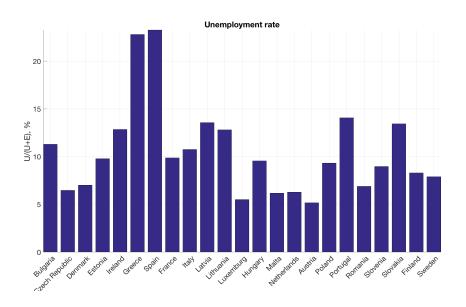
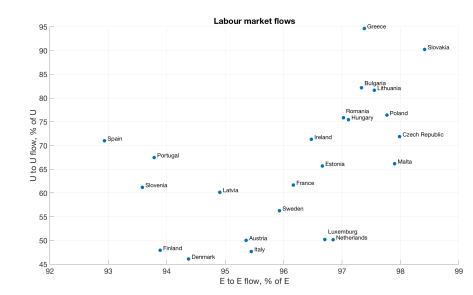
On the Design of a European Unemployment Insurance Mechanism

Árpád Ábrahám João Brogueira de Sousa Ramon Marimon Lukas Mayr


European University Institute

Madrid, 18 and 19 May 2017



Unemployment Rate in Europe (2010q2-2015q4)

Persistence of Employment and Unemployment (2010q2-2015q4)

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

Model generates workers' flows and distributions across three states: Employment, Unemployment, Inactivity.

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

Model generates workers' flows and distributions across three states: Employment, Unemployment, Inactivity.

- Long run differences between countries (LM institutions, UI systems, technology).
- Short run differences (similar economic fluctuations), in a parsimonious way.

First structural model of EU labour markets to evaluate EU-UI policy reform (see Dolls et al. (2015) and Beblacy and Maselli (2014)).

Model generates workers' flows and distributions across three states: Employment, Unemployment, Inactivity.

- Long run differences between countries (LM institutions, UI systems, technology).
- Short run differences (similar economic fluctuations), in a parsimonious way.
- Calibration to EU countries.
- Map of labor market institutions across Europe.

Analyse several policy reforms with different levels of integration:

1: Insurance of short term fluctuations;

Analyse several policy reforms with different levels of integration:

1: Insurance of short term fluctuations;

2: Joint financing of current national UI systems;

Analyse several policy reforms with different levels of integration:

- 1: Insurance of short term fluctuations;
- 2: Joint financing of current national UI systems;
- 3: Homogeneous UI system in Europe (average of national benefit scheme);

Analyse several policy reforms with different levels of integration:

- 1: Insurance of short term fluctuations;
- 2: Joint financing of current national UI systems;
- 3: Homogeneous UI system in Europe (average of national benefit scheme);
- 4: Optimal national benefit schemes.

Analyse several policy reforms with different levels of integration:

- 1: Insurance of short term fluctuations;
- 2: Joint financing of current national UI systems;
- 3: Homogeneous UI system in Europe (average of national benefit scheme);
- 4: Optimal national benefit schemes.
- 5: Optimal joint European UI (in progress).

Model: Main Elements

- Bewley economy:
 - \circ Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with (exogenous) return r.

Model: Main Elements

- Bewley economy:
 - \circ Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with (exogenous) return r.
- Closed competitive labour markets, subject to frictions: job separations, job findings.

Model: Main Elements

- Bewley economy:
 - \circ Continuum of agents, live forever: idiosyncratic labour productivity risk, save in a riskless asset with (exogenous) return r.
- Closed competitive labour markets, subject to frictions: job separations, job findings.
- Agents optimize whether to work or actively search for a job: Employed, Unemployed or Inactive.

- Employed Labour income, utility cost α of work:
 - may quit (not eligible for UI);
 - \circ or loose the job with probability σ (eligible for UI).

- Employed Labour income, utility cost α of work:
 - may quit (not eligible for UI);
 - \circ or loose the job with probability σ (eligible for UI).
- Unemployed Costly search effort γ :
 - \circ receive job offers with probability $\lambda_{\mathbf{u}}$
 - o may reject offers.
 - \circ if eligible, receive UI benefits. Lose eligibility with probability μ .

