 0.0733                         | 0.235     | 0.387    |
| pseudo r2           |             |               |              | 0.109                                 | 0.258                   |                                |           |          |
| N                   | 982         | 982           | 982          | 982                                   | 982                     | 1063                           | 1063      | 1063     |

The table reports cross-sectional OLS and Logit estimates and the unit of observation is the society in Murdock's Ethnoatlas. The dependent variable is either a dummy that identifies societies that cultivate cereal grains as main crop (columns 1-5) or the reliance of these societies on agriculture (columns 6-8). CALORIC DIFF (CER-TUB) is the standardized difference between the maximum potential calorie yield per hectare that can be obtained from cereals versus the one that can be obtained from either roots or tubers. MAX CALORIES (ALL CROPS) is the standardized maximum potential calorie yield per hectare that can be obtained from cultivating the most productive crop among cereal grains, roots and tubers. Societies that live on lands that are suitable for neither cereals nor roots and tubers are excluded from the sample. Standard errors (in parentheses) are adjusted for spatial correlation using Conley's (1999) method. \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.

# Crop yields, agriculture and main crop: Robustness checks

#### Results are robust when controlling for:

- PRECIPITATION
- TEMPERATURE
- ELEVATION
- RUGGEDNESS
- ABSOLUTE LATITUDE
- DISTANCE MAJOR RIVER
- DISTANCE COAST
- MALARIA
- PLOW
- POPULATION DENSITY (1995)
- HISTORICAL POPULATION DENSITY (HYDE)
- HISTORICAL POPULATION DENSITY (Pryor, 1995)

#### **2SLS** estimates

2<sup>nd</sup> stage:

Hierarchy<sub>i</sub> / Surplus<sub>i</sub>=  $\alpha$  I(Main Crop=Cereals<sub>i</sub>) + X' $\beta$  +  $\epsilon$ 

1<sup>st</sup> stage:

 $I(Main\ Crop=Cereals_i) = \gamma_0(YieldCereals_i-YieldTubers_i) + X'\beta + \varepsilon$ 

Figure 4: Jurisdictional hierarchy beyond the local community in pre-colonial societies

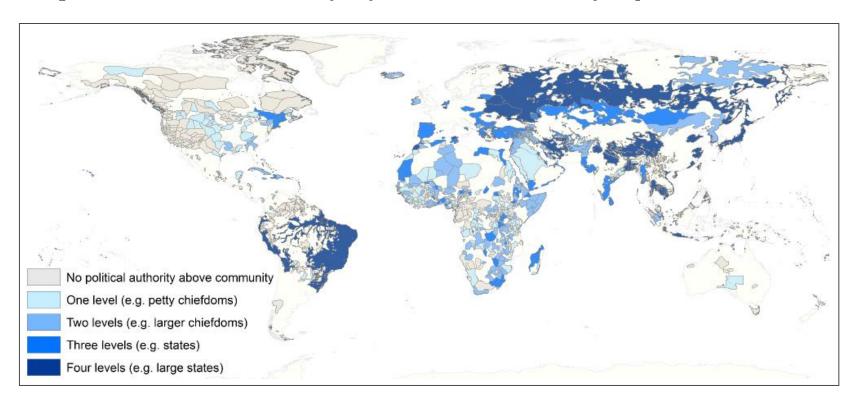



Figure 6: Farming surplus in pre-colonial societies

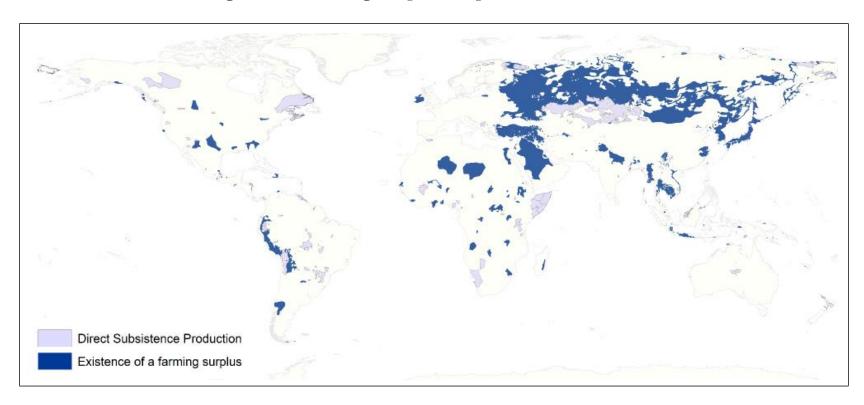



Table 2: Cereals, Surplus and Hierarchy - Reduced Form

|                     |                      |             |             | Dependen     | t variable is:                  |              |          |                                         |  |  |
|---------------------|----------------------|-------------|-------------|--------------|---------------------------------|--------------|----------|-----------------------------------------|--|--|
|                     | J                    | urisdiction | nal Hierard | ehy          |                                 | Existence of |          |                                         |  |  |
|                     | $\mathrm{B}\epsilon$ | eyond Loc   | al Commu    | $_{ m nity}$ |                                 | Farming      | Surplus  |                                         |  |  |
|                     | (1)                  | (2)         | (3)         | (4)          | $\overline{\qquad \qquad } (5)$ | (6)          | (7)      | (8)                                     |  |  |
|                     | OLS                  | OLS         | OLS         | Ord Logit    | OLS                             | OLS          | OLS      | $\operatorname{Logit}$                  |  |  |
| CALORIC DIFF        | 0.244***             | 0.179       | 0.274**     | 0.495***     | 0.141***                        | 0.241***     | 0.202*** | 0.997***                                |  |  |
| (CER - TUB)         | (0.069)              | (0.120)     | (0.107)     | (0.149)      | (0.0319)                        | (0.0681)     | (0.0742) | (0.384)                                 |  |  |
| MAX CALORIES        |                      | 0.082       | -0.188*     | -0.224       |                                 | -0.132       | -0.0985  | -0.479                                  |  |  |
| (ALL CROPS)         |                      | (0.141)     | (0.108)     | (0.178)      |                                 | (0.0870)     | (0.0985) | (0.463)                                 |  |  |
| CONTINENT FE        | NO                   | NO          | YES         | YES          | NO                              | NO           | YES      | YES                                     |  |  |
| Ave marg. effect of |                      |             |             |              |                                 |              |          | 0.249***                                |  |  |
| CALORIC DIFF        |                      |             |             |              |                                 |              |          | (0.096)                                 |  |  |
| r2                  | 0.0416               | 0.0429      | 0.249       |              | 0.0757                          | 0.0911       | 0.157    | . , , , , , , , , , , , , , , , , , , , |  |  |
| pseudo r2           |                      |             |             | 0.121        |                                 |              |          | 0.124                                   |  |  |
| N                   | 952                  | 952         | 952         | 952          | 140                             | 140          | 140      | 140                                     |  |  |

The table reports cross-sectional OLS (columns 1-3 and 5-7), Ordered Logit (column 4) and Logit (column 8) estimates and the unit of observation is the society in Murdock's Ethnoatlas. The dependent variable is either a dummy that identifies societies that produce a farming surplus or Murdock's (1967) index of jurisdictional hierarchy beyond the local community and it takes the following values: 1 (no political authority beyond community), 2 (petty chiefdoms), 3 (larger chiefdoms), 4 (states), 5 (large states). CALORIC DIFF (CER-TUB) is the standardized difference between the maximum potential calorie yield per hectare that can be obtained from cereals versus the one that can be obtained from either roots or tubers. MAX CALORIES (ALL CROPS) is the standardized maximum potential calorie yield per hectare that can be obtained from cultivating the most productive crop among cereal grains, roots and tubers. Societies that live on lands that are suitable for neither cereals nor roots and tubers are excluded from the sample. Columns 1-4 report in parentheses Conley standard errors adjusted for spatial correlation, while columns 5-8 report robust standard errors. \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.

### Cereals and hierarchy

Table 3: Cereals and Hierarchy - OLS and 2SLS

|                 | Depe     | endent varia | ble: Juris | dictional H | lierarchy B | Seyond Loc | al Commu | nity    |
|-----------------|----------|--------------|------------|-------------|-------------|------------|----------|---------|
|                 | (1)      | (2)          | (3)        | (4)         | (5)         | (6)        | (7)      | (8)     |
|                 | OLS      | 2SLS         | 2SLS       | 2SLS        | OLS         | 2SLS       | 2SLS     | 2SLS    |
| MAIN CROP:      | 0.707*** | 1.170***     | 0.863      | 1.040**     | 0.304**     | 0.892**    | 1.064**  | 0.993** |
| CEREALS         | (0.131)  | (0.359)      | (0.596)    | (0.414)     | (0.120)     | (0.420)    | (0.538)  | (0.463) |
| MAX CALORIES    |          |              | 0.081      |             |             |            | -0.037   |         |
| (ALL CROPS)     |          |              | (0.127)    |             |             |            | (0.071)  |         |
| DEPENDENCE ON   |          |              |            | 0.334       |             |            |          | -0.419  |
| AGRICULTURE     |          |              |            | (0.517)     |             |            |          | (0.783) |
| CONTINENT FE    | NO       | NO           | NO         | NO          | YES         | YES        | YES      | YES     |
| N               | 952      | 952          | 952        | 952         | 952         | 952        | 952      | 952     |
| F excl instrum. |          | 147.7        | 44.84      | 65.51       |             | 99.87      | 76.90    | 33.09   |

The table reports cross-sectional OLS and 2SLS estimates and the unit of observation is the society in Murdock's Ethnoatlas. The dependent variable is Murdock's (1967) index of jurisdictional hierarchy beyond the local community and it takes the following values: 1 (no political authority beyond community), 2 (petty chiefdoms), 3 (larger chiefdoms), 4 (states), 5 (large states). The main regressor is a dummy that identifies society in which the major crop is a cereal grain. MAX CALORIES (ALL CROPS) is the standardized maximum potential calorie yield per hectare that can be obtained from cultivating the most productive crop among cereal grains, roots and tubers. DEPENDENCE ON AGRICULTURE is the percentage calorie dependence on agriculture for subsistence. Societies that live on lands that are suitable for neither cereals nor roots and tubers are excluded from the sample. Standard errors (in parentheses) are adjusted for spatial correlation using Conley's (1999) method. \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.

