Fiorella De Fiore

Marie Hoerova

Harald Uhlig

ECB & CEPR

ECB & CEPR

U. Chicago & CEPR

Preliminary

ESSIM, Tarragona 23 May 2017

The views expressed are solely those of the authors.

What do we do?

Overview

- ▶ Document some stylized facts on euro area money markets during the recent financial and sovereign crisis
- Build a DSGE model of bank liquidity management with secured and unsecured money markets, and collateralized central bank funding.
- ► Calibrate the model and use it to provide a macroeconomic assessment of the observed money market disruptions

Stylized facts

Overview

- ▶ Declining role of interbank markets for EA banks:
 - ▶ Interbank liabilities to assets: 30% before 2008, 20% by 2013
- ► Drying up of unsecured markets and shift to secured market funding Secured vs unsecured funding
- ► Increase in private haircuts on some sovereign bonds, far beyond the increase in ECB haircuts ECB vs private haircuts
- ▶ Fears of deposit runs in some stressed countries.
 - ▶ In May 2012, "Greek depositors withdrew 700 million euros from banks on Monday" [WSJ], i.e. 0.4% of total deposits in one day.
- ► Increased recourse to central bank funding Eurosystem funding
 - ► Eurosystem funding to MFI's deposit liabilities: since 2008, 0% in core countries, >25% in peripheral countries

The environment

Overview

Households

 Infinitely-lived; hold money and deposits; consume and work

► Firms

- ► Final good producers: owned by banks, use labor and capital (Cobb Douglas technology)
- Capital good producers: buy existing capital from banks; create new capital goods; sell it back to banks

Government

- ▶ Finances expenses through labor taxed and long-term debt.
- Uses income taxes to stabilize debt at targeted level \overline{B}^* .

The central bank

Overview

- ▶ Hold discount bonds issued by govt, B_t^C , with fixed repayment rate, κ , and price Q_t .
- ▶ Provides collateralized loans to bank $l, F_{t,l} \leq \eta_t Q_t B_{t,l}^F$, applying haircut η_t .
- Issues money and transfers seigniorage to govt
- ▶ CB balance sheet at t:

Assets

 $Q_t B_t^C$ (govt bond holdings)

Liabilities

 $Q_t^F \overline{F}_t$ (loans to banks) \overline{M}_t (currency in circulation) S_t (seigniorage)

▶ CB chooses $\overline{M}_t, B_t^C, Q_t^F$, and η_t

Banks: timing

- ► Morning:
 - a "type" shock realizes. With prob ξ_t , a bank is "connected", can access unsecured mkt
 - ▶ after type łknown, choice of assets (capital $k_{t,l}$, bonds $B_{t,l}$, money $M_{t,l}$, and dividends $\phi N_{t,l}$) and liabilities (deposits $D_{t,l}$, CB loans $F_{t,l}$, and net worth $N_{t,l}$)
- ► Afternoon (liquidity management):
 - ▶ iid liquidity shock: deposits reshuffled across banks
 - ▶ C(onnected) banks: riase liquidity in unsecured mkt
 - ▶ U(nconnected) banks: raise liquidity in secured mkt up to $\tilde{\eta}_t Q_t(B_{t,u} B_{t,u}^F)$
- ▶ End of period:
 - ▶ Reverse liquidity shock occurs, loans are repaid
 - ▶ All banks return earnings to mother bank, which allocates net worth equally to all banks in t + 1.

Banks: "morning" problem

Maximize end-of period bank value

$$\tilde{V}_{t,l} = \tilde{\psi}_{t,k} P_t k_{t,l} + \tilde{\psi}_t B_{t,l} + \tilde{\psi}_{t,M} M_{t,l} - \tilde{\psi}_{t,D} D_{t,l} - \tilde{\psi}_{t,F} F_{t,l}$$

s.t. for l=c,u.

