Fiscal delegation in a monetary union: Instrument assignment and stabilization properties

Henrique S. Basso and James Costain¹

Banco de España

March 2017

¹Opinions expressed in this presentation are those of the authors. They do not necessarily coincide with those of the Banco de España or the Eurosystem. $\equiv -9 \propto 0$

Basso/Costain (BdE)

Fiscal delegation

March 2017 1 / 55

Problem: debt bias and volatility in a monetary union

- Joining a monetary union increases sovereign debt fluctuations and levels
 - Fiscal policy substitutes for independent monetary policy as stabilization tool (Mundell 1961)
 - Monetary union increases debt bias (Beetsma/Bovenberg 1999; Chari/Kehoe 2007; Krogstrup/Wyplosz 2009).
 - Cross-country banking flows amplified (Bruche/Suárez 2010; Obstfeld 2013)
 - Independent monetary policy unavailable to resist speculative attacks (Eichengreen/Hausmann 2005, DeGrauwe 2011)
- Risk of crises: risk premium and debt can spiral out of control
- Monetary/financial mechanisms to offset crises inviable because more solvent governments fear **moral hazard** of less solvent ones

イロト イポト イヨト イヨト

Mechanisms to restrain deficit bias

• The Union needs a credible way of ensuring fiscal sustainability. What are the options??

	Mechanisms requiring government adjustments	Mechanisms not requiring government adjustments
Parametric budget rules	Stability/Growth Pact Swiss "debt brake"	Defined-contribution pensions Spanish pension "revaluation index"
Fiscal monitoring councils	National fiscal councils European Fiscal Board	
Fiscal delegation	Delegated deficit limit Eichengreen et al '97 Calmfors '03 Wyplosz '05 Maskin '16	Delegated instruments Gruen '01 Calmfors '03 Costain/de Blas '12 Basso/Costain '16

< ∃ > <

Mechanisms to restrain deficit bias

• The Union needs a credible way of ensuring fiscal sustainability. What are the options??

	Mechanisms requiring government adjustments	Mechanisms not requiring government adjustments
Parametric budget rules	Stability/Growth Pact Swiss "debt brake"	Defined-contribution pensions Spanish pension "revaluation index"
Fiscal monitoring councils	National fiscal councils European Fiscal Board	
Fiscal delegation		Delegated instruments Gruen '01 Calmfors '03 Costain/de Blas '12 Basso/Costain '16

 This paper: dynamic effects of delegated fiscal instruments in a monetary union.

Basso/Costain (BdE)

Delegated fiscal instruments in Europe?

• European Fiscal Board \rightarrow European Fiscal Authority!

- ▶ EFB will advise and monitor member states, starting 2017
- But EFA would also set a fiscal shift parameter in each member state
- *Example*: Gruen ('01) proposes a shifter x in the tax code:

tax rate_{*i*,t} = $F(\text{income}_{i,t}, \text{ lots of other stuff}_{i,t})(1 + x_t)$.

• A politically feasible quid pro quo:

- Members voluntarily delegate one or more fiscal shifters to EFA.
- If EFA judges that the instruments give it effective control of debt, member becomes eligible for a European risk-sharing mechanism
- Example: fiscal delegation could be a prerequisite for membership in Single Deposit Insurance system of Banking Union

This paper

- Compare several **policy games** to analyze **macro & poli-econ** implications of **fiscal instrument delegation** in a **monetary union**
 - Fiscal delegation is **not a new idea** (Blinder '97, ..., Maskin '16)
 - But it has not been formally modeled
- Our previous paper (Basso/Costain *CESifo EcStud* '16) showed that fiscal delegation could have a large steady-state impact on debt and welfare

A B A A B A

This paper

- Compare several **policy games** to analyze **macro & poli-econ** implications of **fiscal instrument delegation** in a **monetary union**
 - Fiscal delegation is **not a new idea** (Blinder '97, ..., Maskin '16)
 - But it has not been formally modeled
- Our previous paper (Basso/Costain *CESifo EcStud* '16) showed that fiscal delegation could have a large steady-state impact on debt and welfare

• This paper: Dynamic implications of fiscal delegation.

- Do large steady state gains justify short-run costs?
- Does business cycle stabilization suffer, when budget balance is delegated to a fiscal authority?
- How do the answers vary, depending on which instruments are delegated?

イロト 不得下 イヨト イヨト 二日

Policy games- some benchmarks

- Rogoff (1985), "Conservative central banker"
 - Inflation-averse CB undoes inflation bias due to lack of commitment
- Dixit and Lambertini (2003), Invariance result for monetary union
 - Commitment/discretion irrelevant if CB and govs have same preferences
- Alesina/Tabellini (1990), impatience/deficit bias from party politics
 - Alternating spending priorities leads to excessive debt
- Beetsma/Bovenberg (1999), Chari/Kehoe (2007)
 - Deficit bias in monetary union if CB not "conservative" enough...
 - ... and this is bad if governments are not patient enough.
- Basso/Costain (2016), Many forms of deficit bias in monetary union
 - Insufficiently conservative CB / Desire to inflate away nominal debt
 - Impatient government / Interest rate contagion
 - Hence debt-averse independent fiscal authority improves welfare

ECONOMIC ENVIRONMENT

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Economy of region j - key features

• **Output** varies with **surprise inflation** and **taxes**: (Alesina/Tabellini 1987)

$$x_{j,t} = \underline{x} + \nu (\pi_t - \pi_t^e - \tau_{j,t})$$

• Loss function depends on inflation, output, and public services: (Leith/Wren-Lewis 2011)

$$L_{Sj} = \sum_{t=0}^{\infty} \beta_{S}^{t} \left\{ \alpha_{\pi S} \pi_{t}^{2} + (x_{j,t} - \tilde{x})^{2} + \alpha_{gS} (g_{j,t} - \tilde{g}_{j,t})^{2} \right\}$$

Demand for public services follows an AR1 process:

$$\widetilde{g}_{j,t} = \widetilde{g} + s_{j,t}$$
 (1)

$$s_{j,t} = \rho s_{j,t-1} + \epsilon_{j,t} \tag{2}$$

Public services are a composite of many inputs:

$$g_{j,t} = \left(\int_0^1 \omega_{j,k,t} \left(g_{j,k,t}\right)^{\frac{\eta-1}{\eta}} dk\right)^{\frac{\eta}{\eta-1}}$$

