Investment Demand and Structural Change

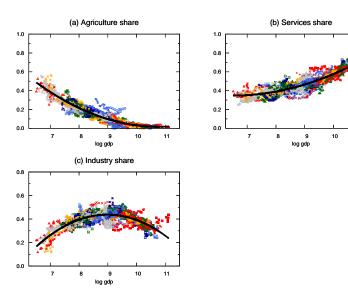
Manuel García-Santana*

Josep Pijoan-Mas°

Lucciano Villacorta

*UPF, CEPR

°CEMFI, CEPR


Banco Central de Chile

Bank of Spain, October 2016

 Growth literature focuses in understanding structural change under BGP Kongsamut, Rebelo, Xie (RES 2001); Ngai, Pissarides (AER 2007); Boppart (ECTA 2014)

Structural change

The facts

11

• Growth literature focuses in understanding structural change under BGP Kongsamut, Rebelo, Xie (RES 2001); Ngai, Pissarides (AER 2007); Boppart (ECTA 2014)

- Growth literature focuses in understanding structural change under BGP Kongsamut, Rebelo, Xie (RES 2001); Ngai, Pissarides (AER 2007); Boppart (ECTA 2014)
- Why? Put together Kuznets-Maddison facts and Kaldor facts

- Growth literature focuses in understanding structural change under BGP Kongsamut, Rebelo, Xie (RES 2001); Ngai, Pissarides (AER 2007); Boppart (ECTA 2014)
- Why? Put together Kuznets-Maddison facts and Kaldor facts
- However, between 1950 and 2010:

- Growth literature focuses in understanding structural change under BGP Kongsamut, Rebelo, Xie (RES 2001); Ngai, Pissarides (AER 2007); Boppart (ECTA 2014)
- Why? Put together Kuznets-Maddison facts and Kaldor facts
- However, between 1950 and 2010:
 - A number of countries have experienced long periods of growth better characterized by transitional dynamics

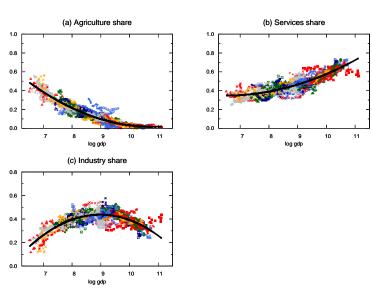
Christiano (QR 1989); Song, Storesletten, Zilibotti (AER 2011); Buera, Shin (JPE 2013)

- Growth literature focuses in understanding structural change under BGP Kongsamut, Rebelo, Xie (RES 2001); Ngai, Pissarides (AER 2007); Boppart (ECTA 2014)
- Why? Put together Kuznets-Maddison facts and Kaldor facts
- However, between 1950 and 2010:
 - A number of countries have experienced long periods of growth better characterized by transitional dynamics

```
Christiano (QR 1989); Song, Storesletten, Zilibotti (AER 2011); Buera, Shin (JPE 2013)
```

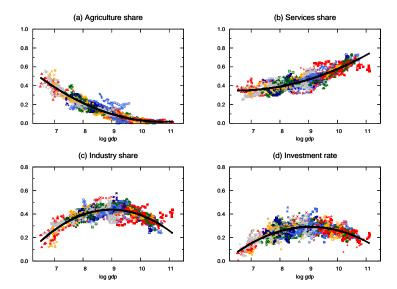
- These same countries experienced a sharp pattern of sectoral reallocation

- Growth literature focuses in understanding structural change under BGP Kongsamut, Rebelo, Xie (RES 2001); Ngai, Pissarides (AER 2007); Boppart (ECTA 2014)
- Why? Put together Kuznets-Maddison facts and Kaldor facts
- However, between 1950 and 2010:
 - A number of countries have experienced long periods of growth better characterized by transitional dynamics
 - Christiano (QR 1989); Song, Storesletten, Zilibotti (AER 2011); Buera, Shin (JPE 2013)
 - These same countries experienced a sharp pattern of sectoral reallocation
 - 2 We document systematic hump of investment with development