# Cereals and hierarchy: robustness checks

#### Results are robust when controlling for:

- PRECIPITATION
- TEMPERATURE
- ELEVATION
- RUGGEDNESS
- ABSOLUTE LATITUDE
- ALTERNATIVE MEASURES OF LAND PRODUCTIVITY
- DISTANCE MAJOR RIVER
- DISTANCE COAST
- MALARIA
- PLOW
- POPULATION DENSITY (1995)
- HISTORICAL POPULATION DENSITY (HYDE)
- HISTORICAL POPULATION DENSITY (Pryor, 1995)
- USING ETHNIC BOUNDARIES AS IN FENSKE (2013)
- INCLUDING SOCIETIES LIVING IN DESERTIC SOILS

### Cereals and surplus

Table E.12: Cereals and Surplus - OLS and 2SLS

|                 |          | De       | pendent var | iable: Exist | ence of a fa | rming surpl | us       |         |
|-----------------|----------|----------|-------------|--------------|--------------|-------------|----------|---------|
|                 | (1)      | (2)      | (3)         | (4)          | (5)          | (6)         | (7)      | (8)     |
|                 | OLS      | 2SLS     | 2SLS        | 2SLS         | OLS          | 2SLS        | 2SLS     | 2SLS    |
| MAIN CROP:      | 0.359*** | 0.940*** | 0.846***    | 0.846***     | 0.299***     | 1.005***    | 0.797**  | 0.799** |
| CEREALS         | (0.0791) | (0.260)  | (0.273)     | (0.275)      | (0.0901)     | (0.316)     | (0.314)  | (0.317) |
| MAX CALORIES    |          |          | 0.0186      |              |              |             | 0.0361   |         |
| (ALL CROPS)     |          |          | (0.0626)    |              |              |             | (0.0611) |         |
| DEPENDENCE ON   |          |          |             | 0.191        |              |             |          | 0.438   |
| AGRICULTURE     |          |          |             | (0.663)      |              |             |          | (0.775) |
| CONTINENT FE    | NO       | NO       | NO          | NO           | YES          | YES         | YES      | YES     |
| N               | 139      | 139      | 139         | 139          | 139          | 139         | 139      | 139     |
| F excl instrum. |          | 16.08    | 17.37       | 5.486        |              | 15.35       | 12.44    | 4.338   |

The table reports cross-sectional OLS and 2SLS estimates and the unit of observation is the society in Murdock's Ethnoatlas. The dependent variable is a dummy that identifies societies that produce a farming surplus. The main regressor is a dummy that identifies society in which the major crop is a cereal grain. MAX CALORIES (ALL CROPS) is the standardized maximum potential calorie yield per hectare that can be obtained from cultivating the most productive crop among cereal grains, roots and tubers. DEPENDENCE ON AGRICULTURE is the percentage calorie dependence on agriculture for subsistence. Societies that live on lands that are suitable for neither cereals nor roots and tubers are excluded from the sample. Robust standard errors in parentheses \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.

# Cereals and surplus: robustness checks

#### Results are robust when controlling for:

- PRECIPITATION
- TEMPERATURE
- ELEVATION
- RUGGEDNESS
- ABSOLUTE LATITUDE
- ALTERNATIVE MEASURES OF LAND PRODUCTIVITY
- DISTANCE MAJOR RIVER
- DISTANCE COAST
- MALARIA
- PLOW
- POPULATION DENSITY (1995)
- HISTORICAL POPULATION DENSITY (HYDE)
- HISTORICAL POPULATION DENSITY (Pryor, 1995)
- USING ETHNIC BOUNDARIES AS IN FENSKE (2013)
- INCLUDING SOCIETIES LIVING IN DESERTIC SOILS

### Cereals and hierarchy

#### **Panel estimates**

 $Hierarchy_{i,t} = \alpha (YieldsCereals_{i,t} - YieldsTubers_{i,t}) + \eta_i + \eta_t + X'\beta_t + \varepsilon_{c,t}$ 

#### Note:

- -Hierarchy: (=0: Tribe; =0.75: Chiefdom; =1: State)
- -Variation in YieldsCereals<sub>i,t</sub> and YieldsTubers<sub>i,t</sub> over time are generated by the Columbian exchange.
- Years 1500-1600 are excluded from the regression.

### Cereals and hierarchy

Table 6: Cereals and Hierarchy - Panel Regressions

|                       |          |          | Dep. Vari | able: Hierar | chy Index |          |          |
|-----------------------|----------|----------|-----------|--------------|-----------|----------|----------|
|                       | (1)      | (2)      | (3)       | (4)          | (5)       | (6)      | (7)      |
| CALORIC DIFF          | 0.189*** | 0.272*** | 0.282***  | 0.240***     | 0.255***  | 0.261*** | 0.197**  |
| (CER - TUB)           | (0.0683) | (0.0834) | (0.0760)  | (0.0857)     | (0.0889)  | (0.0839) | (0.0795) |
| MAX CALORIES          |          | -0.163   | -0.193    | -0.152       | -0.115    | -0.148   | -0.165   |
| (ALL CROPS)           |          | (0.141)  | (0.131)   | (0.139)      | (0.142)   | (0.138)  | (0.123)  |
| Controls (x Year FE): |          |          |           |              |           |          |          |
| Precipitation         | NO       | NO       | YES       | NO           | NO        | NO       | NO       |
| Temperature           | NO       | NO       | NO        | YES          | NO        | NO       | NO       |
| Elevation             | NO       | NO       | NO        | NO           | YES       | NO       | NO       |
| ${ m Ruggedness}$     | NO       | NO       | NO        | NO           | NO        | YES      | NO       |
| Abs Latitude          | NO       | NO       | NO        | NO           | NO        | NO       | YES      |
| COUNTRY FE            | YES      | YES      | YES       | YES          | YES       | YES      | YES      |
| TIME FE               | YES      | YES      | YES       | YES          | YES       | YES      | YES      |
| r2                    | 0.680    | 0.682    | 0.716     | 0.684        | 0.681     | 0.686    | 0.705    |
| N                     | 2869     | 2869     | 2850      | 2812         | 2755      | 2869     | 2869     |

The table reports panel OLS estimates and the unit of observation is the territory delimited by modern-country borders every 50 years. The dependent variable is an hierarchy index: it equals 0 if there is not a government above tribal level, 0.75 if the political organization can be at best described as a paramount chiefdom and 1 otherwise. CALORIC DIFF (CER-TUB) is the standardized difference between the maximum potential calorie yield per hectare that can be obtained from cereals versus the one that can be obtained from either roots or tubers. MAX CALORIES (ALL CROPS) is the standardized maximum potential calorie yield per hectare that can be obtained from cultivating the most productive crop among cereal grains, roots and tubers. Robust standard errors in parentheses \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent

### Cereals and hierarchy: Robustness checks

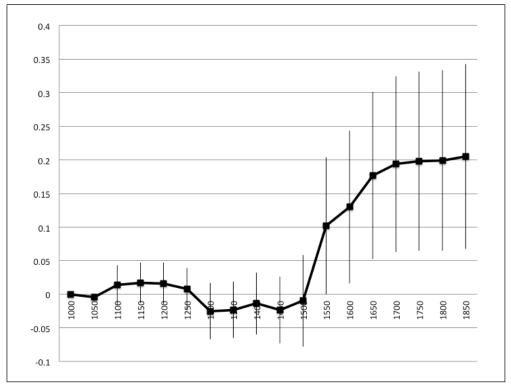
- Results are robust when controlling for:
  - EXCLUDING YEARS 1500-1750
  - EXCLUDING COLONIES
  - DISTANCE MAJOR RIVER
  - DISTANCE COAST
  - MALARIA
  - TROPICAL LAND
  - POPULATION DENSITY (1500)
  - SETTLERS MORTALITY
  - SLAVE EXPORTS

### Cereals and hierarchy

#### **Panel estimates**

$$Hier_{it} = \sum_{j=1050}^{1850} \alpha_j (CalDiff_{i,AfterExchange} - CalDiff_{i,BeforeExchange}) + X'_{it}\beta + \eta_i + \eta_t + u_{it}.$$

#### Note:


- Hierarchy: (=0: Tribe; =0.75: Chiefdom; =1: State)
- CalDiff<sub>i,t</sub> = YieldsCereals<sub>i,t</sub> YieldsTubers<sub>i,t</sub>

Baseline time-period 1000-1050. -

More Flexible specification: no need to assume in which year the Columbian exchange is completed.

### Cereals and hierarchy

Figure 8: Flexible estimates of the relationship between the change in the caloric advantage of cereals over roots and tubers due to the Columbian exchange and hierarchy.



#### **OLS** estimates

1)  $City_i$  /  $Archaelogical\ ruin_i$ =  $\alpha$  (YieldCereals<sub>i</sub>-YieldTubers<sub>i</sub>) + X' $\beta$  +  $\varepsilon$ 

2) City<sub>i</sub> / Archaelogical ruin<sub>i</sub>=  $\alpha$  (Distance area domestication cereals<sub>i</sub>) +  $X'\beta$  +  $\varepsilon$ 

#### Notes:

- -The unit of observation is a 1x1 decimal degree raster point
- -The sample covers all area of the world that were
- -Distance area domestication cereals $_i$  is the distance from the closest area of domestication of a cereal grain

Table 6: Potential Crop Yields and the Location of Ancient Cities.

|                     | Dependent variable is: |                                                                |            |          |                        |                                |            |          |  |  |  |
|---------------------|------------------------|----------------------------------------------------------------|------------|----------|------------------------|--------------------------------|------------|----------|--|--|--|
|                     |                        | Presence of an ancient city (dummy) Log(1+ number ancient citi |            |          |                        |                                |            |          |  |  |  |
|                     | (1)                    | (2)                                                            | (3)        | (4)      | (5)                    | $\overline{\qquad \qquad (6)}$ | (7)        | (8)      |  |  |  |
|                     | OLS                    | OLS                                                            | OLS        | OLS      | $\operatorname{Logit}$ | OLS                            | OLS        | OLS      |  |  |  |
| CALORIC DIFF        | 0.0469***              | 0.145***                                                       | 0.129***   | 0.0340** | 1.256**                | 0.186***                       | 0.167***   | 0.0357** |  |  |  |
| (CER - TUB)         | (0.0143)               | (0.0388)                                                       | (0.0380)   | (0.0162) | (0.603)                | (0.0538)                       | (0.0512)   | (0.0180) |  |  |  |
| MAX CALORIES        |                        | -0.0864***                                                     | -0.0744*** | -0.0126  | -0.208                 | -0.111***                      | -0.0966*** | -0.0139  |  |  |  |
| (ALL CROPS)         |                        | (0.0267)                                                       | (0.0256)   | (0.0128) | (0.542)                | (0.0361)                       | (0.0333)   | (0.0138) |  |  |  |
| CONTINENT FE        | NO                     | NO                                                             | YES        | NO       | NO                     | NO                             | YES        | NO       |  |  |  |
| COUNTRY FE          | NO                     | NO                                                             | NO         | YES      | YES                    | NO                             | NO         | YES      |  |  |  |
| Ave marg. effect of |                        |                                                                |            |          | 0.0135**               |                                |            |          |  |  |  |
| CALORIC DIFF        |                        |                                                                |            |          | 0.006                  |                                |            |          |  |  |  |
| r2                  | 0.0498                 | 0.0841                                                         | 0.0986     | 0.451    |                        | 0.0773                         | 0.0865     | 0.574    |  |  |  |
| N                   | 15927                  | 15927                                                          | 15927      | 15927    | 9032                   | 15927                          | 15927      | 15927    |  |  |  |

The table reports cross-sectional OLS and Logit estimates and the unit of observation is the 1x1 decimal degree square. In columns (1)-(5), the dependent variable is a dummy that takes the value of one if there is evidence of at least one ancient city in the pixel and zero otherwise. In columns (6)-(8), the dependent variable is  $\log(1+\text{number})$  of ancient cities in the pixel). CALORIC DIFF (CER-TUB) is the standardized difference between the maximum potential calorie yield per hectare that can be obtained from cereals versus the one that can be obtained from either roots or tubers. MAX CALORIES (ALL CROPS) is the standardized maximum potential calorie yield per hectare that can be obtained from cultivating the most productive crop among cereal grains, roots and tubers. Robust standard errors, clustered at the country-level, in parentheses \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.

