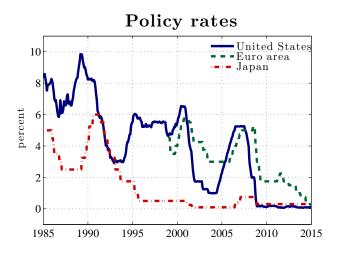
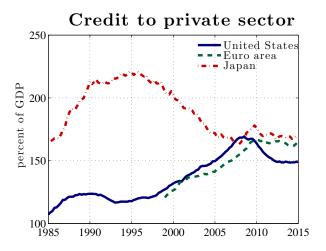
Aggregate Demand Externalities in a Global Liquidity Trap


Luca Fornaro and Federica Romei

 ${\rm ADEMU} \\ {\rm How~Much~of~a~Fiscal~Union~for~the~EMU?} \\ {\rm 18}^{th~May~2017}$


MOTIVATION AND RESEARCH QUESTIONS

- Recent history of advanced economies characterized by
 - ► Historically low real interest rates
 - ▶ Policy rates close to the zero lower bound
 - ▶ Liquidity traps accompanied by debt deleveraging

Policy rates: 1985-2015

Credit to private sector: 1985-2015

MOTIVATION AND RESEARCH QUESTIONS

- Recent history of advanced economies characterized by
 - ▶ Historically low real interest rates
 - Policy rates close to the zero lower bound
 - ▶ Liquidity traps accompanied by debt deleveraging
- Recent literature on macroprudential policies as stabilization tools
 - ► Farhi and Werning (2015, 2016);
 - ► Korinek and Simsek (2016);
 - ▶ Schmitt-Grohe and Uribe (2016).

MOTIVATION AND RESEARCH QUESTIONS

- Recent history of advanced economies characterized by
 - ► Historically low real interest rates
 - ▶ Policy rates close to the zero lower bound
 - ▶ Liquidity traps accompanied by debt deleveraging
- Recent literature on macroprudential policies as stabilization tools

Open questions

- What are the optimal macroprudential policies in a world characterized by low interest rates and high financial integration?
- ▶ Is there a need for international cooperation?

This paper

Model of financially integrated world

- Continuum of small open economies
- Uninsurable idiosyncratic risk \rightarrow trade in financial assets
- Nominal rigidities

Global liquidity trap

- Low real interest rates
- Monetary policy occasionally constrained by zlb
- Asymmetric business cycles and liquidity traps

Preview of results

Key result: Non-cooperative credit market interventions are inefficient

- Governments in booming countries implement counter-cyclical macroprudential policies to insure against future recessions
- Public intervention in credit markets increases the global demand of savings and decreases the global demand for consumption
- Recession in countries currently at the zlb gets worse

Need to coordinate credit market interventions.

Baseline Model

- World composed of a continuum of small open economies
- Each economy is inhabited by identical households and firms
- Each economy has its own currency and central bank
- Perfect foresight

Households

Representative household with lifetime utility

$$\sum_{t=0}^{\infty} \beta^{t} \log C_{i,t} \text{ with } C_{i,t} = \left(C_{i,t}^{T}\right)^{\omega} \left(C_{i,t}^{N}\right)^{1-\omega}$$

- One unit labor endowment, no labor disutility
- Receives endowment of tradables
- Budget constraint

$$P_{i,t}^{\,T}\,C_{i,t}^{\,T} + P_{i,t}^{\,N}\,C_{i,t}^{\,N} + A_{i,t+1} = P_{i,t}^{\,T}\,Y_{i,t}^{\,T} + \,W_{i,t}L_{i,t} + R_{i,t-1}^{\,A}A_{i,t}$$

FINANCIAL ASSETS AND BORROWING CONSTRAINT

- \blacksquare Real bond B
 - ▶ Denominated in units of tradables
 - ightharpoonup Pays world interest rate R_t
- \blacksquare Nominal bond B^n
 - ▶ Pays nominal interest rate $R_{i,t}^n$ (policy rate)
 - Zero net supply
- Borrowing limit

$$B_{i,t+1} + \frac{B_{i,t+1}^n}{P_{i,t}^T} \ge -\kappa \text{ with } \kappa \to 0$$

OPTIMALITY CONDITIONS

■ Euler equation

$$\frac{1}{C_{i,t}^T} = \frac{\beta R_t}{C_{i,t+1}^T} + \mu_{i,t}$$

$$\mu_{i,t} \left(B_{i,t+1} + \frac{B_{i,t+1}^n}{P_{i,t}^T} \right) = 0$$

OPTIMALITY CONDITIONS

■ No arbitrage (uncovered interest parity)

$$R_{i,t}^{n} = R_{t} \frac{P_{i,t+1}^{T}}{P_{i,t}^{T}} \to R_{i,t}^{n} = R_{j,t}^{n} \frac{S_{i,t+1}^{j}}{S_{i,t}^{j}}$$