Fiscal environment of region j

• Each region faces its own government budget constraint:

$$d_{j,t} = \left(R\left(\bar{d}_{t-1}\right) + \chi(\pi_t^e - \pi_t) \right) d_{j,t-1} + qg_{j,t} - \tau_{j,t} - \kappa \pi_t$$

• Ex ante real interest rate: $R(ar{d}_t) = 1/eta_{\mathcal{S}} + \deltaar{d}_t$

- Interest rate contagion: $R(\bar{d}_t)$ depends on average debt $\bar{d}_t \equiv \frac{1}{J} \sum_{j=1}^{J} d_{j,t}$, rather than country-specific debt
- Ex post real interest rate: $R(\bar{d}_{t-1}) + \chi(\pi_t^e \pi_t)$
 - Erosion of nominal debt: Fraction of nominal debt is χ
- Price of public services q may be low or high:

$$q = \begin{cases} q_L = (E\omega^{\eta})^{1/1-\eta} & \text{if } \omega_{j,k,t} \text{ is observed} \\ q_H = (E\omega)^{\eta/1-\eta} & \text{if } \omega_{j,k,t} \text{ is not observed} \end{cases}$$

イロト 不得下 イヨト イヨト 二日

POLICY GAMES

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Policy games (with debt as control variable)

Institutional preferences

- Benevolent, but weight parameters may differ from social welfare
- Assume elected institutions are less patient than society is
- Assume an institution with a simple, clear, feasible mandate cares more about that objective than society does

Policy games (with debt as control variable)

• Institutional preferences

- **Benevolent**, but weight parameters may differ from social welfare
- Assume elected institutions are less patient than society is
- Assume an institution with a simple, clear, feasible mandate cares more about that objective than society does

• Monetary union (scenario M)

- CB sets inflation
- Regional Governments set tax and debt
- \Rightarrow government spending determined by budget constraint.

• Fiscal delegation (scenarios F_j , F)

- CB sets inflation
- Regional Governments set taxes
- Fiscal Authority(ies) set debt
- \Rightarrow government spending determined by budget constraint.
- **Single country** with independent policy (scenario *I*)
- Federal government for monetary union (scenario G)

Generic Policy Game - Regional

Government G_j or fiscal authority F_j that acts in region j only:

$$\begin{split} V_t^{lj}\left(\Omega_t\right) &= \max_{\Theta_t^{lj}} \frac{-1}{2} \left\{ \alpha_{\pi l} \pi_t^2 + \left(\underline{x}_{j,t} + \nu(\pi_t - \pi_t^e - \tau_{j,t}) - \tilde{x}\right)^2 \\ &+ \alpha_{gl} \left(g_{j,t} - \tilde{g}_{j,t}\right)^2 + \alpha_{dl} \left(d_{j,t} - \tilde{d}_{j,t}\right)^2 \right\} \\ &+ \beta_l E_t V_{t+1}^{lj} \left(\Omega_{t+1}\right) \\ \text{s.t.} \quad d_{j,t} - \left(R\left(\bar{d}_{t-1}\right) + \chi(\pi_t^e - \pi_t)\right) d_{j,t-1} + \tau_{j,t} + \kappa \pi_t - q_{j,t} g_{j,t} \right] \end{split}$$

where

Ω_t ≡ (d_{t-1}, s_{t-1}, ϵ_t) is the state of the economy
 Θ^{lj}_t is the set of instruments affected by actions of player l_j

Generic Policy Game - Union

Central bank or fiscal authority $I \in \{C, F\}$ controls instruments affecting all regions *j*:

$$V_{t}^{I}(\Omega_{t}) = \max_{\Theta_{t}^{I}} \frac{-1}{2} \left\{ \alpha_{\pi I} \pi_{t}^{2} + \frac{1}{J} \sum_{j=1}^{J} \left[\left(\underline{x}_{j,t} + \nu(\pi_{t} - \pi_{t}^{e} - \tau_{j,t}) - \tilde{x} \right)^{2} + \alpha_{gl} \left(g_{j,t} - \tilde{g}_{j,t} \right)^{2} + \alpha_{dl} \left(d_{j,t} - \tilde{d}_{j,t} \right)^{2} \right] \right\} \\ + \beta_{I} E_{t} V_{t+1}^{I}(\Omega_{t+1}) \\ \text{s.t.} \quad d_{j,t} - \left(R \left(\bar{d}_{t-1} \right) + \chi(\pi_{t}^{e} - \pi_{t}) \right) d_{j,t-1} + \tau_{j,t} + \kappa \pi_{t} - q_{j,t} g_{j,t} \, \forall j \, d_{j,t-1} \right\}$$

where

Ω_t ≡ (d_{t-1}, s_{t-1}, c_t) is the state of the economy
 Θ^t_t is the set of instruments affected by actions of player I

Welfare benchmark: Social planner

Benchmark: an omniscient, cooperative, committed Pareto planner:

$$V_{t}^{P}\left(\vec{d}_{t-1}, \vec{s}_{t-1}\right) = \max_{\pi_{t}, \pi_{t}^{e}, \{d_{j,t}, \tau_{j,t}, g_{j,t}\}_{j=1}^{J}} \frac{-1}{2} \left\{ \alpha_{\pi S} \pi_{t}^{2} + \frac{1}{J} \sum_{j=1}^{J} \left[\left(\underline{x} + \nu (\pi_{t} - \pi_{t}^{e} - \tau_{j,t}) - \tilde{x} \right)^{2} + \alpha_{gS} \left(g_{j,t} - \tilde{g}_{j,t} \right)^{2} \right] \right\} + \beta_{S} E_{t} V_{t+1}^{P} \left(\vec{d}_{t}, \vec{s}_{t} \right)$$

s.t.
$$d_{j,t} = [R(\bar{d}_{t-1}) + \chi(\pi_t^e - \pi_t)] d_{j,t-1} + q_L g_{j,t} - \tau_{j,t} - \kappa \pi_t \quad \forall j.$$

- **Omniscient:** $q = q_L$
- **Cooperative:** planner chooses $\tau_{j,t}$, $d_{j,t}$ for all j
- Committed: commits to contingent plan π_t = Π(d_{t-1}, s_{t-1}, ε_t), and thus alters expectations π^e_t = E_{t-1}π_t
- Pareto: planner respects J distinct budget constraints

