
Sovereign Default Risk and Firm Heterogeneity

Cristina Arellano Yan Bai Luigi Bocola FRB Minneapolis University of Rochester Northwestern University

May 2017

Motivation

- ▶ Debt crisis in Southern European countries
 - Govt spreads rose substantially
 - \blacktriangleright Decline in economic activity, since 2007 GDP fell 10-20 %

Motivation

- ▶ Debt crisis in Southern European countries
 - Govt spreads rose substantially
 - ▶ Decline in economic activity, since 2007 GDP fell 10-20 %
- ▶ What is the effect of govt crisis on private economy?
 - ► Govt crisis harms private economy Neumeyer-Perri (2005), Uribe-Yue (2005), Bocola (2015), Corsetti et al (2013)
 - ► Govt crisis reflects bad private conditions (Govt is a veil) Aguiar-Gopinath (2006), Arellano (2008), Mendoza-Yue (2012)
- ▶ Challenge to answer using aggregate data
 - ▶ Both imply negative comovement of output and govt spreads

Our Approach

- Develop model of govt default with heterogeneous firms
 - Private economy affects govt through tax revenues
 - ▶ Govt spreads affect economy through firms' borrowing rates
 - ▶ Two aggregate shocks: productivity and enforcement
- ▶ Model has both time series and cross sectional predictions
- ▶ Use govt spread series cross sectional moments to
 - ightharpoonup Measure pass-through of govt risk on private sector
 - Quantify effects on output and firms spreads
 - ▶ Identify whether shocks originated in private or public sector

Key Idea

- \blacktriangleright Cross sectional moments in form govt pass-through
 - Govt crisis affects real economy by raising private borrowing rates
 - ▶ Firms with greater financing needs expected to be more affected
- ▶ Amadeus micro data to measure firms performance during govt crisis
 - ► Firms sales decline during the govt debt crisis
 - ▶ Effect stronger for highly levered firms
- ightharpoonup Discipline govt pass-through with differential response of firms

Results

- ▶ Model calibrated to micro and aggregate data in Italy
 - Pass-through to differential response of firms to govt spread
 - Enforcement shock to govt spreads
 - Productivity shock to firm productivity
- ▶ Use calibrated model to interpret the recent crisis
- ▶ Model accounts for observed decline in output
 - ▶ Pass-through of govt crisis accounts for about 50% of decline
 - ▶ Productivity shock accounts for about 50% of decline
- \blacktriangleright Pass-through of govt crisis disciplines govt and lowers default risk

Model

- ▶ Heterogeneous firms that borrow and default
- Government values public goods, borrows, and defaults
- ▶ Firms face idiosyncratic shocks, produce, borrow, and default
- ▶ Firms' borrowing rates depend on government spread
- \blacktriangleright Aggregate shocks: productivity and public default cost

Firms

- Face shocks to productivity z_{it} and revenues ξ_{it}
- ▶ Produce with capital k_{it} and labor ℓ_{it}
- Rent capital and hire workers before idiosyncratic shocks, constant prices
- ▶ Finance λ_i of input costs with loan b_{it} at price q_{it}

$$q_{it}b_{it} = \lambda_i(r^k k_{it} + w\ell_{it})$$

Firms profits are

$$\pi_{it} = z_{it} (k_{it}^{\alpha} \ell_{it}^{1-\alpha})^{\eta} - (1 - \lambda_i) (w \ell_{it} + r^k k_{it}) - b_{it} - \xi_{it} \ge 0$$

▶ Default $d_{it} = 1$ if value is negative

Exit; replaced with identical firm; output pays for inputs

Productivity Shock

▶ Firm productivity has idiosyncratic and aggregate component

$$z_{it} = \rho z_{it-1} - I_{it}\mu + \sigma^z \varepsilon_{it}$$
$$\Pr(I_{it} = 1) = p_t$$

- ightharpoonup Productivity shock: p_t probability of idiosyncratic disaster
- \triangleright i.i.d. p_t has persistent effects on distribution of firms

Firms Bond Price Function

 \blacktriangleright Firm price compensates for default and depends on govt. spread s_t^g (Neumeyer and Perri 2005)

$$q_{it} = E\left[\frac{(1 - d_{it})}{1 + \gamma s_t^g}\right]$$

- Arises in models where intermediaries have leverage constraints (Bocola 2015)
- \triangleright γ controls extend of passthrough
 - We will discipline it using cross section data