Overview

$$V_{t,l} \geq \lambda \left(P_{t} k_{t,l} + Q_{t} B_{t,l} + M_{t,l} \right)$$

$$P_{t} k_{t,l} + Q_{t} B_{t,l} + \phi N_{t} = D_{t,l} + Q_{t}^{F} F_{t,l} + N_{t}$$

$$F_{t,l} \leq \eta_{t} Q_{t} B_{t,l}^{F}$$

$$0 \leq B_{t,l} - B_{t,l}^{F}$$

and, for U(nconnected) banks l = u, afternoon constraint:

$$\omega^{\max} D_{t,u} - M_{t,u} \le \widetilde{\eta}_t Q_t \left(B_{t,u} - B_{t,u}^F \right)$$

Foreign sector

Overview

- ► Foreign sector allows U banks to change their collateral position independently from the govt's stock of debt.
- ▶ Foreign demand for domestic bonds:

$$B_t^W = P_t \left[\varkappa - \frac{1}{\varrho} \log Q_t \pi_t \right],$$

Analysis: steady state

- ▶ Analytical characterization of three different cases:
 - "Normal" times (all banks unconstrained)
 - ▶ Binding afternoon constraint for U banks, no CB funding
 - ▶ Binding afternoon constraint for U banks, CB funding

Case 1: "normal" times (all banks unconstrained)

- ► Slack afternoon constraint for U banks
- ▶ C and U banks have identical values
- ▶ Banks do not borrow from the CB, do not hold money, $F_l = M_l = 0$
- ▶ Returns on capital and bonds equalized:

$$\tilde{\psi}_k = \frac{\tilde{\psi}_b}{Q}$$

Case 2: Binding afternoon constraint, no CB funding

▶ Binding afternoon constraint for U banks. Requires that

$$\tilde{\psi}_k > \frac{\tilde{\psi}_b}{Q}$$

- ▶ U banks hold bonds for their collateral value
 - U banks hold both bonds and capital
 - ▶ C banks do not hold bonds
- ▶ Sufficient condition for no CB funding: private haircuts sufficiently low relative to CB funding cost, $\widetilde{\eta} \geq \eta Q^F \omega^{\text{max}}$
- ▶ U banks may hold cash to relax the afternoon constraint (self-insurance)

Case 3: Binding afternoon constraint, CB funding

▶ Borrowing from CB requires afternoon constraint to bind:

$$\omega^{\max} D_u = \widetilde{\eta} Q \left(B_u - B_u^F \right) + M_u$$

- ▶ Increasing deposits further tightens afternoon constraint
- ▶ For low $\widetilde{\eta}$ and Q_F and η sufficiently close to 1, U banks top up deposit funding with CB funding in the morning
- ▶ U banks then hold money M_u to cover afternoon withdrawals

Calibration

Overview

▶ Key parameters:

- ▶ Fraction of 'connected' banks, ξ : 0.42 pre-crisis. Euro Area Money Market Survey.
- ▶ Max withdrawal as share of deposits, ω^{\max} : 0.1. Info embedded in Liquidity Coverage Ratio: HQLA able to cover 30-days liquidity needs under stress over total assets.
- ▶ Private and ECB haircuts, $\tilde{\eta}$ and η : 0.97. Data from LCH Clearnet and ECB for 2010.

▶ Six free parameters: ϕ , λ , χ , g, B^C , \overline{B}^* . Set to minimize squared log-deviation of six model predictions from empirical pre-crisis counterparts

Variable	Data	Model
Debt/GDP	0.57	0.61
Bank leverage	6.00	5.81
Loan spread (annual)	0.021	0.021
Share bonds unconnected banks	0.23	0.23
Share bonds foreign sector	0.64	0.61
Inflation (annual)	0.020	0.021

Unsecured money market freeze

- ► Comparative statics: reduced access to unsecured mkt Results: unsecured market freeze
- ▶ Reducing share of unsecured to secured market volumes from 42% to 24% generates an output contraction of 0.4%
- ▶ The same reduction when fears of deposit withdrawals double (ω^{max} increases from 0.1 to 0.2) generates an output contraction of 4%