Monetary union (benchmark scenario M)

- Instrument assignment: $\begin{cases} \Theta_t^C \equiv \{\pi_t, \{g_{j,t}\}_{j=1}^J\} \\ \Theta_t^{G_j} \equiv \{\tau_{jt}, d_{jt}, g_{j,t}\} \end{cases}$
- Intratemporal trade-offs

$$\begin{aligned} \nu(\mathbf{x}_{j,t} - \tilde{\mathbf{x}}) &= \frac{\alpha_{gS}}{q_L} (g_{j,t} - \tilde{g}_{j,t}), \\ \frac{\alpha_{\pi C} \pi_t}{1 + \kappa + \chi \overline{d}_{t-1}} &= -\frac{\alpha_{gS}}{q_L} \sum_j \frac{g_{j,t} - \tilde{g}_{j,t}}{J} \end{aligned}$$

• Symmetric equilibrium is determined by

$$\begin{split} \bar{d}_t &= (R(\bar{d}_{t-1}) + \chi(\pi_t^e - \pi_t))\bar{d}_{t-1} - \breve{\kappa}(d_{t-1})\breve{\pi}_t + \widetilde{z}_t, \\ \breve{\pi}_t &= \beta_G R(\bar{d}_t) E_t \breve{\pi}_{t+1}, \end{split}$$

where

$$\breve{\pi}_t \equiv \frac{\pi_t}{1+\kappa+\chi d_t}, \quad \breve{z}_t \equiv \frac{\breve{x}-\underline{x}}{\nu} + q_L \breve{g}_t, \quad \breve{\kappa}(d_t) \equiv \kappa(1+\kappa+\chi d_t) + \frac{\alpha_{\pi C}}{\alpha_{gS}} \left(q_L^2 + \frac{\alpha_{gS}}{\nu^2}\right).$$

Solution method: symmetric equilibrium

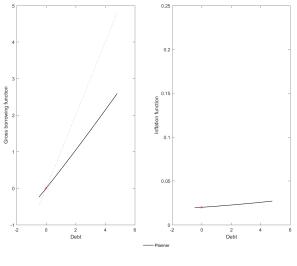
- Two policy functions summarize symmetric equilibrium of scenario M:
 - Adjusted inflation: $\breve{\pi}_t = \frac{\pi_t}{1+\kappa+\chi d_{t-1}} = \breve{I}^M(\Omega_t)$
 - Gross **borrowing**: $d_t = B^M(\Omega_t)$
- Policies must satisfy budget balance, and Euler equation:

$$B^{M}(\Omega_{t}) = R(d_{t-1}) d_{t-1} + (1 + \chi d_{t-1})(E_{t-1}[I^{M}(\Omega_{t})] - I^{M}(\Omega_{t})) - \check{\kappa}(d_{t-1})\check{I}^{M}(\Omega_{t}) + \tilde{z}_{t},$$
$$\check{I}^{M}(\Omega_{t}) = \beta_{G} \left(\beta_{S}^{-1} + \delta B^{M}(\Omega_{t})\right) E_{t}\check{I}^{M}(B^{M}(\Omega_{t}), s_{t}, \epsilon_{t+1}).$$

- Solve the functional equations:
 - Approximate $B^M(\Omega_t)$ and $\check{I}^M(\Omega_t)$ as Chebyshev polynomials
 - Order (4,2,2) in the state variable $\Omega_t \equiv (d_{t-1}, s_{t-1}, \epsilon_t)$

RESULTS with DEBT AS A CONTROL VARIABLE

3

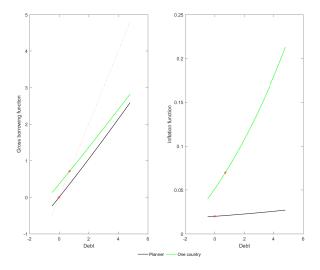

• • • • • • • • • • • •

Equilibrium for Policy Games with Debt as Control Variable

For all cases (except G), budget constraint reduces to:

$$\bar{d}_{t} = \left(\frac{1}{\beta_{S}} + \delta \bar{d}_{t-1}\right) \bar{d}_{t-1} + (\pi_{t}^{e} - \pi_{t})(1 + \chi \bar{d}_{t-1}) - \breve{\kappa}(\bar{d}_{t-1})\breve{\pi}_{t} + \bar{\breve{z}}_{t},$$
(3)

Game	Choice Variables	Euler Equation		
1	$\Theta_t^{\mathcal{C}} \equiv \{\pi_t, g_t\} \ \Theta_t^{\mathcal{G}} \equiv \{ au_t, d_t, g_{,t}\}$	$\breve{\pi}_{t} = \beta_{G} E_{t} \left(\frac{1}{\beta_{S}} + 2\delta \vec{d}_{t} + \left(\gamma + \chi \frac{\alpha_{\pi G}}{\alpha_{\pi C}} \right) \frac{\partial \pi_{t+1}}{\partial d_{t}} \right) \breve{\pi}_{t+1}$		
М	$\Theta_{t}^{C} \equiv \{\pi_{t}, \{g_{j,t}\}_{j=1}^{J}\} \\ \Theta_{t}^{G_{j}} \equiv \{\tau_{jt}, d_{jt}, g_{j,t}\} \\ \Theta_{t}^{C} \equiv \{\pi_{t}, \{g_{j,t}\}_{j=1}^{J}\}$	$raket{\pi}_t = eta_{\mathcal{G}} \left(rac{1}{eta_{\mathcal{S}}} + \delta ar{d}_t ight) m{E}_t raket{\pi}_{t+1}$		
Fj	$egin{aligned} \Theta^{G_j}_t \equiv \{ au_{jt}, extbf{g}_{j,t}\} \ \Theta^{F_j}_t \equiv \{ extbf{d}_{jt}, extbf{g}_{j,t}\} \end{aligned}$	$\breve{\pi}_{t} = \frac{\alpha_{dF}}{\alpha_{\pi C}} \bar{d}_{t} + \beta_{F} \left(\frac{1}{\beta_{S}} + \delta \bar{d}_{t}\right) E_{t} \breve{\pi}_{t+1}$		
F	$\Theta_t^C \equiv \{\pi_t, \{g_{j,t}\}_{j=1}^J\}$ $\Theta_t^{G_j} \equiv \{\tau_{jt}, g_{j,t}\}$ $\Theta_t^{F_j} \equiv \{d_{jt}, g_{j,t}\}$	$\breve{\pi}_{t} = \frac{\alpha_{dF}}{\alpha_{\pi C}} \vec{d}_{t} + \beta_{F} E_{t} \left(\frac{1}{\beta_{S}} + 2\delta \vec{d}_{t} + \left(\gamma + \chi \frac{\alpha_{\pi G}}{\alpha_{\pi C}} \right) \frac{\partial \pi_{t+1}}{\partial \vec{d}_{t}} \right) \breve{\pi}_{t+1}$		
Where $\breve{\pi}_t \equiv \frac{\pi_t}{1+\kappa+\chi \vec{d}_{t-1}}$. Note $R(\vec{d}_t) = \left(\frac{1}{\beta_S} + \delta \vec{d}_t\right)$, $R(\vec{d}_t) + R'(\vec{d}_t)\vec{d}_t = \left(\frac{1}{\beta_S} + 2\delta \vec{d}_t\right)$				