Pass-through: Govt Spread on Firms

- ▶ Firms choose k and ℓ in proportion
- \blacktriangleright Abstracting from firm default, optimal capital k^*

$$\eta E[z|z_{-1}, p](k^*)^{\eta - 1} = (1 + \lambda \gamma s^g)\tilde{r}^k$$

Capital decreases with govt spread

$$\frac{\partial log(k^*)}{\partial s^g} = -\frac{1}{1-\eta}\gamma\lambda < 0$$

▶ More so for high leverage firms

$$\frac{\partial^2 \log(k^*)}{\partial s^g \partial \lambda} = -\frac{1}{1-\eta} \gamma < 0$$

- ▶ Differential response sufficient statistic to measure pass-through
- \triangleright Capital decreases with productivity, and not differentially with λ

Government

▶ Government budget constraint

$$B_t + G_t = q_{t+1}^g B_{t+1} + \tau \, Y_t$$

- ▶ Finances debt B_t and expenditure G_t
- ightharpoonup Collects revenue τY_t
- Values public consumption and faces default costs shocks

$$E_0 \sum_{t=0}^{\infty} \beta_g^t (u_g(G_t) - \nu_t I_{D_t=1})$$

▶ Default $D_t = 1$ induces utility cost, reduces debt to R

Enforcement shock: ν_t default cost shock, Markov process

Government Borrowing

▶ Govt faces schedule for bond prices and tax revenue

$$G + B = q^{g}(\nu, p, \Lambda, B')B' + \tau Y(\nu, p, \Lambda, B')$$

- Bond price schedule compensates for default risk
 - ▶ High B' lower q^g due to default risk
 - Government spread $s^g = 1/q^g (1+r)$
- ► Tax schedule incorporates pass-through
 - \triangleright High B' increases govt spread which also reduces revenue
 - ▶ Pass-through makes schedule tighter
- ▶ Optimal government borrowing satisfies

$$u_g'(G)\left[q^g + \frac{\partial q^g}{\partial B'}B' + \tau \frac{\partial Y}{\partial B'}\right] = \beta_g E[u_g'(G')|D' = 0]$$

Pass-through also lowers incentive to borrow

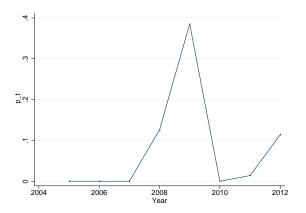
Summary of the Model

- ▶ Government and heterogeneous firms
 - Private economy affects govt through tax revenues
 - Govt spreads affect firms' borrowing rates
 - Two way feedback loop
 - ► Two aggregate shocks: productivity and enforcement
- Key cross-section implication:

High-leverage firms respond more to government spread

Quantitative Analysis

- ▶ Empirical prediction borne in Italian firm level data
 - ▶ Firms output decrease with low prod and high govt spread
 - ▶ Firms with high leverage affected more by govt spread
- ▶ Use cross section moments measure pass-through
- ▶ Impulse response functions to shocks
- ▶ Event analysis and counterfactuals


Data

Firm balance sheet data for Italy, Amadeus, 2005 to 2013, 175000+ obs

- Recover firm productivity z_{it} (Wooldrige (2009))
- ightharpoonup Use distribution of z_{it} to measures aggregate shock p_t
- ▶ Use firm sales growth and leverage to measure

Differential effects w.r.t. productivity and govt spread

Aggregate Productivity Shock

 \blacktriangleright Low productivity 2009 and 2012

Differential Effects on Sales Growth

	Benchmark	Spread Only	Productivity Only
s_t^g	-0.82^{***}	-1.45^{**}	
	(0.18)	(0.70)	
$s_t^g \times \mathrm{lev}_{i,t}$	-1.7^{***}	-2.2^{***}	
	(0.32)	(0.78)	
p_t	-0.66^{***}		-0.67^{***}
	(0.03)		(0.03)
$p_t \times \mathrm{lev}_{i,t}$	0.11^{***}		0.03
	(0.04)		(0.08)
$lev_{i,t}$	28***	41***	29***
	(4.3)	(13)	(3.8)
firm fixed effects	yes	yes	yes
Adjusted R^2	16	5	15

- ▶ Growth falls by 0.8% more with a 1% increase in spr_t for firms with leverage at 75 pct (0.52) relative to 25 pct (0.2)
- \triangleright Growth falls for ALL firms with increase in p_t
- Robust finding in various regression specifications

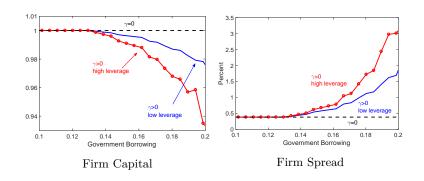
Quantitative Strategy

- ightharpoonup Measure private shock p and z directly with firm level data
- ▶ Recover pass-through parameter and enforcement shock