- Growth literature focuses in understanding structural change under BGP Kongsamut, Rebelo, Xie (RES 2001); Ngai, Pissarides (AER 2007); Boppart (ECTA 2014)
- Why? Put together Kuznets-Maddison facts and Kaldor facts
- However, between 1950 and 2010:
 - A number of countries have experienced long periods of growth better characterized by transitional dynamics

```
Christiano (QR 1989); Song, Storesletten, Zilibotti (AER 2011); Buera, Shin (JPE 2013)
```

- These same countries experienced a sharp pattern of sectoral reallocation
- 2 We document systematic hump of investment with development
- Which is closely related to the hump of manufacturing


Investment and sectoral composition

Empirical Evidence

Investment and sectoral composition

Empirical Evidence

- Growth literature focuses in understanding structural change under BGP Kongsamut, Rebelo, Xie (RES 2001); Ngai, Pissarides (AER 2007); Boppart (ECTA 2014)
- Why? Put together Kuznets-Maddison facts and Kaldor facts
- However, between 1950 and 2010:
 - A number of countries have experienced long periods of growth better characterized by transitional dynamics

```
Christiano (QR 1989); Song, Storesletten, Zilibotti (AER 2011); Buera, Shin (JPE 2013)
```

- These same countries experienced a sharp pattern of sectoral reallocation
- 2 We document systematic hump of investment with development
- Which is closely related to the hump of manufacturing

- Growth literature focuses in understanding structural change under BGP Kongsamut, Rebelo, Xie (RES 2001); Ngai, Pissarides (AER 2007); Boppart (ECTA 2014)
- Why? Put together Kuznets-Maddison facts and Kaldor facts
- However, between 1950 and 2010:
 - A number of countries have experienced long periods of growth better characterized by transitional dynamics
 - Christiano (QR 1989); Song, Storesletten, Zilibotti (AER 2011); Buera, Shin (JPE 2013)
 - These same countries experienced a sharp pattern of sectoral reallocation
 - 2 We document systematic hump of investment with development
 - Which is closely related to the hump of manufacturing
- Our story: as the investment rate changes along the development path, the relative demand for goods from different sectors changes, inducing sectoral reallocation

• Use IO to document important differences in the sectoral composition of consumption and investment goods:

- Use IO to document important differences in the sectoral composition of consumption and investment goods:
 - 1 Inv goods more intensive in manufacturing, cons goods in services

- Use IO to document important differences in the sectoral composition of consumption and investment goods:
 - 1 Inv goods more intensive in manufacturing, cons goods in services
 - 2 This difference widens with development

- Use IO to document important differences in the sectoral composition of consumption and investment goods:
 - 1 Inv goods more intensive in manufacturing, cons goods in services
 - 2 This difference widens with development
 - 3 Manufacturing hump more apparent in GDP than in cons or inv

- Use IO to document important differences in the sectoral composition of consumption and investment goods:
 - 1 Inv goods more intensive in manufacturing, cons goods in services
 - 2 This difference widens with development
 - 3 Manufacturing hump more apparent in GDP than in cons or inv
- Estimate sectoral composition of consumption and investment goods for a wide sample of countries and years (1950-2011)

- Use IO to document important differences in the sectoral composition of consumption and investment goods:
 - 1 Inv goods more intensive in manufacturing, cons goods in services
 - 2 This difference widens with development
 - 3 Manufacturing hump more apparent in GDP than in cons or inv
- Estimate sectoral composition of consumption and investment goods for a wide sample of countries and years (1950-2011)
 - Simple 3-sector neo-classical growth model with two final goods