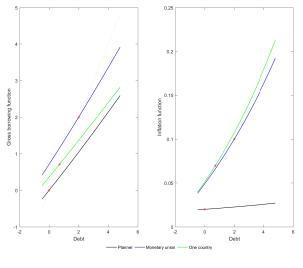


• Planner's solution

(日) (四) (王) (王) (王)

æ

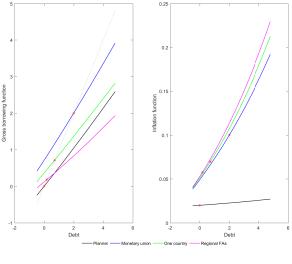
Figure: Borrowing and inflation (numerical example: one country)



• Effect of government discretion and impatience

200

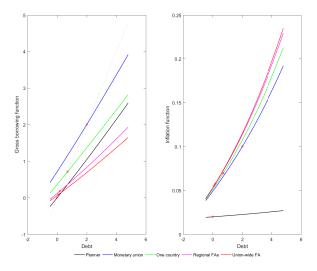
◆□> <@> < E> < E> < E</p>


Figure: Borrowing and inflation (numerical example: monetary union)

• Effect of common pool problems

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

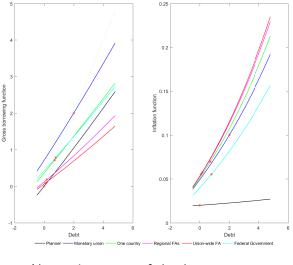
Figure: Borrowing and inflation (numerical example: Regional fiscal delegation)



• Effect of patience and debt aversion

(日) (部) (目) (日)

æ


Figure: Borrowing and inflation (numerical example: Union-level fiscal delegation)

• Effect of eliminating common pool problems

⊒ ⊳

Figure: Borrowing and inflation (numerical example: Federal government)

• Alternative: create federal government

(日) (四) (三) (三)

12

Our baseline calibration

• Time period: annual. Target R = 1.02 at zero debt, R = 1.05 at 100% debt.

•
$$\beta_S = (1.02)^{-1}$$
, $\delta = 0.03$.

• Numeraire: private sector annual output. Target debt=2 in steady state of monetary union.

• $\beta_G = (1.08)^{-1}$, $\delta = 0.03$.

- Half of debt is nominal, $\chi =$ 0.5; Money base is 20% of output: $\kappa =$ 0.2.
- Assume elasticity of output to taxes is $\nu = 1$. Target taxes=0.5 in steady state of monetary union.
 - $\underline{x} = x_{ss}^M + \nu \tau_{ss}^M = 1.5.$
 - Can then back out steady state goverment spending from budget constraint: g^M_{ss} = 0.36.
- Target inflation=10% in steady state of monetary union.
- Back out α_{gS} and $\alpha_{\pi C}$ from first-order conditions between g, x, and π .

•
$$\alpha_{gS} = 0.862, \ \alpha_{\pi C} = 88.$$

イロト イポト イヨト イヨト 二日

Welfare

• Social welfare in a symmetric equilibrium of scenario \mathcal{S} :

$$W^{\mathcal{S}}(d_{t-1}, s_{t-1}, \epsilon_t) = -\frac{1}{J} \sum_{j=1}^J L_{Sj}$$

- Welfare at steady state $W_{ss}^{S} \equiv W^{S}(\vec{d}_{ss}^{S},\vec{0}).$
- Plug policy functions into Bellman equation to derive polynomial approximation to welfare:

$$W^{S}(\Omega_{t}) = \alpha_{\pi I} I^{S}(\Omega_{t})^{2} + \left(X^{S}(\Omega_{t}) - \tilde{x}\right)^{2} + \alpha_{gI} \left(G^{S}(\Omega_{t}) - \tilde{g}_{t}\right)^{2} + \beta_{S} E_{t} W^{S}(B^{S}(\Omega_{t}), s_{t}, \epsilon_{t+1})$$

Table: Debt, inflation, and welfare in scenarios $\mathcal S$ where debt is a control variable^a

Debt	Inflation	Welfare	Transition gain ^a	Crisis cost ^{a,b}	Crisis cost, ^{a,b} fixing debt
$\bar{d}^{\mathcal{S}}_{ss}$	$\pi^{\mathcal{S}}_{ss}$	$W_{ss}^{\mathcal{S}} - W_{ss}^{MU}$	$W^{\mathcal{S}}(d_{ss}^{MU},0) - W_{ss}^{MU}$	$W^{\mathcal{S}}(d_{ss}^{\mathcal{S}},\epsilon_{0}^{g}) - W_{ss}^{\mathcal{S}}$	$W^{\mathcal{S}}(0,\epsilon_0^g) - W^{\mathcal{S}}(0,0)$
Scenario	P: Planner				
0.1%	2.0%	+19.4%			
Scenario	l: single cou	intry with indep	endent central bank		
71.4%	7.0%	+15.3%			
Scenario	MU: status	quo monetary u	inion		
199.7%	10.0%	0%			
Scenario	Fj: Moneta	ry union with re	gional fiscal authori	ties	
17.9%	5.8%	+18.4%			
Scenario	F: Monetar	y union with uni	on-wide fiscal autho	ority	
8.7%	5.6%	+18.7%			
Scenario	G: Monetar	y union with fea	leral government		
78.3%	5.5%	+14.8%			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

^b "Crisis" is $\epsilon_0^g = 0.02$, with autocorrelation 0.7.