- Employed Labour income, utility cost α of work:
 - may quit (not eligible for UI);
 - \circ or loose the job with probability σ (eligible for UI).
- Unemployed Costly search effort γ :
 - \circ receive job offers with probability $\lambda_{\mathbf{u}}$
 - o may reject offers.
 - \circ if eligible, receive UI benefits. Lose eligibility with probability $\mu.$
- Inactive Do not actively search
 - \circ receive job offers at a lower rate: $\lambda_{\mathbf{n}}$
 - o may reject offers
 - o not eligible for UI benefits

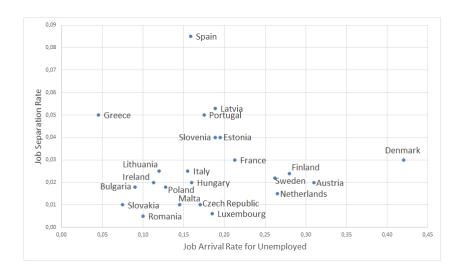
- Employed Labour income, utility cost α of work:
 - may quit (not eligible for UI);
 - \circ or loose the job with probability σ (eligible for UI).
- Unemployed Costly search effort γ :
 - \circ receive job offers with probability $\lambda_{\mathbf{u}}$
 - o may reject offers.
 - \circ if eligible, receive UI benefits. Lose eligibility with probability μ .
- Inactive Do not actively search
 - \circ receive job offers at a lower rate: λ_n
 - o may reject offers
 - o not eligible for UI benefits
- UI financed with proportional tax τ on labour income: replacement rate b_0 and average duration $1/\mu$, conditional on search; Balanced budget.

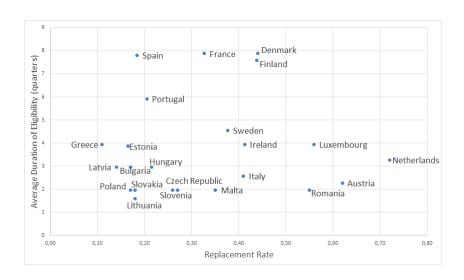
Calibration: Common Parameters

Parameter	Definition	Value
θ	Capital share of output	0.3
β	Discount factor	0.98
$ ho_z$	Persistence of productivity	0.89
σ_z	Standard deviation of prod. shock	0.1
r	Real Interest rate (quarterly)	0.2%
α	Disutility of labor	1.4
$ar{\gamma}$	Mean disutility of search	0.7

Calibration: Country-Specific Parameters

Parameter	Definition	Related Target
A	Total factor productivity	Average wage
σ_{γ}	St. deviation of γ	Flow $U - U$
σ	Job separation rate	Flow $E - U$
λ_u	Job arrival rate for searchers	Flow $U - E$
λ_n	Job arrival rate for inactive	Unemployment $U/(E+U)$
μ	Prob. of loosing UB eligibility	max duration
b_0	UB replacement rate	Benefits/GDP
au	UI payroll tax rate	Budget clearing


- The first panel of parameters is related to a country's labour market institutions
- The second panel refers to unemployment policies


Job Arrival Rates

Labour Market Rigidity

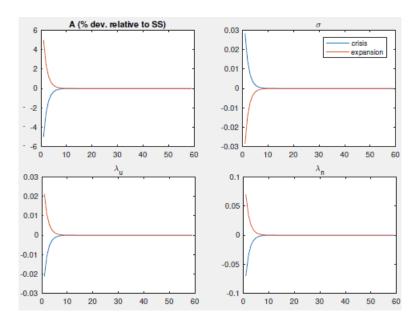
Unemployment Policies

- National benefit systems fixed: b_0 and μ .
- European UI System insures country specific aggregate shocks.

- National benefit systems fixed: b_0 and μ .
- European UI System insures country specific aggregate shocks.
- Autarky: taxes increase in recessions and decrease in expansions:
 - fluctuations in employed consumption,
 - distortions in labour supply (quits, job acceptance).

- National benefit systems fixed: b_0 and μ .
- European UI System insures country specific aggregate shocks.
- Autarky: taxes increase in recessions and decrease in expansions:
 - fluctuations in employed consumption,
 - distortions in labour supply (quits, job acceptance).
- European UI System: eliminates the tax movements.

- National benefit systems fixed: b_0 and μ .
- European UI System insures country specific aggregate shocks.
- Autarky: taxes increase in recessions and decrease in expansions:
 - fluctuations in employed consumption,
 - \circ distortions in labour supply (quits, job acceptance).
- European UI System: eliminates the tax movements.
- Insurance is actuarially fair: government's intertemporal budget constraint is satisfied in expectation.


• Economy is in steady state at t = 0.

- Economy is in steady state at t = 0.
- At the end of t = 0, agents learn that in t = 1 the country will be hit either by a good or a bad persistent shock.