■ Intratemporal allocation of expenditure

$$C_{i,t}^{N} = \frac{1 - \omega}{\omega} \frac{P_{i,t}^{T}}{P_{i,t}^{N}} C_{i,t}^{T}$$

OPTIMALITY CONDITIONS

■ No arbitrage (uncovered interest parity)

$$R_{i,t}^n \uparrow = R_t \frac{P_{i,t+1}^T}{P_{i,t}^T \downarrow} \to R_{i,t}^n = R_{j,t}^n \frac{S_{i,t+1}^j}{S_{i,t}^j}$$

Intratemporal allocation of expenditure

$$C_{i,t}^{N} \downarrow = \frac{1 - \omega}{\omega} \frac{P_{i,t}^{T} \downarrow}{P_{i,t}^{N}} C_{i,t}^{T}$$

Aggregate demand for non-tradable good

$$C_{i,t}^{N} = \frac{R\pi_{i,t+1}}{R_{i,t}^{n}} \frac{C_{i,t}^{T}}{C_{i,t+1}^{T}} C_{i,t+1}^{N}$$
(AD)

Aggregate demand

- Decreasing in $R_{i,t}^n/\pi_{i,t+1}$, where $\pi_{i,t} \equiv P_{i,t}^N/P_{i,t-1}^N$
- Increasing in $C_{i,t+1}^N$
- Increasing in $C_{i,t}^T/C_{i,t+1}^T$
- \blacksquare Increasing in R

FIRMS AND LABOR MARKET

■ Non-tradable good produced by competitive firms

$$Y_{i,t}^N = L_{i,t}$$

■ Zero-profit condition implies

$$P_{i,t}^N = W_{i,t}$$

Downward wage rigidities

$$W_{i,t} \geq \gamma W_{i,t-1}$$

Equilibrium on labor market

$$(L_{i,t}-1)(W_{i,t}-\gamma W_{i,t-1})=0$$

Monetary Policy

- Central bank targets domestic inflation $\pi_{i,t}$
- Assume inflation target $\bar{\pi} > \gamma$ so that

$$\pi_{i,t} = \bar{\pi} \rightarrow Y_{i,t}^N = 1$$

• Central bank sets $R_{i,t}^n$, subject to $R_{i,t}^n \geq 1$

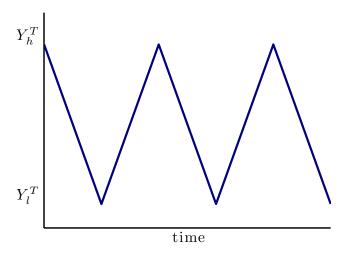
$$R_{i,t}^{n} = \begin{cases} \geq 1 & \text{if } Y_{i,t}^{N} = 1, \pi_{i,t} = \bar{\pi} \\ = 1 & \text{if } Y_{i,t}^{N} < 1, \pi_{i,t} = \gamma \end{cases}$$
 (MP)

Market Clearing

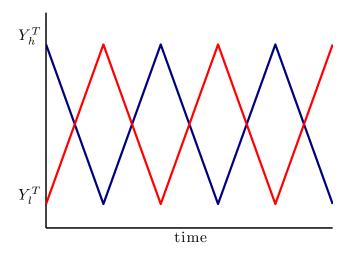
■ Goods market

$$C_{i,t}^{T} = Y_{i,t}^{T} - B_{i,t+1} + R_{t-1}B_{i,t}$$
$$C_{i,t}^{N} = Y_{i,t}^{N}$$

■ Labor market


$$Y_{i,t}^N = L_{i,t} \le 1$$

Asset market


$$B_{i,t+1}^n = 0$$

$$\int_0^1 B_{i,t+1} di = 0 \quad \to \quad \int_0^1 C_{i,t}^T di = \int_0^1 Y_{i,t}^T di$$

Tradable endowment process

Tradable endowment process

FINANCIAL LAISSEZ FAIRE

- Consider a small open economy with $\beta R < 1$
- \blacksquare Borrowing constraint binds in l state

$$B_l = 0$$

 \blacksquare Euler equation in h state

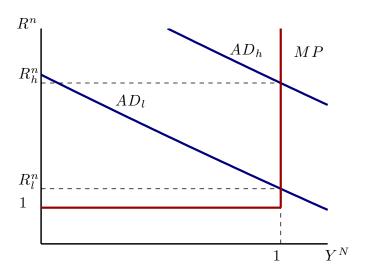
$$\frac{1}{C_h^T} \ge \frac{\beta R}{C_l^T} \quad \to \quad C_h^T > C_l^T$$