Table: Debt, inflation, and welfare in scenarios $\mathcal S$ where debt is a control variable^a

Debt	Inflation	Welfare	Transition gain ^a	Crisis cost ^{a,b}	Crisis cost, ^{a,b} fixing debt
$ar{d}^{\mathcal{S}}_{ss}$	$\pi^{\mathcal{S}}_{ss}$	$W_{ss}^{S} - W_{ss}^{MU}$	$W^{S}(d_{ss}^{MU},0) - W_{ss}^{MU}$	$W^{\mathcal{S}}(d_{ss}^{\mathcal{S}},\epsilon_{0}^{g}) - W_{ss}^{\mathcal{S}}$	$W^{\mathcal{S}}(0,\epsilon_0^g) - W^{\mathcal{S}}(0,0)$
Scenario	P: Planner				
0.1%	2.0%	+19.4%	+14.8%		
Scenario	I: single cou	untry with indep	endent central bank		
71.4%	7.0%	+15.3%	+12.2%		
Scenario	MU: status	quo monetary u	nion		
199.7%	10.0%	0%	0%		
Scenario	Fj: Moneta	ry union with re	gional fiscal authorit	ties	
17.9%	5.8%	+18.4%	+14.1%		
Scenario	F: Monetar	y union with uni	on-wide fiscal autho	ority	
8.7%	5.6%	+18.7%	+14.2%		
Scenario	G: Monetar	y union with fea	leral government		
78.3%	5.5%	+14.8%	+12.6%		

^b "Crisis" is $\epsilon_0^g = 0.02$, with autocorrelation 0.7.

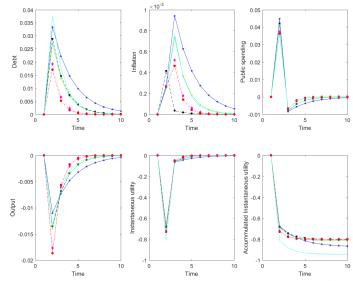


Figure: Temporary public demand shock: comparing institutional scenarios

– • – Planner — Monetary union — One country • Regional FAs - • Union-wide FA — Federal Government

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● のへの

Figure: Temporary public demand shock. Comparing institutional scenarios (Levels).

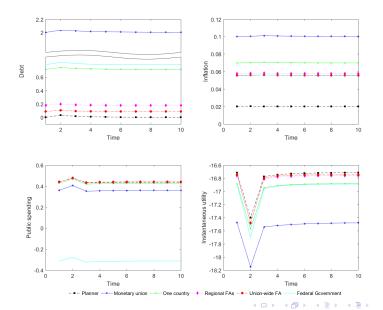
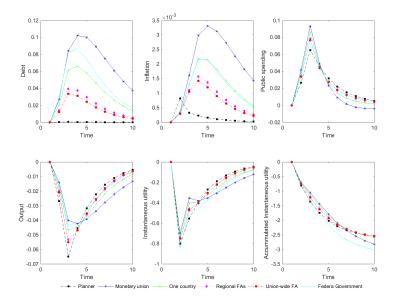
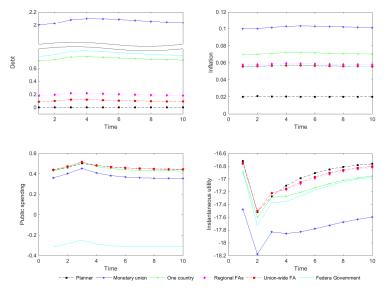




Figure: Autocorrelated public demand shock. Comparing institutional scenarios

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のくで

Figure: Autocorrelated public demand shock. Comparing institutional scenarios (Levels).

୍ରର୍ତ

Table: Debt, inflation, and welfare in scenarios $\mathcal S$ where debt is a control variable^a

Debt	Inflation	Welfare	Transition gain ^a	Crisis cost ^{a,b}	Crisis cost, ^{a,b} fixing debt
$\bar{d}^{\mathcal{S}}_{ss}$	$\pi^{\mathcal{S}}_{ss}$	$W_{ss}^{\mathcal{S}} - W_{ss}^{MU}$	$W^{S}(d_{ss}^{MU},0) - W_{ss}^{MU}$	$W^{\mathcal{S}}(d_{ss}^{\mathcal{S}},\epsilon_{0}^{g}) - W_{ss}^{\mathcal{S}}$	$W^{\mathcal{S}}(0,\epsilon_0^g) - W^{\mathcal{S}}(0,0)$
Scenario	P: Planner				
0.1%	2.0%	+19.4%	+14.8%	-0.75%	
Scenario	I: single cou	Intry with indep	endent central bank		
71.4%	7.0%	+15.3%	+12.2%	-0.78%	
Scenario	MU: status	quo monetary u	nion		
199.7%	10.0%	0%	0%	-0.90%	
Scenario	Fj: Moneta	ry union with re	gional fiscal authori	ties	
17.9%	5.8%	+18.4%	+14.1%	-0.75%	
Scenario	F: Monetar	y union with uni	on-wide fiscal autho	ority	
8.7%	5.6%	+18.7%	+14.2%	-0.75%	
Scenario	G: Monetar	y union with fed	leral government		
78.3%	5.5%	+14.8%	+12.6%	-0.90%	
^a Welfare	changes exp	pressed as equiva	alent variations of st	teady state private	sector output.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 b "Crisis" is $\epsilon_0^g =$ 0.02, with autocorrelation 0.7.