- Economy is in steady state at t = 0.
- At the end of t = 0, agents learn that in t = 1 the country will be hit either by a good or a bad persistent shock.
- Each shock has probability 1/2.
- After t = 1 shock, economy returns to steady state deterministically.

- Economy is in steady state at t = 0.
- At the end of t = 0, agents learn that in t = 1 the country will be hit either by a good or a bad persistent shock.
- Each shock has probability 1/2.
- After t = 1 shock, economy returns to steady state deterministically.
- Welfare measure: compare ex-ante expected utility of going through the crisis/expansion in Autarky vs. with a constant tax.

Experiment 1: Country Specific Shock

Policy Experiment 1: Welfare comparison

Experiment 1: National level UB policy, constant national tax during transition.

	Welfare gain**	Approval E*	Approval Ue*	Approval Une*	Approval I*	Approval Total*
Denmark	0.003%	89%	15%	16%	0%	66%
Spain	0.003%	91%	90%	100%	0%	64%
France	0.001%	89%	1%	26%	0%	67%
Italy	0.002%	97%	0%	17%	0%	70%
Netherlands	0.001%	84%	0%	0%	0%	67%
Poland	0.001%	97%	0%	7%	0%	72%
Portugal	0.002%	95%	51%	80%	0%	67%
Finland	0.002%	86%	0%	3%	0%	66%

^{**} consumption equivalent, % of autarky consumption

^{* %} population group/Total

Policy Experiment 1: Welfare comparison

Experiment 1: National level UB policy, constant national tax during transition.

	Welfare gain**	Approval E*	Approval Ue*	Approval Une*	Approval I*	Approval Total*
Denmark	0.003%	89%	15%	16%	0%	66%
Spain	0.003%	91%	90%	100%	0%	64%
France	0.001%	89%	1%	26%	0%	67%
Italy	0.002%	97%	0%	17%	0%	70%
Netherlands	0.001%	84%	0%	0%	0%	67%
Poland	0.001%	97%	0%	7%	0%	72%
Portugal	0.002%	95%	51%	80%	0%	67%
Finland	0.002%	86%	0%	3%	0%	66%

^{**} consumption equivalent, % of autarky consumption

Experiment 1b:

- small probability p = 0.1 of going through a crisis and 1 p of remaining at the steady state.
- welfare gains not higher than 0.005% for this set of countries.

^{* %} population group/Total

Policy Experiment 3

- Introduce common UI policy: average b_0^U and duration d^U , financed jointly: τ^U .
 - Transfers from countries with low to countries with high eligible unemployed (post reform).
 - The common UI system also affects job acceptance and search decisions.
 - Transfers and welfare gains need not have the opposite sign.
- We calculate these steady state transfers and the welfare gains/losses from the joint scheme.

Policy Experiment 3: Welfare comparison

Experiment 3: Commom level UB policy, common tax (joint budget)

	E	U	1	τ (%)	b0	d
Denmark	68.5%	5.4%	26.2%	1.7%	0.44	7.9
Spain	51.3%	14.1%	34.5%	2.3%	0.18	7.8
France	68.8%	7.1%	24.1%	1.7%	0.33	7.9
Italy	66.4%	8.5%	25.1%	1.2%	0.41	2.6
Netherlands	74.5%	6.4%	19.1%	2.4%	0.72	3.3
Poland	69.1%	7.0%	23.9%	0.2%	0.17	2.0
Portugal	59.3%	8.7%	32.0%	1.2%	0.21	5.9
Finland	70.9%	7.3%	21.8%	1.7%	0.44	7.6

	Ē	U	1	τ U (%)	60 U	dυ	Transfer***	Welfare gain**
Denmark	67.7%	4.6%	27.7%	2.4%	0.36	5.6	1.0%	-1.6%
Spain	52.9%	17.7%	29.4%	2.4%	0.36	5.6	-3.1%	2.7%
France	68.2%	6.9%	24.9%	2.4%	0.36	5.6	0.5%	-0.3%
Italy	67.7%	9.2%	23.1%	2.4%	0.36	5.6	0.5%	-0.6%
Netherlands	73.3%	5.6%	21.2%	2.4%	0.36	5.6	1.2%	-2.1%
Poland	77.4%	9.1%	13.5%	2.4%	0.36	5.6	0.4%	0.8%
Portugal	61.4%	11.3%	27.4%	2.4%	0.36	5.6	-0.9%	0.6%
Finland	68.7%	7.0%	24.3%	2.4%	0.36	5.6	1.0%	-1.4%

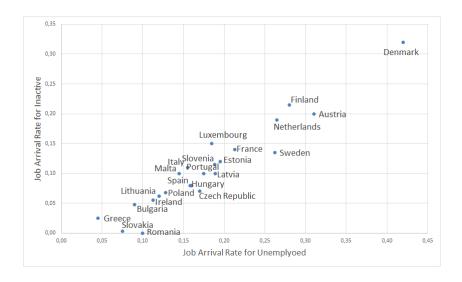
^{*** %} gdr

^{**}consumption equivalent, % of autarky consumption.