 \blacksquare Savings in h state

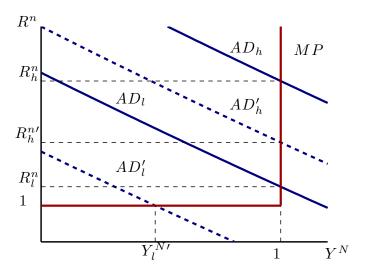
$$B_h = \max \left\{ \frac{\beta R}{1+\beta} \left(Y_h^T - \frac{Y_l^T}{\beta R} \right), 0 \right\}$$

Non-tradable good market

Aggregate demand


$$C_{i,t}^{N} = \frac{R\pi_{i,t+1}}{R_{i,t}^{n}} \frac{C_{i,t}^{T}}{C_{i,t+1}^{T}} C_{i,t+1}^{N}$$
(AD)

■ Monetary policy rule


$$R_{i,t}^{n} = \begin{cases} \geq 1 & \text{if } Y_{i,t}^{N} = 1, \pi_{i,t} = \bar{\pi} \\ = 1 & \text{if } Y_{i,t}^{N} < 1, \pi_{i,t} = \gamma \end{cases}$$
 (MP)

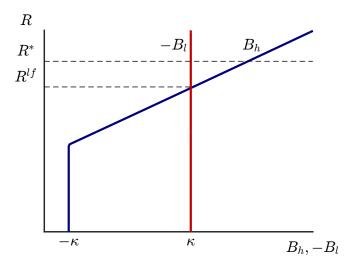
■ Equilibrium $C_{i,t}^N = Y_{i,t}^N$

Non-tradable good market

HIGH R (SOLID LINES) VS. LOW R (DASHED LINES)

Equilibrium on world asset market

Equilibrium on asset market implies

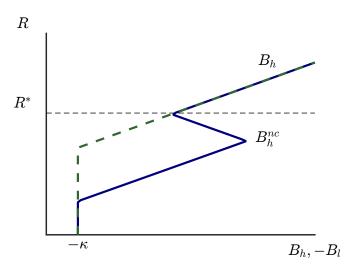

$$B_h = -B_l = \kappa \approx 0 \rightarrow C_h^T = Y_h^T, C_l^T = Y_l^T$$

■ World interest rate given by

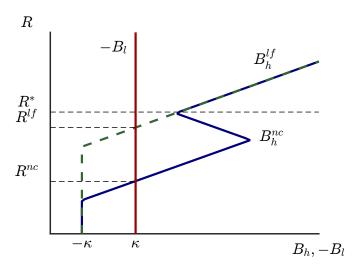
$$R = \frac{C_l^T}{\beta C_h^T} = \frac{Y_l^T}{\beta Y_h^T} \equiv R^{lf}$$

- If $R^{lf} < R^*$ world is in a global liquidity trap
 - ► Countries hit by negative shocks experience liquidity traps with unemployment
 - ▶ Permanent state of secular stagnation

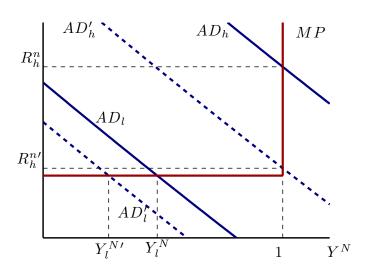
Equilibrium on world asset market


CREDIT POLICY AS A STABILIZATION TOOL

■ Non-tradable output in low state


$$Y_l^N = \min\left(R\bar{\pi} C_l^T / C_h^T, 1\right)$$

- Suppose government policy generates $\uparrow B_h$
 - ightharpoonup \uparrow current account surplus in h state
 - ightharpoonup † tradable consumption and aggregate demand in l state
 - ▶ If zlb binds, \uparrow employment and non-tradable consumption in l state
- **Domestic aggregate demand externality**: atomistic agents do not internalize the impact of their saving decisions in *h* state on employment in *l* state


UNCOOPERATIVE POLICY

GLOBAL IMPACT OF UNCOOPERATIVE POLICY

GLOBAL IMPACT OF UNCOOPERATIVE POLICY

GLOBAL IMPACT OF UNCOOPERATIVE POLICY

- When governments in booming countries intervene to improve current account
 - Rise in global supply of savings
 - ▶ World interest rate falls
 - ► Fall in global demand for non-tradables
 - ▶ Rise in unemployment in countries currently at zlb
- International aggregate demand externality: governments in booming countries do not internalize the impact of their policies on global demand and unemployment in bust countries