Figure E.5: Ancient cities and centers of independent domestication

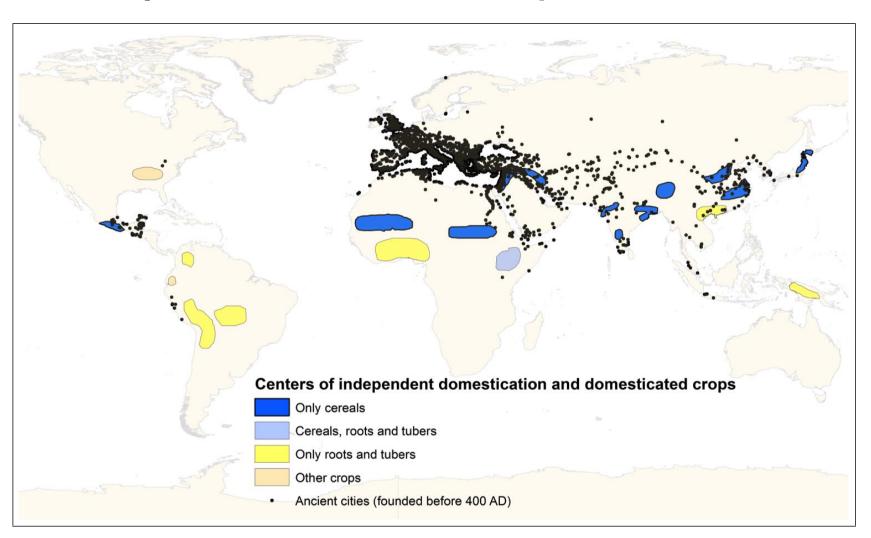



Table 7: The Origin of the Neolithic Transition and the Location of Ancient Cities.

|                      |                        |                  | De             | pendent varial         | ole is:     |                                |            |  |  |
|----------------------|------------------------|------------------|----------------|------------------------|-------------|--------------------------------|------------|--|--|
|                      | $\operatorname{Prese}$ | ence of an ancie | ent city (dumr | ny)                    | Log(1+      | Log(1 + number ancient cities) |            |  |  |
|                      | (1)                    | (2)              | (3)            | (4)                    | (5)         | (6)                            | (7)        |  |  |
|                      | OLS                    | OLS              | OLS            | $\operatorname{Logit}$ | OLS         | OLS                            | OLS        |  |  |
| Distance closest     |                        | -0.00214***      | -0.00143**     | -0.187***              |             | -0.00253***                    | -0.00147** |  |  |
| adoption cereals     |                        | (0.000597)       | (0.000604)     | (0.0333)               |             | (0.000767)                     | (0.000647) |  |  |
| Distance closest     | -0.00120***            | 0.000909         | 0.000253       | 0.112***               | -0.00117*** | 0.00133                        | 0.0000658  |  |  |
| adoption agriculture | (0.000343)             | (0.000676)       | (0.000566)     | (0.0379)               | (0.000409)  | (0.000900)                     | (0.000680) |  |  |
| CONTINENT FE         | NO                     | NO               | YES            | YES                    | NO          | NO                             | YES        |  |  |
| Ave marg. effect of  |                        |                  |                | -0.002***              |             |                                |            |  |  |
| "Distance closest    |                        |                  |                | (0.001)                |             |                                |            |  |  |
| adoption cereals"    |                        |                  |                |                        |             |                                |            |  |  |
| r2                   | 0.00949                | 0.0307           | 0.0495         |                        | 0.00512     | 0.0220                         | 0.0376     |  |  |
| N                    | 15927                  | 15927            | 15927          | 15116                  | 15927       | 15927                          | 15927      |  |  |

The table reports cross-sectional OLS and Logit estimates and the unit of observation is the 1x1 decimal degree square. In columns (1)-(4), the dependent variable is a dummy that takes the value of one if there is evidence of at leaste one ancient city in the pixel and zero otherwise. In columns (5)-(7), the dependent variable is  $\log(1+\text{number of ancient cities in the pixel})$ . "Distance closest adoption cereals" is the distance (in km) between the pixel and the closest region in which agriculture started independently and cereals were among the domesticated crops. "Distance closest adoption agriculture" is the distance between the pixel and the closest region in which agriculture was independently adopted. Robust standard errors, clustered at the country-level, in parentheses \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.

Table 7: The Origin of the Neolithic Transition and the Location of Ancient Cities.

|                      |                        |                  | De             | pendent varial         | ole is:     |                                |            |  |  |
|----------------------|------------------------|------------------|----------------|------------------------|-------------|--------------------------------|------------|--|--|
|                      | $\operatorname{Prese}$ | ence of an ancie | ent city (dumr | ny)                    | Log(1+      | Log(1 + number ancient cities) |            |  |  |
|                      | (1)                    | (2)              | (3)            | (4)                    | (5)         | (6)                            | (7)        |  |  |
|                      | OLS                    | OLS              | OLS            | $\operatorname{Logit}$ | OLS         | OLS                            | OLS        |  |  |
| Distance closest     |                        | -0.00214***      | -0.00143**     | -0.187***              |             | -0.00253***                    | -0.00147** |  |  |
| adoption cereals     |                        | (0.000597)       | (0.000604)     | (0.0333)               |             | (0.000767)                     | (0.000647) |  |  |
| Distance closest     | -0.00120***            | 0.000909         | 0.000253       | 0.112***               | -0.00117*** | 0.00133                        | 0.0000658  |  |  |
| adoption agriculture | (0.000343)             | (0.000676)       | (0.000566)     | (0.0379)               | (0.000409)  | (0.000900)                     | (0.000680) |  |  |
| CONTINENT FE         | NO                     | NO               | YES            | YES                    | NO          | NO                             | YES        |  |  |
| Ave marg. effect of  |                        |                  |                | -0.002***              |             |                                |            |  |  |
| "Distance closest    |                        |                  |                | (0.001)                |             |                                |            |  |  |
| adoption cereals"    |                        |                  |                |                        |             |                                |            |  |  |
| r2                   | 0.00949                | 0.0307           | 0.0495         |                        | 0.00512     | 0.0220                         | 0.0376     |  |  |
| N                    | 15927                  | 15927            | 15927          | 15116                  | 15927       | 15927                          | 15927      |  |  |

The table reports cross-sectional OLS and Logit estimates and the unit of observation is the 1x1 decimal degree square. In columns (1)-(4), the dependent variable is a dummy that takes the value of one if there is evidence of at leaste one ancient city in the pixel and zero otherwise. In columns (5)-(7), the dependent variable is  $\log(1+\text{number of ancient cities in the pixel})$ . "Distance closest adoption cereals" is the distance (in km) between the pixel and the closest region in which agriculture started independently and cereals were among the domesticated crops. "Distance closest adoption agriculture" is the distance between the pixel and the closest region in which agriculture was independently adopted. Robust standard errors, clustered at the country-level, in parentheses \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.

Table 8: The Origin of the Neolithic Transition and Archeological Ruins.

|                      |                        | Depen                     | dent variable is         | s a dummy tha | t identifies evid | ence of:                    |                           |
|----------------------|------------------------|---------------------------|--------------------------|---------------|-------------------|-----------------------------|---------------------------|
|                      | ancient                | $\operatorname{pyramids}$ | $\operatorname{ancient}$ | ancient       | ancient           | $\operatorname{ancient}$    | $\operatorname{ancient}$  |
|                      | archeolog.             |                           | $_{ m temples}$          | $\min$ es     | palaces           | $\operatorname{sculptured}$ | $\operatorname{standing}$ |
|                      | $\operatorname{sites}$ |                           |                          |               |                   | stones                      | stones                    |
|                      | (1)                    | (2)                       | (3)                      | (4)           | (5)               | (6)                         | (7)                       |
| Distance closest     | -0.00279***            | -0.000282                 | -0.000636**              | -0.000210**   | -0.000132**       | -0.000232**                 | -0.0000152                |
| adoption cereals     | (0.000824)             | (0.000187)                | (0.000311)               | (0.000106)    | (0.0000550)       | (0.000108)                  | (0.0000706)               |
| Distance closest     | 0.000864               | 0.000105                  | 0.000316                 | 0.0000109     | 0.0000689         | 0.000166                    | 0.00000243                |
| adoption agriculture | (0.000753)             | (0.000146)                | (0.000330)               | (0.000144)    | (0.0000487)       | (0.000105)                  | (0.000119)                |
| CONTINENT FE         | YES                    | YES                       | YES                      | YES           | YES               | YES                         | YES                       |
| r2                   | 0.0328                 | 0.00451                   | 0.0105                   | 0.00294       | 0.00189           | 0.00930                     | 0.0187                    |
| N                    | 15927                  | 15927                     | 15927                    | 15927         | 15927             | 15927                       | 15927                     |

The table reports cross-sectional OLS estimates and the unit of observation is the 1x1 decimal degree square. The dependent variable is a dummy that takes the value of one if there is archeological evidence of either ancient sites from the Stone Age (column 1), or ancient pyramids or mastaba (column 2), or ancient temples (column 3), or ancient mines or quarries (column 4), or ancient palaces (column 5), or ancient sculptured stones (column 6). or ancient standing stones (column 7). "Distance closest adoption cereals" is the distance (in km) between the pixel and the closest region in which agriculture started independently and cereals were among the domesticated crops. "Distance closest adoption agriculture" is the distance between the pixel and the closest region in which agriculture was independently adopted. Robust standard errors, clustered at the country-level, in parentheses \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.