Policy Experiment 4: Country Level Reform

- Calculate the optimal (b_0, μ) policy for each country.
- Compute implied welfare gains and the effects on labour markets.
- Characterize optimal policy as a function of labour market institutions.

Policy Experiment 4: Country Level Reform.


Experiment 4: UB policy reform, country level.

	τ (%)	τ' (%)	b0	b0	d	d	Welfare gain* (%)
Denmark	1.7%	0.7%	0.44	0.35	7.9	8	0.06%
Spain	2.3%	14.0%	0.18	0.30	7.8	8	1.72%
France	1.7%	4.1%	0.33	0.35	7.9	8	0.89%
Italy	1.2%	5.0%	0.41	0.35	2.6	8	1.44%
Netherlands	2.4%	2.2%	0.72	0.40	3.3	8	0.64%
Poland	0.2%	5.1%	0.17	0.40	2.0	00	6.72%
Portugal	1.2%	7.0%	0.21	0.30	5.9	8	1.56%
Finland	1.7%	2.1%	0.44	0.35	7.6	8	0.56%

^{*} consumption equivalent, % of autarky consumption.

Labour Market Institutions



Policy Experiment 4: Country Level Reform.


Experiment 4: UB policy reform, country level.

	τ (%)	τ' (%)	b0	b0	d	d	Welfare gain* (%)
Denmark	1.7%	0.7%	0.44	0.35	7.9	8	0.06%
Spain	2.3%	14.0%	0.18	0.30	7.8	8	1.72%
France	1.7%	4.1%	0.33	0.35	7.9	8	0.89%
Italy	1.2%	5.0%	0.41	0.35	2.6	8	1.44%
Netherlands	2.4%	2.2%	0.72	0.40	3.3	8	0.64%
Poland	0.2%	5.1%	0.17	0.40	2.0	00	6.72%
Portugal	1.2%	7.0%	0.21	0.30	5.9	8	1.56%
Finland	1.7%	2.1%	0.44	0.35	7.6	8	0.56%

^{*} consumption equivalent, % of autarky consumption.

Labour Market Rigidity

Policy Reform: France

	Tax Rate	Replacement Rate	Duration
Baseline	1.7%	33%	8
Reform	4.1%	35%	Unlimited

	Employed	Unemployed	Unemployed	Inactive
		Eligible	Non-Eligible	
Baseline	69.0%	3.7%	3.4%	23.9%
Reform	80.1%	8.3%	0.1%	10.5%

Job Offer Rejections	Unemployed	Inactive	
Baseline	1.94%	21.44%	
Reform	2.17%	25.63%	

	Voluntary Separations
Baseline	59.74%
Reform	37.32%

Policy Experiment 4: Country Level Reform.

Experiment 4: UB policy reform, country level.

	τ (%)	τ' (%)	b0	b0	d	d	Welfare gain* (%)
Denmark	1.7%	0.7%	0.44	0.35	7.9	8	0.06%
Spain	2.3%	14.0%	0.18	0.30	7.8	8	1.72%
France	1.7%	4.1%	0.33	0.35	7.9	8	0.89%
Italy	1.2%	5.0%	0.41	0.35	2.6	8	1.44%
Netherlands	2.4%	2.2%	0.72	0.40	3.3	8	0.64%
Poland	0.2%	5.1%	0.17	0.40	2.0	00	6.72%
Portugal	1.2%	7.0%	0.21	0.30	5.9	8	1.56%
Finland	1.7%	2.1%	0.44	0.35	7.6	8	0.56%

^{*} consumption equivalent, % of autarky consumption.

Policy Experiment 5: Optimal EU-UI

- Optimal Reforms on country level are very similar $(b_0 \approx 1/3, \text{ long duration of eligibility})$
- For many countries an optimal EU system may be preferable to current national policies.
- Transfers are prevented by varying contribution payments (taxes) that depend on labour market institutions.