Differential effect of spread on firms based on leverage Government spread series

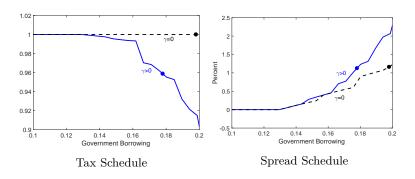
► Target other firm moments for firm parameters

Pass-through coefficient	$\gamma = 0.4$	Regression coefficient
Volatility enforcement shock	$\sigma_{\nu} = 0.3$	Mean govt spread
Government discount factor	$\beta = 0.88$	Volatility govt spread
Mean enforcement shock	$\bar{\nu} = 1.0$	Short public debt / Output
Debt Recovery	R = 0.13	Cruces and Trebesch (2013)
Volatility revenue shock	$\sigma_{\xi} = 0.3$	Mean firm spread
Mean revenue shock	$\bar{\xi} = 3.75$	Mean firm profit/sale
Financing requirement	$\{\lambda_1 = 0.4, \lambda_2 = 1.0\}$	Firm leverage 25 and 75 pct

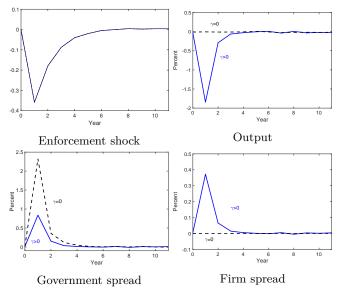

Other parameters from literature: preferences, technology

Moments in Data and Model

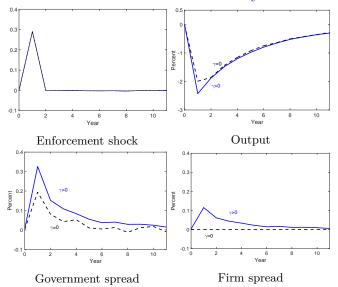
	Data	Model
* · · · · · · · · · · · · · · · · · · ·	0 = 1	
Interaction coeff×[$\lambda_{75,t} - \lambda_{25,t}$]	-0.54	-0.57
Govt spread mean	1.8	1.9
Govt spread volatility	1.1	0.9
Short debt/output	25	28
Recovery	60	54
Firms spread	2.3	1.8
Firms profits	2.5	3
Firms leverage 25 and 75 pct	[20,50]	[20,50]
Other Moments		
Corr (Firm spread, Govt spread)	82	98
Corr (Output, Govt spread)	-54	-79


 \blacktriangleright Positive correlation between firm and govt spreads

Mechanisms: Firm Decisions


- \blacktriangleright High government borrowing -> high govt spreads
- ▶ Decrease capital with govt borrowing, more for high leverage firm
- ▶ No pass-through: govt borrowing no effect on production or firm spreads

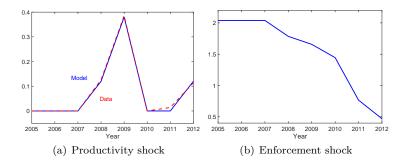
Mechanisms: Government Tax and Spread Schedules


- ► High borrowing lowers tax revenue (sovereign debt overhang effects) No pass-through: tax revenues not affected with borrowing
- High government borrowing increases govt spreads
 No pass-through: spreads increase more slowly with borrowing
- ▶ Pass-through disciplines borrowing

Aggregate Effects: IRF to Enforcement Shock

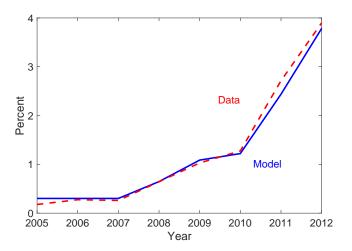
- Loop: low enforcement, high govt and firm spreads, low output
- ▶ No pass-through: no effects on private sector, larger effects on govt spread

Aggregate Effects: IRF to Productivity Shock

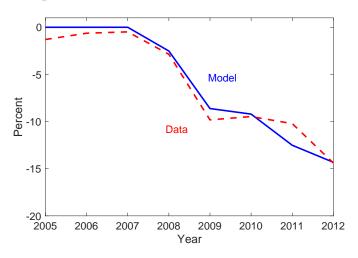


- Loop: low productivity, low output, increases in govt and firms spread
- ▶ No pass-through: more muted but similar effects