# Cereals and ancient civilizations: robustness checks

- Results are robust when controlling for:
  - PRECIPITATION
  - TEMPERATURE
  - ELEVATION
  - RUGGEDNESS
  - ABSOLUTE LATITUDE
  - POPULATION DENSITY (1995)
  - EXCLUDING EUROPE
  - EXCLUDING DESERTS

### Further supportive evidence

The trade off between productivity and appropriability. •
Acorns and salmons in aboriginal California (Tushingham and Bettinger, – 2013)

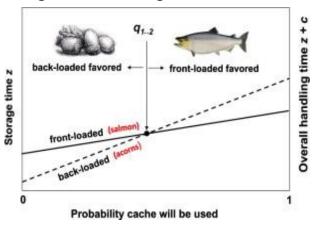
Bitter and Sweet cassava in Malawi (Chiwona-Karltun et al., 2002) -

Storability and social complexity •

Natufian granaries (Juijt and Finlayson, 2009) —

Storing vs non-storing hunter-gathers (Testart, 1882) —

Appropriability and stationary bandits •


Mafia and sulphur mine in Sicily (Buonanno et al, 2012) —

Rowing and stationary bandits in DRC (De La Sierra, 2013 —

## Supportive evidence: productivity vs appropriability

Native Americans in California (Tushingham and Bettinger 2013)

- Despite the fact that salmon is a better source of nutrition, earlier foragers preferred to rely on acorns
- Unlike salmon, gathering and storage of acorns involves little effort but its subsequent preparation for consumption is costly
- The rapid transition to salmon intensification was possible after a sedentary community was large enough and storage facilities where constructed



- (1) selection of food sources is affected by their appropriability
- (2) appropriable food and complex hierarchy are correlated

 $\rightarrow$ 

# Supportive evidence: productivity vs appropriability

Women in Malawi and bitter cassava (Chiwona-Karltun et al. 2002)

- Women in Malawi, particularly single women, prefer to grow bitter and toxic cassava variants that require more processing
- "We grow bitter, toxic cassava because it gives a certain level of food security. If we
  are to grow sweet cassava, look at our neighbors! Their whole field was harvested by
  thieves while they slept and now they have no food. Nobody wants to die from hunger."



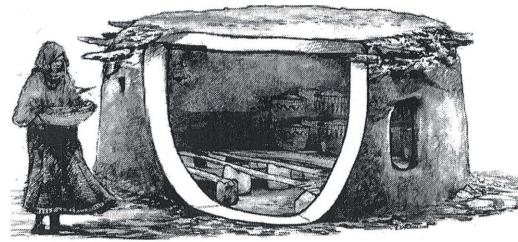
- $\rightarrow$
- (1) the extra post-harvest effort provides protection against thievery; thieves prefer the nonbitter variant that requires less processing
- (2) Again a correlation between vacuum of state and less appropriable/inefficient crops

# Supportive evidence: storage and hierarchy before farming

Native Americans in the northwestern coast Testart (1982)

 Testart criticizes the idea of that the adoption of an agricultural way of life was a turning point in the organization of human societies. According to Testart, the turning point is the adoption of storing techniques.

In particular, he takes a cross-section of 40 hunter-gatherers societies and shows that storing societies present three characteristics (sedentarism, high population density and socioeconomic inequalities) which have been considered typical of agricultural societies.


- Hunter-gatherers who relied on seasonal and storable resources such as acorns or dried salmon developed complex hierarchical societies similar to the Neolithic farmers that cultivated cereals
- (Testart refrained from identifying a causal mechanism that relates storage to hierarchy)
- → it isn't farming that explains the emergence of hierarchy it is appropriability

# Supportive evidence: storage and hierarchy before farming

The Natufian age Kuijt and Finlayson (2009)

Evidence for large-scale storage in sophisticated granaries before the domestication of plants from 11,000 years ago indicate social organization





Strorage structure constructed 11,300-11,200 B.P (Before Present) from the Jordan valley (Dhra' Jordan). (Kuijt and Finlayson, PNAS 2009).

## Supportive evidence: appropriability and stationary bandits

Mining in the DRC De la Sierra (2013)

- A rise in the price of Coltan produced from a relatively bulky and hence transparent ore — led to the monopolization of violence
- An increase in the price of gold, which is easier to conceal and is hence less transparent, did not

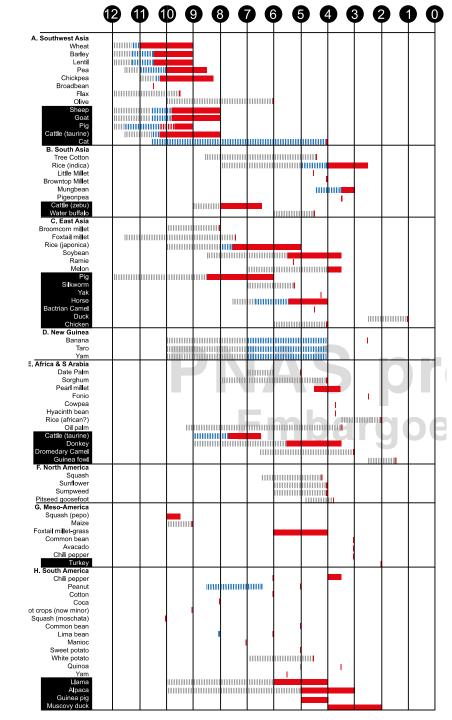
→ it isn't productivity/surplus that explains the emergence of hierarchy – it is appropriability

## Supportive evidence: appropriability and stationary bandits

Sulphur mines and the mafia Buonanno et al. (2012)

Buonanno et al. support the hypothesis that the mafia in Sicily emerged after the collapse of the Bourbon Kingdom.

A vacuum of power made it easy for a new hierarchy to emerge, disproportionally more where the local product was more appropriable: the mines and in particular the sulphur mines.


→ it isn't productivity/surplus that explains the emergence of hierarchy – it is appropriability

#### Related Literature:

Geography, Transparency and Institutions Mayshar, Moav & Neeman (2013)

Second part of the paper I have just presented

- Once a state exist, how environmental factors shape:
  - Land ownership (private vs elite)
  - State concentration (center vs periphery)
  - State capacity
- Application to Ancient Egypt and Mesopotamia



#### Concluding remarks:

- Two motivating stylized observations:
  - In Egypt, state hierarchy evolved rapidly following the adoption of farming in the Nile valley, facilitating the construction of the great pyramids as early as the third millennium BCE
  - Farming was initiated in New
    Guinea at about the same time as
    in Egypt, but there it did not lead
    to the emergence of states
- More generally, the table reports the centers of crop domestication
  The only regions that did not generate complex hierarchical organizations were those that did not domesticate cereals (but rather roots/tubers/fruits)

#### Conclusions

- Geography, through its effect on appropriability, can explain differences in hierarchy and institutions
- A key factor that explains low state capacity is high productivity of less appropriable crops
- The literature which proposes that productivity and surplus are a precondition for hierarchy is flawed

Table E.1: Descriptive Statistics: societies in Ethnoatlas

|                                     | SOURCE                    | Mean  | <b>p50</b> | SDev | Min   | Max   | N         |
|-------------------------------------|---------------------------|-------|------------|------|-------|-------|-----------|
| Hierarchy beyond Local Community    | Ethnoatlas                | 1.89  | 2.00       | 1.04 | 1.00  | 5.00  | 1,059     |
| Major Crop: Cereals                 | Ethnoatlas                | 0.54  | 1.00       | 0.50 | 0.00  | 1.00  | 1,092     |
| Dependence on agriculture           | Ethnoatlas                | 0.45  | 0.50       | 0.27 | 0.03  | 0.93  | $1,\!178$ |
| Farming surplus                     | Tuden and Marshall (1972) | 0.49  | 0.00       | 0.50 | 0.00  | 1.00  | 162       |
| Population density (categorical)    | Pryor (1985)              | 3.83  | 4.00       | 1.57 | 2.00  | 7.00  | 168       |
| Cal/ha Best Crop (std)              | authors                   | 0.00  | 0.23       | 1.00 | -1.92 | 2.66  | $1,\!179$ |
| Cal/ha Cereals- Cal/ha Tubers (std) | authors                   | 0.00  | -0.13      | 1.00 | -1.73 | 4.16  | $1,\!179$ |
| Precipitation (std)                 | $\operatorname{FAO-GAEZ}$ | 0.00  | -0.13      | 1.00 | -1.39 | 10.65 | $1,\!179$ |
| Temperature (std)                   | ${ m FAO-GAEZ}$           | 0.00  | 0.37       | 1.00 | -2.57 | 1.32  | $1,\!179$ |
| Elevation (std)                     | $\operatorname{FAO-GAEZ}$ | 0.00  | 0.17       | 1.00 | -9.24 | 3.58  | $1,\!179$ |
| Ruggedness (std)                    | FAO- $GAEZ$               | 0.00  | -0.35      | 1.00 | -0.90 | 6.41  | $1,\!179$ |
| Absolute Latitude (std)             | Ethnoatlas                | 0.00  | -0.43      | 1.00 | -1.21 | 3.36  | $1,\!179$ |
| Distance to major river (std)       | Fenske (2013)             | 0.00  | -0.63      | 1.00 | -0.63 | 1.58  | $1,\!179$ |
| Distance to coast (std)             | Fenske $(2013)$           | 0.00  | -0.30      | 1.00 | -1.11 | 3.14  | $1,\!179$ |
| Pct Malaria                         | MAP                       | 0.17  | 0.06       | 0.21 | 0.00  | 0.69  | $1,\!179$ |
| Population density 1995 (std)       | ${ m FAO-GAEZ}$           | 0.00  | -0.38      | 1.00 | -0.62 | 7.23  | $1,\!161$ |
| Historical Population Density (std) | HYDE                      | 0.00  | -0.23      | 1.00 | -0.30 | 25.85 | $1,\!179$ |
| plow Advantage (std)                | $\operatorname{FAO-GAEZ}$ | -0.00 | 0.31       | 1.00 | -2.83 | 2.61  | $1,\!179$ |
| % Fertile land                      | Ramankutty et al (2002)   | -0.00 | -0.03      | 1.00 | -1.43 | 2.53  | $1,\!134$ |
| Caloric Suitability Index (std)     | Galor and Ozak $(2015)$   | 0.00  | 0.28       | 1.00 | -1.95 | 2.63  | $1,\!179$ |