Preliminary exercise 5: Welfare improving EU-UI

Experiment 5: common UB policy reform, country level.

	τ (%)	τ' (%)	b0	b0	d	d	Welfare gain* (%)
Denmark	1.7%	0.7%	0.44	0.35	7.9	8	0.06%
Spain	2.3%	19.45%	0.18	0.35	7.80	8	-0.84%
France	1.7%	4.1%	0.33	0.35	7.9	8	0.89%
Italy	1.2%	5.0%	0.41	0.35	2.6	8	1.44%
Netherlands	2.4%	1.34%	0.72	0.35	3.26	8	0.37%
Poland	0.2%	4.18%	0.17	0.35	1.97	8	6.12%
Portugal	1.2%	8.50%	0.21	0.35	5.91	8	1.27%
Finland	1.7%	2.1%	0.44	0.35	7.6	8	0.56%

Baseline policy
Better EU policy

^{*} consumption equivalent, % of autarky consumption.

Preliminary exercise 5: Approval rates

	Approval E*	Approval Ue*	Approval Une*	Approval I*	Approval Total*
Denmark	100.0	45.6	100.0	100.0	98.5
Spain	14.1	98.6	85.8	28.6	30.0
France	95.4	100.0	100.0	100.0	96.9
Italy	66.6	99.4	99.9	99.7	77.7
Netherlands	96.0	38.2	99.8	96.8	94.9
Poland	100.0	100.0	99.8	100.0	100.0
Portugal	50.3	100.0	100.0	96.0	69.2
Finland	100.0	80.8	100.0	100.0	99.5

^{* %} population group/Total

• We provide the first structural analysis of an EU-UI policy reform.

- We provide the first structural analysis of an EU-UI policy reform.
- Results:
 - Labour market institutions are key in explaining cross-country differences.
 - Different LM institutions lead to different unemployment outcomes.

• We provide the first structural analysis of an EU-UI policy reform.

• Results:

- Labour market institutions are key in explaining cross-country differences.
- Different LM institutions lead to different unemployment outcomes.
- Gains from insuring shocks at the country level are small.
- Gains from reforming national systems in a similar way can be large.

• We provide the first structural analysis of an EU-UI policy reform.

• Results:

- Labour market institutions are key in explaining cross-country differences.
- Different LM institutions lead to different unemployment outcomes.
- Gains from insuring shocks at the country level are small.
- \circ Gains from reforming national systems in a similar way can be large.
- There seems to be room for agreement on a EU-UI system that smooths taxes and better integrates the European labour market.

- We provide the first structural analysis of an EU-UI policy reform.
- Results:
 - Labour market institutions are key in explaining cross-country differences.
 - Different LM institutions lead to different unemployment outcomes.
 - Gains from insuring shocks at the country level are small.
 - \circ Gains from reforming national systems in a similar way can be large.
 - There seems to be room for agreement on a EU-UI system that smooths taxes and better integrates the European labour market.
- Work in progress: optimal EU-UI system.

Model Fit: France

Flows:

Data			
	E	U	_
Е	0,96	0,02	0,02
U	0,21	0,62	0,17
1	0,03	0,03	0,94

Model					
	E	U	_		
E	0,95	0,02	0,03		
U	0,21	0,61	0,18		
-	0,10	0,08	0,82		

Stocks:

Data			
E	U	-	U/(U+E)
58,1%	6,0%	35,9%	9,3%

Model				
E	U	_	U/(U+E)	
74,4%	7,7%	18,0%	9,3%	

Model Fit: Unemployment Rate

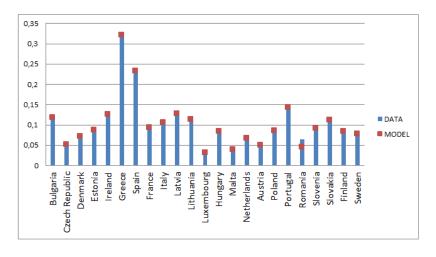


Figure: Unemployment Rate

Model Fit: Share of Employed

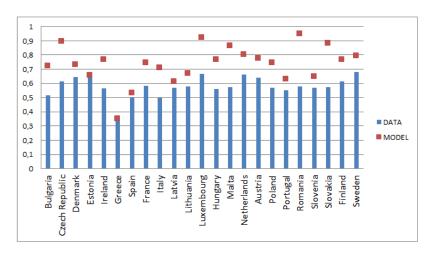


Figure: Share of Employed