Secured money market freeze

- \blacktriangleright Comparative statics: decrease in $\widetilde{\eta}$ Results: secured market freeze
- ▶ Increase in private haircuts from 3% to 25% generates an output contraction of 0.3% (0.8% when $\omega^{\max} = 0.2$)
- ▶ Impact would be much more severe in absence of CB

Run on deposits

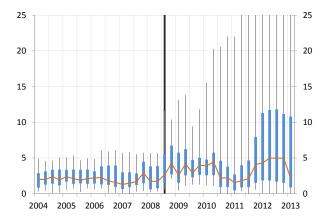
- \blacktriangleright Comparative statics: increase in ω_{max} Results: depositor run
- ▶ Increase in customer with drawals from 10% to 20% of total deposits generates an output contraction of 3%

- ▶ Money markets help manage short-run liquidity needs
- ► Calibrated DSGE model to assess the macroeconomic impact of money market frictions
- ► Three exercises, aiming to capture unsecured and secured money market disruptions, and depositor runs
 - ▶ Output contractions are sizeable (0.4% to 4% in our scenarios)

To do list

- ▶ Policy experiments:
 - ► Shortage of safe assets
 - ▶ Enlarging the set of collateral accepted at the CB
 - ► Asset purchases by the CB

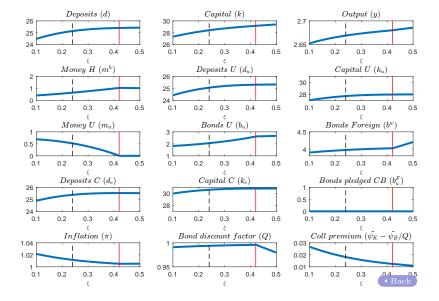
Quarterly turnover in the euro money market


Source: Euro Area Money Market Survey. Cumulative quarterly turnover in the euro near Market (EUR trillion). The panel comprised 98 euro area credit institutions.

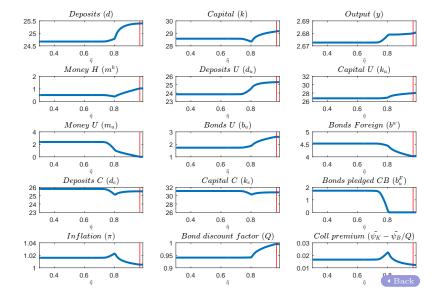
	ECB		Private	
	CQS1-2	CQS3	Germany	Portugal
2010	2.8	7.8	2.7	8.1
2011	2.8	7.8	3.0	10.1
2012	2.8	7.8	3.0	80.0
2013	2.8	7.8	3.0	80.0
2014	2.2	9.4	3.0	80.0

Data source: ECB dataset and LCH Clearnet

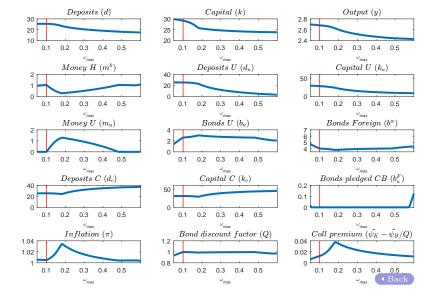
Eurosystem funding in total deposit liabilities



The model


Analysis 0000 Numerical results

Conclusions


Comparative statics: unsecured money market freeze

Comparative statics: secured money market freeze

Comparative statics: increased risk of depositor run

List of all parameter values

Parameter	Description	Value
θ	Capital share	0.33
δ	Depreciation rate	0.02
β	Discount rate H	0.999
χ	Coeff money in utility	0.0022
g	Government spending	1.0081
κ^{-1}	Aver maturity bonds	9
ϕ	Fraction net worth as dividends	0.0191
ξ	Fraction 'connected' banks	0.42
$\widetilde{\eta}$	Private haircut on bonds	0.97
η	CB haircut on bonds	0.97
λ	Run-away coefficient	0.105
$\omega^{ ext{max}}$	Max withdrawal as share of deposits	0.3
B_C	Bonds held by central bank	0.711
Q	Parameter foreign bond demand	0.09