Table E.2: Descriptive Statistics: Countries X 50 years

| -                                     | SOURCE                    | Mean | <b>p50</b> | ${f SDev}$ | Min   | Max  | $\overline{\mathbf{N}}$ |
|---------------------------------------|---------------------------|------|------------|------------|-------|------|-------------------------|
| Hierarchy index                       | Borcan et al. (2014)      | 0.72 | 1.00       | 0.45       | 0.00  | 1.00 | 2,869                   |
| Cal/ha Best Crop (std)                | authors                   | 0.00 | 0.35       | 1.00       | -1.64 | 2.69 | 2,959                   |
| Cal/ha Cereals- Cal/ha Tubers (std)   | authors                   | 0.00 | -0.00      | 1.00       | -1.49 | 3.12 | 2,959                   |
| Precipitation (std)                   | ${ m FAO-GAEZ}$           | 0.00 | -0.29      | 1.00       | -1.38 | 2.89 | 2,940                   |
| Temperature (std)                     | FAO- $GAEZ$               | 0.00 | 0.20       | 1.00       | -2.68 | 1.52 | $2,\!884$               |
| Elevation (std)                       | ${ m FAO-GAEZ}$           | 0.00 | -0.33      | 1.00       | -1.10 | 4.65 | $2,\!845$               |
| Ruggedness (std)                      | Nunn and Puga (2012)      | 0.00 | -0.31      | 1.00       | -1.12 | 4.25 | 2,959                   |
| Absolute Latitude (std)               | Nunn and Puga (2012)      | 0.00 | -0.17      | 1.00       | -1.51 | 2.18 | 2,959                   |
| Legal Origin: English common law      | La Porta et al. (1999)    | 0.27 | 0.00       | 0.44       | 0.00  | 1.00 | 2,959                   |
| Legal Origin: French civil law        | La Porta et al. (1999)    | 0.45 | 0.00       | 0.50       | 0.00  | 1.00 | 2,959                   |
| Legal Origin: Socialist law           | La Porta et al. (1999)    | 0.22 | 0.00       | 0.41       | 0.00  | 1.00 | 2,959                   |
| Legal Origin: German civil law        | La Porta et al. (1999)    | 0.03 | 0.00       | 0.18       | 0.00  | 1.00 | 2,959                   |
| Legal Origin: Scandinavian law        | La Porta et al. (1999)    | 0.03 | 0.00       | 0.18       | 0.00  | 1.00 | 2,959                   |
| Population density 1500 (std)         | Acemoglu et al. (2002)    | 0.00 | -0.05      | 1.00       | -2.96 | 2.78 | 2,959                   |
| Mortality of early settlers (std)     | Acemoglu et al. (2002)    | 0.00 | -0.11      | 1.00       | -2.91 | 2.56 | $1,\!519$               |
| Slaves exported (std)                 | Nunn (2008)               | 0.00 | -0.26      | 1.00       | -0.26 | 9.01 | 2,959                   |
| Distance to major river (std)         | ${\tt www.pdx.edu/econ/}$ | 0.00 | -0.29      | 1.00       | -0.89 | 7.63 | $2,\!845$               |
| Distance to coast (std)               | www.pdx.edu/econ/         | 0.00 | -0.41      | 1.00       | -0.75 | 4.48 | $2,\!845$               |
| Pct Malaria                           | MAP                       | 0.65 | 0.94       | 0.41       | 0.00  | 1.00 | $2,\!883$               |
| % country with tropical climate (std) | Nunn and Puga (2012)      | 0.35 | 0.00       | 0.43       | 0.00  | 1.00 | 2,959                   |
| Caloric Suitability Index (std)       | Galor and Ozak (2015)     | 0.00 | 0.29       | 1.00       | -1.82 | 2.93 | 2,959                   |

Table E.3: Descriptive Statistics: 1x1 decimal degree pixel

|                                            | SOURCE               | Mean  | p50   | SDev  | Min   | Max    | $\overline{\mathbf{N}}$ |
|--------------------------------------------|----------------------|-------|-------|-------|-------|--------|-------------------------|
| Cities founded before 400 AD               | DeGroff (2009)       | 0.16  | 0.00  | 1.36  | 0.00  | 76.00  | 15,927                  |
| Archeological sites                        | ANCIENTLOCATIONS.NET | 0.24  | 0.00  | 2.58  | 0.00  | 138.00 | 15,927                  |
| Pyramids or Mastaba                        | MEGALITHIC.CO.UK     | 0.01  | 0.00  | 0.75  | 0.00  | 87.00  | 15,927                  |
| Temples                                    | MEGALITHIC.CO.UK     | 0.04  | 0.00  | 0.64  | 0.00  | 46.00  | 15,927                  |
| Mines                                      | MEGALITHIC.CO.UK     | 0.01  | 0.00  | 0.21  | 0.00  | 22.00  | 15,927                  |
| Palaces                                    | MEGALITHIC.CO.UK     | 0.00  | 0.00  | 0.06  | 0.00  | 5.00   | 15,927                  |
| Sculptured Stones                          | MEGALITHIC.CO.UK     | 0.02  | 0.00  | 0.83  | 0.00  | 101.00 | $15,\!927$              |
| Standing Stones                            | MEGALITHIC.CO.UK     | 0.04  | 0.00  | 0.71  | 0.00  | 45.00  | 15,927                  |
| Cal/ha Best Crop (std)                     | authors              | -0.70 | -1.28 | 1.26  | -1.78 | 3.76   | 15,927                  |
| Cal/ha Cereals- Cal/ha Tubers (std)        | authors              | -0.93 | -1.40 | 1.03  | -2.67 | 2.96   | 15,927                  |
| Distance closest area adoption cereals     | authors              | 28.71 | 24.72 | 22.78 | 0.00  | 270.26 | 15,927                  |
| Distance closest area adoption agriculture | authors              | 19.02 | 15.51 | 17.57 | 0.00  | 234.51 | 15,927                  |
| Precipitation (std)                        | FAO- $GAEZ$          | 0.00  | -0.32 | 1.00  | -1.06 | 9.24   | $15,\!862$              |
| Temperature (std)                          | FAO- $GAEZ$          | 0.00  | -0.32 | 1.00  | -1.33 | 1.81   | $15,\!833$              |
| Elevation (std)                            | FAO- $GAEZ$          | -0.00 | -0.34 | 1.00  | -0.87 | 6.01   | 15,927                  |
| Ruggedness (std)                           | FAO- $GAEZ$          | -0.00 | 0.35  | 1.00  | -3.38 | 1.10   | $15,\!927$              |
| Absolute Latitude (std)                    | authors              | 40.52 | 41.50 | 22.20 | 0.50  | 83.50  | 15,927                  |
| Population density 1995 (std)              | FAO-GAEZ             | 0.00  | -0.59 | 1.00  | -0.76 | 3.58   | 15,861                  |

Table E.5: Pairwise correlations of the main variables used in the empirical analysis on the societies in the Ethnoatlas

| Variables                 | Hier. | Crop:   | Dep.   | Farm. | Pop   | Cal/ha  | Cer.  | % Fertile | Caloric    |
|---------------------------|-------|---------|--------|-------|-------|---------|-------|-----------|------------|
|                           |       | cereals | agric. | surp. | dens. | b. crop | -Tub. | land      | suit. ind. |
| Hierarchy                 | 1.0   |         |        |       |       |         |       |           |            |
| Main crop: cereals        | 0.3   | 1.0     |        |       |       |         |       |           |            |
| Dependence agriculture    | 0.4   | 0.5     | 1.0    |       |       |         |       |           |            |
| Farming surplus           | 0.6   | 0.4     | 0.3    | 1.0   |       |         |       |           |            |
| Hist Pop density (Pryor)  | 0.6   | 0.5     | 0.7    | 0.4   | 1.0   |         |       |           |            |
| Cal/ha best crop          | 0.2   | 0.3     | 0.4    | 0.2   | 0.3   | 1.0     |       |           |            |
| Cereals-Tubers            | 0.2   | 0.4     | 0.3    | 0.3   | 0.2   | 0.8     | 1.0   |           |            |
| % Fertile land            | 0.2   | 0.2     | 0.3    | 0.2   | 0.3   | 0.4     | 0.5   | 1.0       |            |
| Caloric suitability index | 0.2   | 0.3     | 0.5    | 0.2   | 0.3   | 1.0     | 0.8   | 0.5       | 1.0        |

#### Crop yields, agriculture and main crop

Table C.1: Potential Crop Yields and Choice of Crops - Robustness Checks 1

|                          | Dep. Va                | riable: Majo         | or crop is ce          | real grains (     | dummy)     |
|--------------------------|------------------------|----------------------|------------------------|-------------------|------------|
|                          | (1)                    | (2)                  | (3)                    | (4)               | (5)        |
| CALORIC DIFF             | 0.139***               | 0.268***             | 0.195***               | 0.198***          | 0.271***   |
| (CER - TUB)              | (0.0345)               | (0.0334)             | (0.0307)               | (0.0315)          | (0.0358)   |
| MAX CALORIES             | 0.0791**               | -0.103**             | 0.00835                | 0.0138            | -0.0981**  |
| (ALL CROPS)              | (0.0374)               | (0.0412)             | (0.0336)               | (0.0353)          | (0.0457)   |
| Precipitation            | -0.0995***<br>(0.0238) |                      |                        |                   |            |
| Temperature Abs Latitude | ,                      | 0.0781*** $(0.0183)$ |                        |                   |            |
| Elevation                |                        | ,                    | $0.120*** \\ (0.0154)$ |                   |            |
| Ruggedness               |                        |                      | (0.0101)               | 0.0302** (0.0153) |            |
| Abs Latitude             |                        |                      |                        | (0.0100)          | -0.0670*** |
|                          |                        |                      |                        |                   | (0.0205)   |
| r2                       | 0.161                  | 0.146                | 0.160                  | 0.136             | 0.141      |
| N                        | 982                    | 982                  | 982                    | 982               | 982        |



#### Crop yields, agriculture and main crop

Table C.2: Potential Crop Yields and Choice of Crops - Robustness Checks 2

|                          | Б                    | ep. Variable         | : Maior cro           | p is cereal gr       | ains (dumm           | v)                    |
|--------------------------|----------------------|----------------------|-----------------------|----------------------|----------------------|-----------------------|
|                          | (1)                  | (2)                  | (3)                   | (4)                  | (5)                  | (6)                   |
| CALORIC DIFF             | 0.211***             | 0.209***             | 0.256***              | 0.198***             | 0.207***             | 0.276***              |
| (CER - TUB)              | (0.0308)             | (0.0310)             | (0.0307)              | (0.0313)             | (0.0313)             | (0.0630)              |
| MAX CALORIES (ALL CROPS) | -0.00949<br>(0.0336) | -0.00947 $(0.0338)$  | -0.0804**<br>(0.0366) | -0.0143 $(0.0341)$   | -0.00862 $(0.0338)$  | -0.235***<br>(0.0758) |
| Major River              | -0.0359**            | (3.3333)             | (******)              | (****==)             | (*****)              | (0.000)               |
| Distance Coast           | (0.0144)             | 0.0355**<br>(0.0154) |                       |                      |                      |                       |
| Pct. Malaria             |                      | (0.0134)             | 0.0711*** $(0.0152)$  |                      |                      |                       |
| Pop Dens. 1995           |                      |                      | ()                    | 0.0668*** $(0.0154)$ |                      |                       |
| Hist Pop Dens            |                      |                      |                       | ,                    | $0.0324 \\ (0.0323)$ |                       |
| Pop Dens                 |                      |                      |                       |                      | ,                    | 0.235***<br>(0.0332)  |
| r2                       | 0.138                | 0.137                | 0.149                 | 0.148                | 0.137                | 0.313                 |
| N                        | 982                  | 982                  | 982                   | 966                  | 982                  | 144                   |