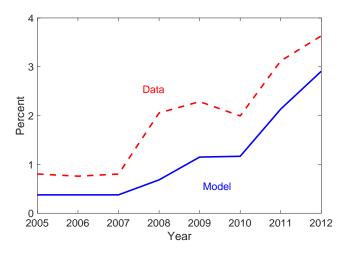
Event Analysis: Model Fit


- ightharpoonup Feed in observed p_t
- ▶ Feed ν_t to match govt spread
- ▶ Evaluate effect output, govt and firm spreads

Event: Shocks


- $ightharpoonup p_t$ shock, big increase in 2009
- \triangleright ν_t path calls for decrease in debt enforcement

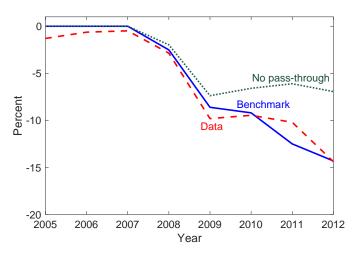
Event: Govt Spread


 \blacktriangleright Can match large increase in 2011-2012

Event: Output

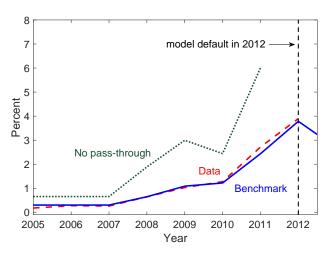
- ▶ Model can account for the decline aggregate output
- ▶ Good out of sample fit

Event: Firm Spreads

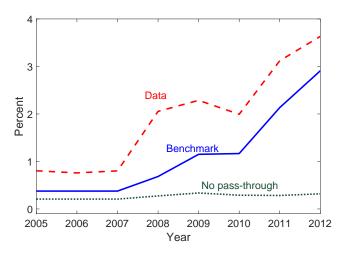

- ▶ Model predicts sizable increase in firm spreads
- ▶ Default probability for firms increases by 1.1%

Event Counterfactual: No Pass-through

If no feedback from govt to private, would there had been a crisis?


- Use model with no pass-through $\gamma = 0$
- ▶ Feed in recovered p_t and ν_t shocks
- ▶ Evaluate prediction on output, govt and firm spreads
- Difference in responses nets out sovereign risk role

Event Counterfactual: Output


- ▶ Half of the decline in output
- ▶ Strong propagation of sovereign risk to private sector

Event Counterfactual: Govt Spreads

- ▶ Much higher spreads and default
- ▶ Pass-through provides discipline to government

Event Counterfactual: Firm Spreads

- ▶ Very muted firm spreads
- \blacktriangleright Unconnected to sovereign spreads

Summary Event: Italy 2007-2012

	Government spreads	Firms spreads	Output
Data	3.6	2.8	-13.9
Benchmark Model	3.5	2.5	-14.3
No pass-through	4.1	0.1	-7.0
Other counterfactuals			
Benchmark only p shocks	0.4	0.4	-7.6
Benchmark only ν shocks	1.6	1.2	-6.3
Less govt borrowing	1.5	1.7	-9.7

- ▶ Pass-through accounts: 50% of output and most of spread increase
- ▶ Productivity important for output, enforcement important for spreads and output
- ▶ Less government borrowing alleviates crisis sovereign debt overhang

Conclusions

- ▶ Build model with heterogenous firms and govt default
- Micro data and model useful for measuring effect of govt crisis on private economy
- ▶ Govt effect on private economy crucial for rationalizing recession in Italy

Literature

- Government crises affects aggregates through financial channel
 Neumeyer-Perri (2005), Uribe-Yue (2005), Bocola (2015)
- ► Aggregate shocks drive fluctuations and sovereign crisis Aguiar-Gopinath (2006), Arellano (2008), Mendoza-Yue (2012)
- ► Decomposition of shocks in Euro Crisis Philippon-Martin (2014)

Literature mostly uses aggregate data

Literature

- Government crises affects aggregates through financial channel
 Neumeyer-Perri (2005), Uribe-Yue (2005), Bocola (2015)
- ► Aggregate shocks drive fluctuations and sovereign crisis Aguiar-Gopinath (2006), Arellano (2008), Mendoza-Yue (2012)
- ► Decomposition of shocks in Euro Crisis

 Philippon-Martin (2014)

Literature mostly uses aggregate data

► Here we use micro data to identify shocks Gopinath, Kalemli-Ozcan, Karababounis, Villegas-Sanchez (2015)