Table: Debt, inflation, and welfare in scenarios $\mathcal S$ where debt is a control variable^a

Debt	Inflation	Welfare	Transition gain ^a	Crisis cost ^{a,b}	Crisis cost, ^{a,b} fixing debt
$ar{d}^{\mathcal{S}}_{ss}$	$\pi^{\mathcal{S}}_{ss}$	$W_{ss}^{\mathcal{S}} - W_{ss}^{MU}$	$W^{S}(d_{ss}^{MU},0) - W_{ss}^{MU}$	$W^{\mathcal{S}}(d_{ss}^{\mathcal{S}},\epsilon_{0}^{g}) - W_{ss}^{\mathcal{S}}$	$W^{\mathcal{S}}(0,\epsilon_0^g) - W^{\mathcal{S}}(0,0)$
Scenario	P: Planner				
0.1%	2.0%	+19.4%	+14.8%	-0.75%	-0.75%
Scenario	I: single cou	untry with indep	endent central bank		
71.4%	7.0%	+15.3%	+12.2%	-0.78%	-0.75%
Scenario	MU: status	quo monetary u	nion		
199.7%	10.0%	0%	0%	-0.90%	-0.82%
Scenario	Fj: Moneta	ry union with re	gional fiscal authori	ties	
17.9%	5.8%	+18.4%	+14.1%	-0.75%	-0.74%
Scenario	F: Monetar	y union with uni	on-wide fiscal autho	ority	
8.7%	5.6%	+18.7%	+14.2%	-0.75%	-0.75%
Scenario	G: Monetar	y union with fed	eral government		
78.3%	5.5%	+14.8%	+12.6%	-0.90%	-0.88%

^b "Crisis" is $\epsilon_0^g = 0.02$, with autocorrelation 0.7.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Table: Debt, inflation, and welfare in scenarios $\mathcal S$ where debt is a control variable^a

Debt	Inflation	Welfare	Transition gain ^a	Crisis cost ^{a,b}	Cyclical cost, ^{a,c}
$ar{d}^{\mathcal{S}}_{ss}$	$\pi^{\mathcal{S}}_{ss}$	$W_{ss}^{S} - W_{ss}^{MU}$	$W^{\mathcal{S}}(d_{ss}^{MU},0) - W_{ss}^{MU}$	$W^{\mathcal{S}}(d_{ss}^{\mathcal{S}},\epsilon_{0}^{g}) - W_{ss}^{\mathcal{S}}$	$W_{ss}^{S} - W_{n}^{S}(d_{ss}^{S}, 0)$
Scenario	P: Planner				
0.1%	2.0%	+19.4%	+14.8%	-0.75%	-0.86%
Scenario	I: single cou	untry with indep	endent central bank		
71.4%	7.0%	+15.3%	+12.2%	-0.78%	-0.68%
Scenario	MU: status	quo monetary u	inion		
199.7%	10.0%	0%	0%	-0.90%	-0.83%
Scenario	Fj: Moneta	ry union with re	gional fiscal authori	ties	
17.9%	5.8%	+18.4%	+14.1%	-0.75%	-0.70%
Scenario	F: Monetar	y union with uni	on-wide fiscal autho	ority	
8.7%	5.6%	+18.7%	+14.2%	-0.75%	-0.71%
Scenario	G: Monetar	y union with fea	leral government		
78.3%	5.5%	+14.8%	+12.6%	-0.90%	-0.95%
^a Welfare	changes exp	pressed as equiva	alent variations of st	eady state private	sector output.

^cComparing stochastic economy with $\epsilon_t^g \sim N(0, 0.02)$, to nonstochastic economy ($\epsilon_t^g \equiv 0$).

RESULTS with DEBT AS A RESIDUAL

Key finding: results qualitatively unchanged when the fiscal authority controls the tax rate instead of controlling debt directly.

Games with Debt as a Residual

• Monetary union (Scenario Md)

- CB sets inflation
- Regional governments set tax and spending
- \blacktriangleright \Rightarrow debt determined by budget constraint.

• Fiscal delegation (Scenarios Fjd, Fd)

- CB sets inflation
- Regional governments set spending
- Fiscal authority(ies) set taxes
- $\blacktriangleright \Rightarrow$ debt determined by budget constraint.
- **More realistic!** Typically public spending and taxes are subject to long-run planning. Debt issuance takes up the slack.
- But treating a state variable as a residual rather than a control complicates the Euler equation

A B A A B A

Debt as A Residual - Monetary Union

• Central bank no longer has a intratemporal trade-off inflation versus spending $\bar{\hat{g}}_t = -\frac{\alpha_{\pi C} q_H}{\alpha_{gS}} \breve{\pi}_t$, now condition is also intertemporal. For the MU case

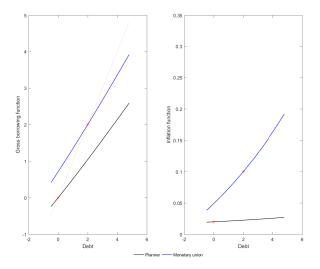
$$\begin{aligned} \alpha_{\pi C} \pi_t + \nu \bar{\hat{\mathbf{x}}}_t &= \beta_S \frac{\chi \bar{d}_{t-1} + \kappa}{\chi \bar{d}_t + \kappa} \bigg[\left(\alpha_{\pi C} \pi_{t+1} + \nu \bar{\hat{\mathbf{x}}}_{t+1} \right) \left(\frac{1}{\beta_S} + 2\delta \bar{d}_{t-1} \right) + \\ &+ \left(\frac{1}{\nu} + \frac{q_L^2 \nu}{\alpha_{gC}} \right) \left(\alpha_{\pi C} \pi_{t+1} + (1 + \chi \bar{d}_t + \kappa) \nu \bar{\hat{\mathbf{x}}}_{t+1} \right) \frac{\partial \bar{\mathbf{x}}_{t+1}}{\partial d_t} + \\ &+ (\chi \bar{d}_t \alpha_{\pi C} \pi_{t+1} - \nu \bar{\hat{\mathbf{x}}}_{t+1}) \frac{\partial \pi_{t+1}}{\partial d_t} \bigg] \end{aligned}$$

Plus, one intratemporal condition linking output(taxes) and spending, and $\hat{x}_{j,t} = \beta_G \left(\frac{1}{\beta_S} + \delta \bar{d}_{t-1}\right) E_t \hat{x}_{j,t+1}$ $\bar{d}_t = \left(\frac{1}{\beta_S} + \delta \bar{d}_{t-1}\right) \bar{d}_{t-1} + (\pi_t^e - \pi_t)(1 + \chi \bar{d}_{t-1}) + \left(\frac{1}{\nu} + \frac{q_L^2 \nu}{\alpha_{gC}}\right) \bar{x}_t - \kappa \pi_t + \bar{z}_t$

Basso/Costain (BdE)

(日) (周) (三) (三)