Table C.3: Cereals and Hierarchy - 2SLS. Controlling for geography.

|                    | D 1      | 4 1- 1   | T:-1:-4: | -1 TT:1  | D 1 C                  |
|--------------------|----------|----------|----------|----------|------------------------|
|                    | -        |          |          | ·        | Beyond Local Community |
|                    | (1)      | (2)      | (3)      | (4)      | (5)                    |
|                    | 2SLS     | 2SLS     | 2SLS     | 2SLS     | 2 SLS                  |
| MAIN CROP: CEREALS | 0.478    | 0.599**  | 0.900**  | 0.887**  | 0.590**                |
|                    | (0.570)  | (0.298)  | (0.394)  | (0.396)  | (0.300)                |
| MAX CALORIES       | 0.178    | 0.172*** | 0.0731   | 0.0725   | 0.167**                |
| (ALL CROPS)        | (0.120)  | (0.0653) | (0.0771) | (0.0846) | (0.0693)               |
| Precipitation      | -0.112   |          |          |          |                        |
| 1                  | (0.0744) |          |          |          |                        |
| Temperature        | /        | -0.0734* |          |          |                        |
| 1                  |          | (0.0394) |          |          |                        |
| Elevation          |          | ()       | -0.0631  |          |                        |
|                    |          |          | (0.0635) |          |                        |
| Ruggedness         |          |          | (0.0000) | -0.0126  |                        |
| 104880411000       |          |          |          | (0.0377) |                        |
| Abs Latitude       |          |          |          | (0.0011) | 0.0622                 |
| Tibs Editude       |          |          |          |          | (0.0402)               |
| N                  | 952      | 952      | 952      | 952      | 952                    |
| F excl instrum.    | 15.39    | 59.50    | 37.45    | 36.76    | 55.55                  |
|                    | 0.403    |          |          |          |                        |
| A-R Test (p-val)   | 0.405    | 0.0458   | 0.0185   | 0.0205   | 0.0502                 |



Table C.4: Cereals and Hierarchy - 2SLS. Controlling for isolation and population density.

|                    | Dependent        | t variable: | Jurisdiction | al Hierarchy | Beyond Local Community |
|--------------------|------------------|-------------|--------------|--------------|------------------------|
|                    | (1)              | (2)         | (3)          | (4)          | (5)                    |
|                    | $2 \mathrm{SLS}$ | 2SLS        | 2SLS         | 2SLS         | $2 \mathrm{SLS}$       |
| MAIN CROP: CEREALS | 0.840**          | 0.870**     | 0.777**      | 1.317*       | 0.730**                |
|                    | (0.356)          | (0.366)     | (0.329)      | (0.685)      | (0.328)                |
| MAX CALORIES       | 0.0899           | 0.0835      | 0.0631       | 0.0250       | 0.0317                 |
| (ALL CROPS)        | (0.0695)         | (0.0706)    | (0.0659)     | (0.103)      | (0.0636)               |
| Major River        | 0.102***         |             |              |              |                        |
| v                  | (0.0356)         |             |              |              |                        |
| Distance to Coast  | ,                | -0.0323     |              |              |                        |
|                    |                  | (0.0364)    |              |              |                        |
| Pop Density (HYDE) |                  |             | 0.257**      |              |                        |
|                    |                  |             | (0.125)      |              |                        |
| Pop Density (SCSS) |                  |             |              | 0.415**      |                        |
|                    |                  |             |              | (0.183)      |                        |
| Pop Density 1995   |                  |             |              |              | 0.334***               |
|                    |                  |             |              |              | (0.0481)               |
| N                  | 952              | 952         | 952          | 142          | 936                    |
| F excl instrum.    | 43.86            | 41.93       | 40.91        | 17.63        | 37.13                  |
| A-R Test (p-val)   | 0.0160           | 0.0149      | 0.0161       | 0.0243       | 0.0223                 |



Table C.5: Cereals and Hierarchy - 2SLS. Potential calorie yields refer to ethnic boundaries in Fenske (2013)

|                    | ]        | Dependent v | ariable: Ju | risdictional | Hierarchy B | eyond Local | Communit | y        |
|--------------------|----------|-------------|-------------|--------------|-------------|-------------|----------|----------|
|                    | (1)      | (2)         | (3)         | (4)          | (5)         | (6)         | (7)      | (8)      |
|                    | OLS      | 2SLS        | 2SLS        | 2SLS         | OLS         | 2SLS        | 2SLS     | 2SLS     |
| MAIN CROP: CEREALS | 0.707*** | 1.109***    | 0.845**     | 1.040***     | 0.304***    | 0.841***    | 1.080*** | 0.994*** |
|                    | (0.0630) | (0.188)     | (0.333)     | (0.245)      | (0.0762)    | (0.236)     | (0.302)  | (0.257)  |
| MAX CALORIES       |          |             | 0.0692      |              |             |             | -0.0542  |          |
| (ALL CROPS)        |          |             | (0.0646)    |              |             |             | (0.0546) |          |
| DEPENDENCE ON      |          |             |             | 0.334        |             |             |          | -0.574   |
| AGRICULTURE        |          |             |             | (0.298)      |             |             |          | (0.583)  |
| CONTINENT FE       | NO       | NO          | NO          | NO           | YES         | YES         | YES      | YES      |
| N                  | 952      | 942         | 942         | 952          | 952         | 942         | 942      | 942      |
| F excl instrum.    |          | 162.7       | 52.46       | 63.39        |             | 118.7       | 74.18    | 28.21    |
| A-R Test (p-val)   |          | 0.000       | 0.00859     | 0.000        |             | 0.000       | 0.000    | 0.000    |



Table C.6: Cereals and Hierarchy - 2SLS. Sample including societies living in desertic soils.

|                    |          | Dependent v      | variable: Ju | risdictional | Hierarchy B | eyond Local      | Communit         | у        |
|--------------------|----------|------------------|--------------|--------------|-------------|------------------|------------------|----------|
|                    | (1)      | (2)              | (3)          | (4)          | (5)         | (6)              | (7)              | (8)      |
|                    | OLS      | $2 \mathrm{SLS}$ | 2SLS         | 2 SLS        | OLS         | $2 \mathrm{SLS}$ | $2 \mathrm{SLS}$ | 2 SLS    |
| MAIN CROP: CEREALS | 0.712*** | 1.200***         | 0.831**      | 0.999***     | 0.313***    | 0.839***         | 1.180***         | 1.092*** |
|                    | (0.0596) | (0.206)          | (0.360)      | (0.262)      | (0.0703)    | (0.273)          | (0.322)          | (0.284)  |
| MAX CALORIES       |          |                  | 0.0667       |              |             |                  | -0.0489          |          |
| (ALL CROPS)        |          |                  | (0.0520)     |              |             |                  | (0.0418)         |          |
| DEPENDENCE ON      |          |                  |              | 0.327        |             |                  |                  | -0.513   |
| AGRICULTURE        |          |                  |              | (0.257)      |             |                  |                  | (0.434)  |
| CONTINENT FE       | NO       | NO               | NO           | NO           | YES         | YES              | YES              | YES      |
| N                  | 1059     | 1059             | 1059         | 1059         | 1059        | 1059             | 1059             | 1059     |
| F excl instrum.    |          | 130.2            | 44.59        | 56.16        |             | 81.93            | 64.09            | 51.98    |
| A-R Test (p-val)   |          | 0.000            | 0.0183       | 0.000        |             | 0.00163          | 0.000            | 0.000    |



Table C.7: Cereals and Surplus - 2SLS. Controlling for geography.

|                    | _        | lent variable: |           | -        | _        |
|--------------------|----------|----------------|-----------|----------|----------|
|                    | (1)      | (2)            | (3)       | (4)      | (5)      |
|                    | 2SLS     | 2 SLS          | 2SLS      | 2 SLS    | 2SLS     |
| MAIN CROP: CEREALS | 0.774**  | 0.764***       | 0.921***  | 0.930*** | 0.681**  |
|                    | (0.375)  | (0.261)        | (0.301)   | (0.315)  | (0.267)  |
| MAX CALORIES       | 0.0334   | 0.0387         | 0.00222   | -0.0215  | 0.0534   |
| (ALL CROPS)        | (0.0793) | (0.0686)       | (0.0677)  | (0.0811) | (0.0637) |
| Precipitation      | -0.0344  |                |           |          |          |
|                    | (0.0785) |                |           |          |          |
| Temperature        | ,        | -0.0281        |           |          |          |
|                    |          | (0.0475)       |           |          |          |
| Elevation          |          | , ,            | -0.155*** |          |          |
|                    |          |                | (0.0543)  |          |          |
| Ruggedness         |          |                | ,         | -0.109   |          |
|                    |          |                |           | (0.0714) |          |
| Abs Latitude       |          |                |           | , , ,    | 0.0511   |
|                    |          |                |           |          | (0.0468) |
| N                  | 139      | 139            | 139       | 139      | 139      |
| F excl instrum.    | 10.41    | 19.42          | 15.50     | 14.83    | 15.68    |
| A-R Test (p-val)   | 0.0162   | 0.00198        | 0.000     | 0.000875 | 0.00822  |



Table C.8: Cereals and Surplus - 2SLS. Controlling for isolation and population density.