Firm Recursive Problem

- ▶ Let $X = \{\nu, p, \Lambda, B'\}$ be the aggregate state
- Choose capital and labor in proportion

$$v(z_{-1}, \lambda, X) = \max_{b,k} E \max \left\{ \pi + \frac{1}{1+r} v(z, \lambda, X'), \quad 0 \right\}$$

subject to

$$\pi = Mzk^{\eta} - (1 - \lambda)\tilde{r}^k k - b - \xi \ge 0$$

► Financing requirement

$$a(b, k; z_{-1}, \lambda, X)b = \lambda \tilde{r}^k k$$

▶ Profits are

$$\pi = M z k^{\eta} - (1 - \lambda) \tilde{r}^k k - b - \xi$$

► Firm bond price

$$q(b, k; z_{-1}, \lambda, X) = E\left[\frac{1 - d(b, k; z_{-1}, \lambda, X)}{1 + \beta s^{g}(X)}\right]$$

▶ Take as given evolution of aggregate state, and mapping $s^g(X)$

Government

- \triangleright Exogenous states: enforcement shock ν , productivity shock p
- ▶ Endogenous states: debt B, distribution of firms $\Lambda(z_{-1}, \lambda)$
- ► Tax revenue function of choices

$$T(\nu, p, \Lambda, B') = \tau \sum_{z, \lambda} \Lambda(z_{-1}, \lambda) E \ y(z, z_{-1}, \lambda; \nu, p, \Lambda, B') - F(\nu, p, \Lambda, B')$$

Government Recursive Problem

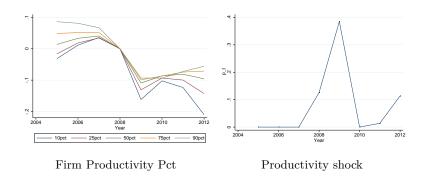
ightharpoonup Chooses to default or not $D = \{0, 1\}$

$$W(\nu, p, B, \Lambda) = \max \{(1 - D) V(\nu, p, B, \Lambda) + D (V(\nu, p, R, \Lambda) - \nu)\}$$

▶ Chooses public consumption and borrowing

$$V(\nu, p, B, \Lambda) = \max_{B'} \ u_g(G) + \beta_g E \ W(\nu', p', B', \Lambda')$$

▶ Budget constraint


$$G + B \le T(\nu, p, \Lambda, B') + q^g(\nu, p, \Lambda, B')B'$$

▶ Govt bond price

$$q^{g}(\nu, p, \Lambda, B') = \frac{1}{1+r} E \left[1 - D(\nu', p', B', \Lambda')(1 - R/B') \right]$$

• Government spread is $s^g = 1/q^g - (1+r)$

Aggregate Productivity Shock

- ▶ Low productivity 2009 and 2012
- ▶ Decline productivity more pronounced left tail

Differential Effects on Sales Growth: Robustness

	Benchmark	Broad	Mean	More Firm Controls	
		Leverage	Leverage		+ Interactions
$s_t^g \times \mathrm{lev}_{i,t}$	-1.7***			-2.2***	-2.6***
$p_t \times \text{lev}_{i,t}$	0.11^{***}			0.05	0.05
$s_t^g \times \text{broad lev}_{i,t}$		-2.9***			
$p_t \times \text{broad lev}_{i,t}$		0.3**			
$s_t^g \times \overline{\text{lev}}_i$			-1.5***		
$p_t \times \overline{\text{lev}}_i$			-0.13***		
$s_t^g \times \text{profitability}_{i,t}$					-5.7***
$s_t^g \times \operatorname{size}_{i,t}$					21***
$s_t^g \times \text{collateral}_{i,t}$					-0.94***
$s_t^g \times \text{volatility}_{i,t}$					-6.3***
$\begin{array}{l} s_t^g \times \operatorname{collateral}_{i,t} \\ s_t^g \times \operatorname{volatility}_{i,t} \\ s_t^g \end{array}$	-0.82***	0.53	-1.02***	-0.39***	5.2***
$p_t^{'}$	-0.66***	-0.82**	-0.6***	-0.6***	-0.6***
Firm controls	yes	yes	yes	yes	yes
Adjusted R^2	16	16	14	27	27

Other Moments in Data and Model

	Data	Model
Aggregate Moments		
Corr (Firm spread, Govt spread)	82	98
Corr (Output, Govt spread)	-54	-79
Firm Moments		
Sales Growth (St. Dev)	26	30
Leverage (St. Dev)	21	14
Profits/Assets (St. Dev)	8	2
Interest/Assets (St. Dev)	1	0.4
Corr (Leverage, Profits/Assets)	-18	-6
Corr (Leverage, Interest/Assets)	40	96
Corr (Profits/Assets, Sales Growth)	28	14

- ▶ Positive correlation between firm and govt spreads
- ▶ Broadly consistent with firm st dev. and correlations