Policy Games - Debt as A Residual - Fj case


$$\begin{aligned} \alpha_{\pi C} \pi_{t} + \nu \bar{\hat{x}}_{t} &= \beta_{S} \frac{\chi \bar{d}_{t-1} + \kappa}{\chi \bar{d}_{t} + \kappa} \bigg[(\alpha_{\pi C} \pi_{t+1} + \nu \bar{\hat{x}}_{t+1}) (R(d_{t}) + R'(d_{t})d_{t}) + \\ &+ (\alpha_{gC} \bar{\hat{g}}_{t+1} (1 + \chi \bar{d}_{t}) + q_{L} (\alpha_{\pi C} \pi_{t+1} + \nu \bar{\hat{x}}_{t+1})) \frac{\partial \bar{\hat{g}}_{t+1}}{\partial d_{t}} + \\ &+ \left(\frac{1}{\nu} \right) (\alpha_{\pi C} \pi_{t+1} + (1 + \chi \bar{d}_{t} + \kappa)) \nu \bar{\hat{x}}_{t+1}) \frac{\partial \bar{\hat{x}}_{t+1}}{\partial d_{t}} + \\ &+ (\chi \bar{d}_{t} \alpha_{\pi C} \pi_{t+1} - \nu \bar{\hat{x}}_{t+1}) \frac{\partial \pi_{t+1}}{\partial d_{t}} \bigg] \\ \hat{g}_{j,t} &= \beta_{G} E_{t} \bigg[R(\bar{d}_{t}) \hat{g}_{j,t+1} - \bigg(\frac{q_{L}}{\alpha_{gG}} \hat{x}_{j,t+1} - \frac{1}{\nu} \hat{g}_{j,t+1} \bigg) \frac{\partial \bar{x}_{t+1}}{\partial d_{t}} \bigg] , \\ \nu \hat{x}_{j,t} + \alpha_{dF} d_{j,t} &= \beta_{F} E_{t} \bigg[\nu \hat{x}_{j,t+1} R(\bar{d}_{t}) + (q_{L} \nu \hat{x}_{j,t+1} - \alpha_{gG} \hat{g}_{j,t+1}) \frac{\partial g_{j,t+1}}{\partial d_{t}} \bigg] , \\ \bar{d}_{t} &= \bigg(\frac{1}{\beta_{S}} + \delta \bar{d}_{t-1} \bigg) \bar{d}_{t-1} + (\pi_{t}^{e} - \pi_{t}) (1 + \chi \bar{d}_{t-1}) + \frac{1}{\nu} \bar{\hat{x}}_{t} + q_{L} \bar{\hat{g}}_{t} - \kappa \pi_{t} + \bar{\tilde{z}}_{t} \bigg] . \end{aligned}$$

Basso/Costain (BdE)

-

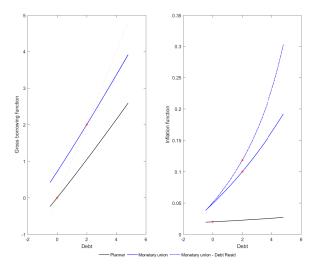

Image: A match a ma

Figure: Borrowing and inflation. Comparing institutional scenarios when debt is a residual and a control variable

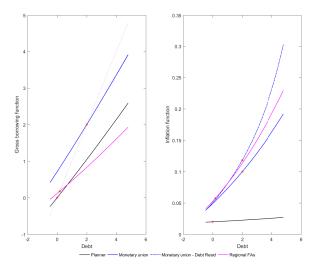

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Figure: Borrowing and inflation. Comparing institutional scenarios when debt is a residual and a control variable


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Figure: Borrowing and inflation. Comparing institutional scenarios when debt is a residual and a control variable

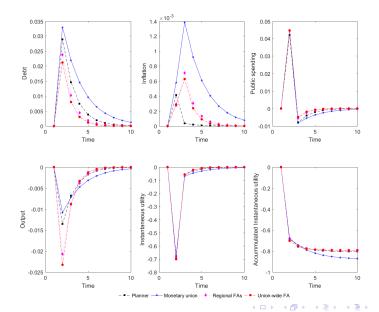

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Figure: Borrowing and inflation. Comparing institutional scenarios when debt is a residual and a control variable

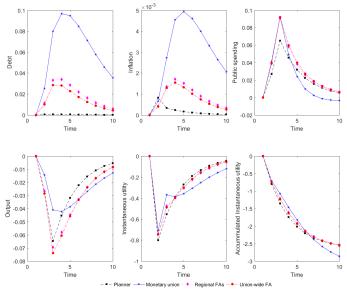

<ロト <四ト <注入 <注下 <注下 <

Figure: Temporary public demand shock. Comparing scenarios when debt is a residual.

æ

Figure: Autocorrelated public demand shock. Comparing scenarios when debt is a residual.

Table: Debt, inflation, and welfare in scenarios $\mathcal S$ where debt is a residual*

Debt	Inflation	Welfare	Transition gain ^a	Crisis cost ^{a,b}	Crisis cost, ^{a,b} fixing debt		
$ar{d}^{\mathcal{S}}_{ss}$	$\pi^{\mathcal{S}}_{\rm ss}$	$W_{ss}^{\mathcal{S}} - W_{ss}^{MU}$	$W^{S}(d_{ss}^{MU},0) - W_{ss}^{MU}$	$W^{\mathcal{S}}(d_{ss}^{\mathcal{S}},\epsilon_{0}^{g}) - W_{ss}^{\mathcal{S}}$	$W^{\mathcal{S}}(0,\epsilon_0^g) - W^{\mathcal{S}}(0,0)$		
Scenario P: Planner							
0.1%	2.0%	+21.2%	+16.6%	-0.75%	-0.75%		
Scenario	Scenario MUdr: status quo monetary union						
199.7%	11.8%	0	0	-0.91%	-0.83%		
Scenario Fjdr: Monetary union with regional fiscal authorities							
36.4%	6.4%	+18.9%	+14.9%	-0.76%	-0.75%		
Scenario Fdr: Monetary union with union-wide fiscal authority							
15.7%	5.9%	+19.9%	+15.4%	-0.76%	-0.75%		

^aWelfare changes expressed as equivalent variations of steady state private sector output. ^b "Crisis" is $\epsilon_0^g = 0.02$, with autocorrelation 0.7.