OPTIMAL COOPERATIVE POLICY

World planner solves

$$\max_{C_{i,t}^T, Y_{i,t}^N, B_{i,t+1}, R} \sum_{t=0}^{\infty} \beta^t \int_0^1 \left(\omega \log C_{i,t}^T + (1 - \omega) \log Y_{i,t}^N \right) di$$

subject to

$$C_{i,t}^{T} = Y_{i,t}^{T}$$

$$Y_{i,t}^{N} \le 1$$

$$Y_{i,t}^{N} \le R\pi_{t+1} \frac{C_{i,t}^{T}}{C_{i,t+1}^{T}} Y_{i,t+1}^{N},$$

OPTIMAL COOPERATIVE POLICY

- Global planner sets $R \ge R^*$ so that full employment is reached in every country $(Y_h^N = Y_l^N = 1)$
- This can be achieved by subsidizing borrowing in booming countries
- Pareto improvement with respect to laissez faire and uncooperative optimal policy
- Caveat: with $\kappa >> 0$ it might not be optimal to restore full employment. Still savings from booming countries under cooperation are smaller than in the uncooperative equilibrium

Conclusions

- We provide a framework of financial integration and low interest rates
- Governments have an incentive to implement policies that improve the current account during booms, to mitigate future recessions
- These policies lower global demand for consumption and aggravate the recession in countries currently stuck in a liquidity trap
- Need to coordinate capital market interventions in a low interest rate world

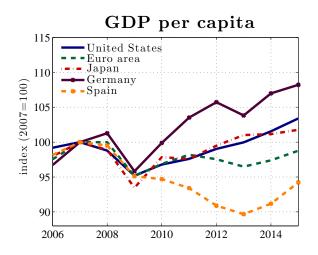
THANK YOU!

Deleveraging shock

- Normal times $\kappa_{i,t} = \kappa_h$
- Deleveraging shock

$$\log (\kappa_{i,t}) = \rho_{\kappa} \log (\kappa_{i,t}) + (1 - \rho_{\kappa}) \log (\kappa_l), \text{ where } \kappa_h > \kappa_l$$

■ Fixed probabilities of transiting between states


$$P\left(\kappa_{i,t} = \kappa_h \middle| \kappa_{i,t-1} = \kappa_h\right) > .5$$

$$P\left(\kappa_{i,t} = \kappa_h \middle| \kappa_{i,t-1} < \kappa_h\right) < .5$$

Table 1: Parameters

	Value	Source/Target
Risk aversion	$\sigma = 2$	Standard value
Elasticity consumption aggr.	$\xi = 0.5$	Standard value
Tradable share in expenditure	$\omega = 0.25$	Standard value
Discount factor	$\beta = 0.985$	R = 1.01
Downward wage rigidities	$\gamma = 1$	Schmitt-Grohe and Uribe (2013)
Inflation target	$\bar{\pi} = 1.02$	Standard value
Endowment process	$\sigma_{\epsilon} = 0.041, \rho = 0.78$	Estimate for advanced economies
Tradable output high mean	$\mu_l = \log(1.7)$	Estimate for the advanced economies
Tradable output low mean	$\mu = 0$	Normalization
Fraction of very rich countries	$\pi_{l,l} = 0.96$	Estimate for the advanced countries
Prob. of remaining in high mean	$\pi_{h,h} = 0.78$	Standard deviation NFA/GDP $=0.55$
Bond supply r.o.w.	$B_{rw} = 0.28$	$B_{rw} / \int_0^1 GDP_{i,t} di = 7\%$
High borrowing limit	$\kappa_h = 0.2.75$	
Low borrowing limit	$\kappa_l = 2.27$	
Persistence deleveraging	$\rho_{\kappa} = 0.7$	
Prob. entry deleveraging	$P_{entry} = 0.08$	
Prob. exit deleveraging	$P_{exit} = 0.51$	

GDP PER CAPITA: US, EURO AREA, JAPAN, GERMANY, SPAIN

OPTIMAL UNCOOPERATIVE POLICY

Domestic planner operating under discretion solves

$$\max_{C_{i,t}^T, Y_{i,t}^N, B_{i,t+1}} \sum_{t=0}^{\infty} \beta^t \left(\omega \log C_{i,t}^T + (1-\omega) \log Y_{i,t}^N \right)$$

subject to

$$C_{i,t}^{T} = Y_{i,t}^{T} - B_{i,t+1} + RB_{i,t}$$

$$B_{i,t+1} \ge -\kappa$$

$$Y_{i,t}^{N} \le 1$$

$$Y_{i,t}^{N} \le R\pi_{t+1} \frac{C_{i,t}^{T}}{C_{i,t+1}^{T}} Y_{i,t+1}^{N},$$

OPTIMAL UNCOOPERATIVE POLICY

■ Domestic planner Euler equation

$$\frac{1}{C_h^T} \ge \frac{\beta R}{C_l^T} \left(1 + \frac{\bar{v}_l Y_l^N}{\omega} \right)$$

- If $\bar{v}_l > 0$ planner saves more during booms compared to financial laissez faire
- Planning allocation can be decentralized by imposing tighter borrowing limit than the market one, or through subsidies to savings