|                      | Donand   | ent variable: | Errigtongo | of a farming | aumplua  |
|----------------------|----------|---------------|------------|--------------|----------|
|                      |          |               |            | _            | -        |
|                      | (1)      | (2)           | (3)        | (4)          | (5)      |
|                      | 2SLS     | 2SLS          | 2SLS       | 2SLS         | 2SLS     |
| MAIN CROP: CEREALS   | 0.823*** | 0.851***      | 0.820***   | 0.848***     | 0.916*** |
|                      | (0.277)  | (0.275)       | (0.300)    | (0.288)      | (0.314)  |
| MAX CALORIES         | 0.0215   | 0.0191        | 0.0132     | 0.0208       | 0.0117   |
| (ALL CROPS)          | (0.0625) | (0.0626)      | (0.0589)   | (0.0530)     | (0.0616) |
| Major River          | 0.0363   |               |            |              |          |
| ·                    | (0.0409) |               |            |              |          |
| Distance to Coast    | ,        | -0.0150       |            |              |          |
|                      |          | (0.0448)      |            |              |          |
| Pop Density (HYDE)   |          | (0.0110)      | 0.0291     |              |          |
| Top Bonolog (III BE) |          |               | (0.0379)   |              |          |
| Pop Density (SCSS)   |          |               | (0.0013)   | -0.00815     |          |
| Top Density (BCBB)   |          |               |            | (0.0847)     |          |
| Don Donaity 1005     |          |               |            | (0.0041)     | 0.00146  |
| Pop Density 1995     |          |               |            |              |          |
| DT                   | 100      | 1.00          | 1.00       | 100          | (0.0358) |
| N                    | 139      | 139           | 139        | 139          | 137      |
| F excl instrum.      | 15.86    | 17.09         | 13.35      | 17.91        | 12.99    |
| A-R Test (p-val)     | 0.00127  | 0.000635      | 0.00353    | 0.000        | 0.00111  |



Table C.9: Cereals and Surplus: Potential calorie yields refer to ethnic boundaries in Fenske (2013).

|                    |          | т                                                  | 1 /      | . 11 - 17 -      | C C      | . 1       |                  |           |  |  |  |
|--------------------|----------|----------------------------------------------------|----------|------------------|----------|-----------|------------------|-----------|--|--|--|
|                    | 7.1      | Dependent variable: Existence of a farming surplus |          |                  |          |           |                  |           |  |  |  |
|                    | (1)      | (2)                                                | (3)      | (4)              | (5)      | (6)       | (7)              | (8)       |  |  |  |
|                    | OLS      | 2 SLS                                              | 2 SLS    | $2 \mathrm{SLS}$ | OLS      | 2SLS      | $2 \mathrm{SLS}$ | 2SLS      |  |  |  |
| MAIN CROP: CEREALS | 0.359*** | 0.909***                                           | 0.894*** | 0.846***         | 0.299*** | 0.953***  | 0.845**          | 0.864***  |  |  |  |
|                    | (0.0791) | (0.274)                                            | (0.297)  | (0.275)          | (0.0901) | (0.318)   | (0.336)          | (0.303)   |  |  |  |
| MAX CALORIES       |          |                                                    | 0.00286  |                  |          |           | 0.0196           |           |  |  |  |
| (ALL CROPS)        |          |                                                    | (0.0657) |                  |          |           | (0.0657)         |           |  |  |  |
| DEPENDENCE ON      |          |                                                    |          | 0.191            |          |           |                  | 0.210     |  |  |  |
| AGRICULTURE        |          |                                                    |          | (0.663)          |          |           |                  | (0.723)   |  |  |  |
| CONTINENT FE       | NO       | NO                                                 | NO       | NO               | YES      | YES       | YES              | YES       |  |  |  |
| N                  | 139      | 138                                                | 138      | 138              | 139      | 138       | 138              | 138       |  |  |  |
| F excl instrum.    |          | 15.52                                              | 17.23    | 5.486            |          | 16.90     | 13.56            | 4.786     |  |  |  |
| A-R Test (p-val)   |          | 0.0000310                                          | 0.000326 | 0.0000119        |          | 0.0000802 | 0.00548          | 0.0000920 |  |  |  |



Table C.10: Cereals and Surplus: OLS and 2SLS. Sample including societies living in desertic soils.

|                    | Dependent variable: Existence of a farming surplus |          |          |          |          |         |          |          |  |  |  |
|--------------------|----------------------------------------------------|----------|----------|----------|----------|---------|----------|----------|--|--|--|
|                    | (1)                                                | (2)      | (3)      | (4)      | (5)      | (6)     | (7)      | (8)      |  |  |  |
|                    | OLS                                                | 2SLS     | 2SLS     | 2SLS     | OLS      | 2SLS    | 2SLS     | 2SLS     |  |  |  |
| MAIN CROP: CEREALS | 0.368***                                           | 0.630*** | 0.871*** | 0.871*** | 0.294*** | 0.657** | 0.814*** | 0.821*** |  |  |  |
|                    | (0.0733)                                           | (0.220)  | (0.279)  | (0.283)  | (0.0849) | (0.260) | (0.300)  | (0.316)  |  |  |  |
| MAX CALORIES       |                                                    |          | -0.0368  |          |          |         | -0.0215  |          |  |  |  |
| (ALL CROPS)        |                                                    |          | (0.0501) |          |          |         | (0.0473) |          |  |  |  |
| DEPENDENCE ON      |                                                    |          |          | -0.362   |          |         |          | -0.244   |  |  |  |
| AGRICULTURE        |                                                    |          |          | (0.488)  |          |         |          | (0.540)  |  |  |  |
| CONTINENT FE       | NO                                                 | NO       | NO       | NO       | YES      | YES     | YES      | YES      |  |  |  |
| N                  | 161                                                | 161      | 161      | 161      | 161      | 161     | 161      | 161      |  |  |  |
| F excl instrum.    |                                                    | 18.58    | 17.37    | 14.46    |          | 19.68   | 14.27    | 7.531    |  |  |  |
| A-R Test (p-val)   |                                                    | 0.00711  | 0.000    | 0.000    |          | 0.0109  | 0.00391  | 0.00191  |  |  |  |



Table 7: Cereals and Hierarchy - Panel Regressions - Robustness Checks

|                       |          |                                |         | 77 • 11  | TT: 1    | т 1      |          |          |  |  |  |  |
|-----------------------|----------|--------------------------------|---------|----------|----------|----------|----------|----------|--|--|--|--|
|                       |          | Dep. Variable: Hierarchy Index |         |          |          |          |          |          |  |  |  |  |
|                       | (1)      | (2)                            | (3)     | (4)      | (5)      | (6)      | (7)      | (8)      |  |  |  |  |
| CALORIC DIFF          | 0.160*   | 0.127                          | 0.206*  | 0.274*** | 0.245*** | 0.258*** | 0.273*** | 0.254*** |  |  |  |  |
| (CER - TUB)           | (0.0892) | (0.0843)                       | (0.116) | (0.0833) | (0.0928) | (0.0957) | (0.0840) | (0.0675) |  |  |  |  |
| MAX CALORIES          | -0.0507  | 0.0471                         | -0.261  | -0.176   | -0.121   | -0.133   | -0.199   | -0.211** |  |  |  |  |
| (ALL CROPS)           | (0.133)  | (0.132)                        | (0.192) | (0.143)  | (0.151)  | (0.151)  | (0.145)  | (0.102)  |  |  |  |  |
| Controls (x Year FE): |          |                                |         |          |          |          |          |          |  |  |  |  |
| Legal Origin          | YES      | NO                             | NO      | NO       | NO       | NO       | NO       | NO       |  |  |  |  |
| Pop Density 1500      | NO       | YES                            | NO      | NO       | NO       | NO       | NO       | NO       |  |  |  |  |
| Settlers Mortality    | NO       | NO                             | YES     | NO       | NO       | NO       | NO       | NO       |  |  |  |  |
| Slave Exports         | NO       | NO                             | NO      | YES      | NO       | NO       | NO       | NO       |  |  |  |  |
| Distance River        | NO       | NO                             | NO      | NO       | YES      | NO       | NO       | NO       |  |  |  |  |
| Distance Coast        | NO       | NO                             | NO      | NO       | NO       | YES      | NO       | NO       |  |  |  |  |
| Pct Malaria           | NO       | NO                             | NO      | NO       | NO       | NO       | YES      | NO       |  |  |  |  |
| Tropical Land         | NO       | NO                             | NO      | NO       | NO       | NO       | NO       | YES      |  |  |  |  |
| COUNTRY FE            | YES      | YES                            | YES     | YES      | YES      | YES      | YES      | YES      |  |  |  |  |
| TIME FE               | YES      | YES                            | YES     | YES      | YES      | YES      | YES      | YES      |  |  |  |  |
| r2                    | 0.699    | 0.714                          | 0.707   | 0.683    | 0.678    | 0.679    | 0.681    | 0.744    |  |  |  |  |
| N                     | 2869     | 2869                           | 1501    | 2869     | 2755     | 2755     | 2793     | 2869     |  |  |  |  |



Table C.11: Cereals and Hierarchy - Panel Regressions

|                             |          | Dep.     | Variable: C          | Government | above tribal | level    |          |
|-----------------------------|----------|----------|----------------------|------------|--------------|----------|----------|
|                             | (1)      | (2)      | (3)                  | (4)        | (5)          | (6)      | (7)      |
| CALORIC DIFF                | 0.188*** | 0.270*** | 0.280***             | 0.235***   | 0.252***     | 0.259*** | 0.192**  |
| (CER - TUB)                 | (0.0683) | (0.0835) | (0.0758)             | (0.0855)   | (0.0890)     | (0.0840) | (0.0791) |
| MAX CALORIES                |          | -0.159   | -0.189               | -0.150     | -0.110       | -0.145   | -0.161   |
| (ALL CROPS)                 |          | (0.140)  | (0.131)              | (0.138)    | (0.142)      | (0.138)  | (0.122)  |
| Controls (x Year FE):       |          |          |                      |            |              |          |          |
| Precipitation               | NO       | NO       | $\operatorname{YES}$ | NO         | NO           | NO       | NO       |
| Temperature                 | NO       | NO       | NO                   | YES        | NO           | NO       | NO       |
| Elevation                   | NO       | NO       | NO                   | NO         | YES          | NO       | NO       |
| $\operatorname{Ruggedness}$ | NO       | NO       | NO                   | NO         | NO           | YES      | NO       |
| Abs Latitude                | NO       | NO       | NO                   | NO         | NO           | NO       | YES      |
| COUNTRY FE                  | YES      | YES      | YES                  | YES        | YES          | YES      | YES      |
| YEAR FE                     | YES      | YES      | YES                  | YES        | YES          | YES      | YES      |
| r2                          | 0.672    | 0.674    | 0.707                | 0.677      | 0.673        | 0.677    | 0.699    |
| N                           | 2869     | 2869     | 2850                 | 2812       | 2755         | 2869     | 2869     |