Debt \bar{d}_{ss}^{S}	Inflation $\pi_{ss}^{\mathcal{S}}$	Welfare $W_{ss}^{\mathcal{S}}-W_{ss}^{\mathcal{MU}}$	Transition gain ^a $W^{S}(d_{ss}^{MU},0)-W_{ss}^{MU}$	Crisis $cost^{a,b}$ $W^{S}(d_{ss}^{S},\epsilon_{0}^{g}) - W_{ss}^{S}$	Cyclical cost, ^{<i>a</i>, <i>b</i>} $W_{ss}^{S} - W_{n}^{S}(d_{ss}^{S}, 0)$		
Scenario P: Planner							
0.1%	2.0%	+21.2%	+16.6%	-0.75%	-0.86%		
Scenario	Scenario MUdr: status quo monetary union						
199.7%	11.8%	0	0	-0.91%	-0.90%		
Scenario Fjdr: Monetary union with regional fiscal authorities							
36.4%	6.4%	+18.9%	+14.9%	-0.76%	-0.74%		
Scenario Fdr: Monetary union with union-wide fiscal authority							
15.7%	5.9%	+19.9%	+15.4%	-0.76%	-0.77%		

^aWelfare changes expressed as equivalent variations of steady state private sector output. ^cComparing stochastic economy with $\epsilon_t^g \sim N(0, 0.02)$, to nonstochastic economy ($\epsilon_t^g \equiv 0$).

IMPLICATIONS for EUROPE

イロト イヨト イヨト イヨト

Role of fiscal delegation for Europe?

- Lack of commitment is very costly in a monetary union
- Delegating a budget shifter to an independent fiscal authority (IFA) could yield **large steady state welfare gains**
 - Comes closer to commitment solution, with much lower debt
- Dynamic analysis reinforces our conclusions!
 - > Transition is preferred to status quo, in spite of costly austerity
 - Surprisingly, there is **no tradeoff against stabilization**.
 - ★ Under IFA, negative shock implies greater austerity, but is **less costly** over the course of the downturn
 - Same conclusions when IFA controls debt directly, or controls taxes
- Could the new European Fiscal Board be transformed into a **European Fiscal Authority**?
 - A promising alternative to more complex rules with more complex monitoring process and (supposedly) more strongly binding sanctions!

(日) (同) (三) (三)

European Fiscal Board \rightarrow European Fiscal Authority

- EFA would monitor and forecast fiscal trends in each member state
- EFA could **provide advice** on fiscal impact of new policy proposals
 - Those are the jobs foreseen for the EFB, starting 2017

European Fiscal Board \rightarrow European Fiscal Authority

- EFA would monitor and forecast fiscal trends in each member state
- EFA could **provide advice** on fiscal impact of new policy proposals
 - Those are the jobs foreseen for the EFB, starting 2017
- EFA would have the power to set fiscal instrument(s) that give it effective control over national debt levels
- Need not control debt directly... tax instrument suffices...
 e.g. Gruen (1997) proposes a multiplicative shifter x in the tax code:

tax rate_{*i*,t} = $F(\text{income}_{i,t}, \text{ lots of other stuff}_{i,t})(1 + x_t)$.

Hence redistributive properties of tax code are maintained.

- Alternative: adjust public expenditure (Costain/de Blas '12A,B)
- Alternative: adjust pensions (already done in Spain: see Sánchez '14)

Is EFA politically feasible?

- Fiscally fragile Eurozone states **need ECB protection against debt crises and banking crises** (e.g. Eurobonds, deposit insurance)
- Fiscally strong Eurozone states oppose ECB guarantees because they fear **moral hazard**: weaker countries may fail to balance budgets if they take ECB protection for granted.

Is EFA politically feasible?

- Fiscally fragile Eurozone states **need ECB protection against debt crises and banking crises** (e.g. Eurobonds, deposit insurance)
- Fiscally strong Eurozone states oppose ECB guarantees because they fear **moral hazard**: weaker countries may fail to balance budgets if they take ECB protection for granted.

• A feasible quid pro quo:

- Members voluntarily delegate one or more fiscal shifters to EFA.
- EFA evaluates whether these give it effective control of debt.
- When a member state has delegated an effective instrument to EFA, **ECB guarantees protection against crises** (which are less likely since EFA decreases biases, increases credibility, reduces premia).

イロト イヨト イヨト

Is EFA politically feasible?

- Fiscally fragile Eurozone states **need ECB protection against debt crises and banking crises** (e.g. Eurobonds, deposit insurance)
- Fiscally strong Eurozone states oppose ECB guarantees because they fear **moral hazard**: weaker countries may fail to balance budgets if they take ECB protection for granted.

• A feasible quid pro quo:

- Members voluntarily delegate one or more fiscal shifters to EFA.
- EFA evaluates whether these give it effective control of debt.
- When a member state has delegated an effective instrument to EFA, **ECB guarantees protection against crises** (which are less likely since EFA decreases biases, increases credibility, reduces premia).
 - ► If EFA says instrument is not effective, or is **no longer** effective, **ECB revokes protection**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

• Lack of commitment is very costly in a monetary union

- Delegating a budget shifter to an independent fiscal authority (IFA) could yield **large steady state welfare gains**
 - Comes closer to commitment solution, with much lower debt
- Dynamic analysis reinforces our conclusions!
 - > Transition is preferred to status quo, in spite of costly austerity
 - Surprisingly, there is **no tradeoff against stabilization**.
 - ★ Under IFA, negative shock implies greater austerity, but is **less costly** over the course of the downturn
 - Same conclusions when IFA controls debt directly, or controls taxes
- Current European impasse shows potential for quid pro quo that would make IFA politically feasible.

くほと くほと くほと

- Build a DSGE instead of this reduced-form model, for better quantitative assessment, especially regarding stabilization.
- Allow for endogenous, costly default. (Endgame with fiscal authority as default comes near?)
- Allow for private information of the local government about the level of its spending requirements- implies moral hazard.

Postscript

- This sounds very ambitious... but **institutional ingredients and possible quid pro quo** are already in place.
 - Compare this to the reforms/agreements/referendums necessary to create a federal Europe!
- Voluntarily **delegating fiscal instruments to a joint authority** is a feasible and robust way to **build a closer union among a subset** (or remnant) of member states.

THANKS FOR YOUR ATTENTION!

(日) (同) (三) (三)