Table C.12: Cereals and Hierarchy - Panel Regressions. Robustness Checks: Excluding years 1500-1750

|                       | Dep. Variable: Hierarchy Index |          |          |          |          |          |          |  |  |  |
|-----------------------|--------------------------------|----------|----------|----------|----------|----------|----------|--|--|--|
|                       | (1)                            | (2)      | (3)      | (4)      | (5)      | (6)      | (7)      |  |  |  |
| CALORIC DIFF          | 0.198***                       | 0.272*** | 0.282*** | 0.235*** | 0.249*** | 0.260*** | 0.190**  |  |  |  |
| (CER - TUB)           | (0.0720)                       | (0.0889) | (0.0811) | (0.0912) | (0.0946) | (0.0892) | (0.0846) |  |  |  |
| MAX CALORIES          |                                | -0.145   | -0.176   | -0.140   | -0.0889  | -0.130   | -0.148   |  |  |  |
| (ALL CROPS)           |                                | (0.149)  | (0.140)  | (0.146)  | (0.150)  | (0.146)  | (0.129)  |  |  |  |
| Controls (x Year FE): |                                |          |          |          |          |          |          |  |  |  |
| Precipitation         | NO                             | NO       | YES      | NO       | NO       | NO       | NO       |  |  |  |
| Temperature           | NO                             | NO       | NO       | YES      | NO       | NO       | NO       |  |  |  |
| Elevation             | NO                             | NO       | NO       | NO       | YES      | NO       | NO       |  |  |  |
| Ruggedness            | NO                             | NO       | NO       | NO       | NO       | YES      | NO       |  |  |  |
| Abs Latitude          | NO                             | NO       | NO       | NO       | NO       | NO       | YES      |  |  |  |
| COUNTRY FE            | YES                            | YES      | YES      | YES      | YES      | YES      | YES      |  |  |  |
| YEAR FE               | YES                            | YES      | YES      | YES      | YES      | YES      | YES      |  |  |  |
| r2                    | 0.711                          | 0.712    | 0.743    | 0.715    | 0.711    | 0.716    | 0.735    |  |  |  |
| N                     | 2416                           | 2416     | 2400     | 2368     | 2320     | 2416     | 2416     |  |  |  |



#### Cereals and ancient civilizations

Table E.24: Potential Crop Yields and the Location of Ancient Cities. Robustness checks: Controlling for Geography and Population Density.

|               | Dependent variable: Presence of an ancient city (dummy) |                      |                      |                      |                           |                           |            |           |  |
|---------------|---------------------------------------------------------|----------------------|----------------------|----------------------|---------------------------|---------------------------|------------|-----------|--|
|               | (1)                                                     | (2)                  | (3)                  | (4)                  | (5)                       | (6)                       | (7)        | (8)       |  |
| CALORIC DIFF  | 0.124***                                                | 0.167***             | 0.129***             | 0.129***             | 0.0946***                 | 0.168***                  | 0.0634***  | 0.112***  |  |
| (CER - TUB)   | (0.0367)                                                | (0.0458)             | (0.0380)             | (0.0386)             | (0.0301)                  | (0.0474)                  | (0.00546)  | (0.0410)  |  |
| MAX CALORIES  | -0.0693***                                              | -0.120***            | -0.0751***           | -0.0743***           | -0.0910***                | -0.121***                 | -0.0405*** | -0.0694** |  |
| (ALL CROPS)   | (0.0253)                                                | (0.0333)             | (0.0257)             | (0.0261)             | (0.0232)                  | (0.0358)                  | (0.00440)  | (0.0292)  |  |
| Precipitation | -0.00393<br>(0.00735)                                   |                      |                      |                      |                           |                           |            |           |  |
| Temperature   |                                                         | 0.0588*** $(0.0163)$ |                      |                      |                           |                           |            |           |  |
| Elevation     |                                                         |                      | -0.00178 $(0.00624)$ |                      |                           |                           |            |           |  |
| Ruggedness    |                                                         |                      |                      | -0.00883 $(0.00747)$ |                           |                           |            |           |  |
| Pop Dens 1995 |                                                         |                      |                      |                      | $0.0891^{***}$ $(0.0128)$ |                           |            |           |  |
| Abs Latitude  |                                                         |                      |                      |                      |                           | -0.00257***<br>(0.000908) |            |           |  |
| CONTINENT FE  | YES                                                     | YES                  | YES                  | YES                  | YES                       | YES                       | YES        | YES       |  |
| r2            | 0.0987                                                  | 0.116                | 0.0986               | 0.100                | 0.172                     | 0.112                     | 0.0705     | 0.105     |  |
| N             | 15862                                                   | 15833                | 15927                | 15927                | 15861                     | 15927                     | 12052      | 8942      |  |

The table reports cross-sectional OLS estimates and the unit of observation is the 1x1 decimal degree square. The dependent variable is a dummy that takes the value of one if there is evidence of at least one ancient city in the pixel and zero otherwise. CALORIC DIFF (CER-TUB) is the standardized difference between the maximum potential calorie yield per hectare that can be obtained from cereals versus the one that can be obtained from either roots or tubers. MAX CALORIES (ALL CROPS) is the standardized maximum potential calorie yield per hectare that can be obtained from cultivating the most productive crop among cereal grains, roots and tubers. In column 7 the sample excludes Europe, in column 8 the sample excludes deserts. Robust standard errors, clustered at the country-level, in parentheses \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.

#### Cereals and ancient civilizations

Table E.26: The Origin of the Neolithic Transition and the Location of Ancient Cities. Robustness checks: Controlling for Geography and Population Density.

|                      |                        | De                   | pendent varia         | ole is the pres       | ence of an and        | eient city (dun       | nmy)       |             |
|----------------------|------------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------|-------------|
|                      | (1)                    | (2)                  | (3)                   | (4)                   | (5)                   | (6)                   | (7)        | (8)         |
| Distance closest     | -0.00141**             | -0.000710            | -0.00148**            | -0.00132**            | -0.00168**            | -0.000710             | -0.00144** | -0.00264*** |
| adoption cereals     | (0.000601)             | (0.000922)           | (0.000679)            | (0.000630)            | (0.000651)            | (0.00112)             | (0.000591) | (0.000922)  |
| Distance closest     | 0.000250               | 0.000340             | 0.000323              | 0.000101              | 0.00194***            | 0.000339              | 0.000564   | 0.000369    |
| adoption agriculture | (0.000576)             | (0.000653)           | (0.000609)            | (0.000617)            | (0.000636)            | (0.000662)            | (0.000468) | (0.00103)   |
| Precipitation        | $0.00153 \\ (0.00715)$ |                      |                       |                       |                       |                       |            |             |
| Temperature          |                        | 0.0412**<br>(0.0186) |                       |                       |                       |                       |            |             |
| Elevation            |                        |                      | -0.00719<br>(0.00863) |                       |                       |                       |            |             |
| Ruggedness           |                        |                      |                       | -0.00600<br>(0.00666) |                       |                       |            |             |
| Pop Dens 1995        |                        |                      |                       |                       | 0.0819***<br>(0.0130) |                       |            |             |
| Abs Latitude         |                        |                      |                       |                       |                       | -0.00159<br>(0.00110) |            |             |
| CONTINENT FE         | YES                    | YES                  | YES                   | YES                   | YES                   | YES                   | YES        | YES         |
| r2                   | 0.0497                 | 0.0593               | 0.0505                | 0.0501                | 0.153                 | 0.0548                | 0.0642     | 0.0836      |
| N                    | 15862                  | 15833                | 15927                 | 15927                 | 15861                 | 15927                 | 12052      | 8942        |

The table reports cross-sectional OLS estimates and the unit of observation is the 1x1 decimal degree square. The dependent variable is a dummy that takes the value of one if there is evidence of at least one ancient city in the pixel and zero otherwise. "Distance closest adoption cereals" is the distance (in km) between the pixel and the closest region in which agriculture started independently and cereals were among the domesticated crops. "Distance closest adoption agriculture" is the distance between the pixel and the closest region in which agriculture was independently adopted. In column 7 the sample excludes Europe, in column 8 the sample excludes deserts. Robust standard errors, clustered at the country-level, in parentheses \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.

#### Cereals and ancient civilizations

Table E.28: The Origin of the Neolithic Transition and Archaeological Ruins. Robustness Checks: Excluding Europe

|                      | Dependent variable is a dummy that identifies evidence of |            |                 |                          |                          |                              |                           |  |  |  |
|----------------------|-----------------------------------------------------------|------------|-----------------|--------------------------|--------------------------|------------------------------|---------------------------|--|--|--|
|                      | ${ m ancient}$                                            | pyramids   | ancient         | $\operatorname{ancient}$ | $\operatorname{ancient}$ | $\operatorname{ancient}$     | ${ m ancient}$            |  |  |  |
|                      | archaeolog.                                               |            | $_{ m temples}$ | $\min$ es                | palaces                  | $\operatorname{sculputured}$ | $\operatorname{standing}$ |  |  |  |
|                      | $\operatorname{sites}$                                    |            |                 |                          |                          | stones                       | stones                    |  |  |  |
|                      | (1)                                                       | (2)        | (3)             | (4)                      | (5)                      | (6)                          | (7)                       |  |  |  |
| Distance closest     | -0.00279***                                               | -0.000281  | -0.000637**     | -0.000208*               | -0.000132**              | -0.000231**                  | -0.0000128                |  |  |  |
| adoption cereals     | (0.000826)                                                | (0.000181) | (0.000311)      | (0.000122)               | (0.0000558)              | (0.000104)                   | (0.0000637)               |  |  |  |
| Distance closest     | 0.000776                                                  | 0.0000616  | 0.000362        | -0.0000761               | 0.0000597                | 0.000124                     | -0.0000923                |  |  |  |
| adoption agriculture | (0.000528)                                                | (0.000109) | (0.000328)      | (0.000141)               | (0.0000476)              | (0.0000768)                  | (0.0000663)               |  |  |  |
| CONTINENT FE         | YES                                                       | YES        | YES             | YES                      | YES                      | YES                          | YES                       |  |  |  |
| r2                   | 0.0410                                                    | 0.00524    | 0.0135          | 0.00405                  | 0.00265                  | 0.00520                      | 0.00416                   |  |  |  |
| N                    | 12052                                                     | 12052      | 12052           | 12052                    | 12052                    | 12052                        | 12052                     |  |  |  |

The table reports cross-sectional OLS estimates and the unit of observation is the 1x1 decimal degree square. The sample excludes Europe. The dependent variable is a dummy that takes the value of one if there is archeological evidence of either ancient sites from the Stone Age (column 1), or ancient pyramids or mastaba (column 2), or ancient temples (column 3), or ancient mines or quarries (column 4), or ancient palaces (column 5), or ancient sculptured stones (column 6), or ancient standing stones (column 7). "Distance closest adoption cereals" is the distance (in km) between the pixel and the closest region in which agriculture started independently and cereals were among the domesticated crops. "Distance closest adoption agriculture" is the distance between the pixel and the closest region in which agriculture was independently adopted. Robust standard errors, clustered at the country-level, in parentheses \*\*\* significant at less than 1 percent; \*\* significant at 5 percent; \* significant at 10 percent.