- Use IO to document important differences in the sectoral composition of consumption and investment goods:
 - 1 Inv goods more intensive in manufacturing, cons goods in services
 - 2 This difference widens with development
 - 3 Manufacturing hump more apparent in GDP than in cons or inv
- Estimate sectoral composition of consumption and investment goods for a wide sample of countries and years (1950-2011)
 - Simple 3-sector neo-classical growth model with two final goods
 - Non-linear model with inequality constraints: use Bayesian techniques

- Use IO to document important differences in the sectoral composition of consumption and investment goods:
 - 1 Inv goods more intensive in manufacturing, cons goods in services
 - 2 This difference widens with development
 - 3 Manufacturing hump more apparent in GDP than in cons or inv
- Estimate sectoral composition of consumption and investment goods for a wide sample of countries and years (1950-2011)
 - Simple 3-sector neo-classical growth model with two final goods
 - Non-linear model with inequality constraints: use Bayesian techniques
- The difference between cons and inv goods matters. It explains:

- Use IO to document important differences in the sectoral composition of consumption and investment goods:
 - 1 Inv goods more intensive in manufacturing, cons goods in services
 - 2 This difference widens with development
 - 3 Manufacturing hump more apparent in GDP than in cons or inv
- Estimate sectoral composition of consumption and investment goods for a wide sample of countries and years (1950-2011)
 - Simple 3-sector neo-classical growth model with two final goods
 - Non-linear model with inequality constraints: use Bayesian techniques
- The difference between cons and inv goods matters. It explains:
 - A big chunk of (de)industrialization for several growth episodes

- Use IO to document important differences in the sectoral composition of consumption and investment goods:
 - 1 Inv goods more intensive in manufacturing, cons goods in services
 - 2 This difference widens with development
 - 3 Manufacturing hump more apparent in GDP than in cons or inv
- Estimate sectoral composition of consumption and investment goods for a wide sample of countries and years (1950-2011)
 - Simple 3-sector neo-classical growth model with two final goods
 - Non-linear model with inequality constraints: use Bayesian techniques
- The difference between cons and inv goods matters. It explains:
 - A big chunk of (de)industrialization for several growth episodes
 - A 25% of the hump of manufacturing with development
 (And up tp 40% if we also consider sectoral composition of exports and imports)

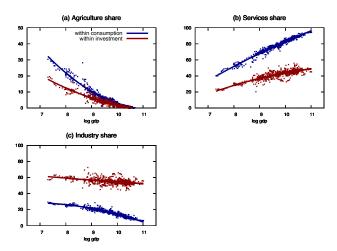
- Use IO to document important differences in the sectoral composition of consumption and investment goods:
 - 1 Inv goods more intensive in manufacturing, cons goods in services
 - 2 This difference widens with development
 - 3 Manufacturing hump more apparent in GDP than in cons or inv
- Estimate sectoral composition of consumption and investment goods for a wide sample of countries and years (1950-2011)
 - Simple 3-sector neo-classical growth model with two final goods
 - Non-linear model with inequality constraints: use Bayesian techniques
- The difference between cons and inv goods matters. It explains:
 - A big chunk of (de)industrialization for several growth episodes
 - A 25% of the hump of manufacturing with development
 (And up tp 40% if we also consider sectoral composition of exports and imports)
 - A 50% of the fall in the relative price of investment goods since 1950

Introduction IO Data Model Estimation Results Conclusions

IO Data

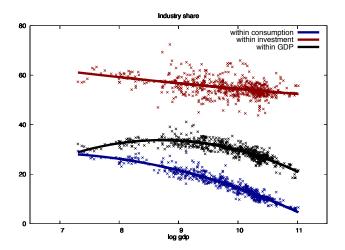
Input-Output evidence

WIOD: 40 (mostly developed) countries, 1995-2011


Input-Output evidence

- Substantial differences in sectoral VA composition of goods
 - Investment goods more intensive in manufactures (40%)
 - Consumption goods more intensive in services (38%)

	investment (x)			consumption (c)			difference $(x-c)$		
	a	m	s	a	m	s	a a	m	s
mean	0.03	0.55	0.42	0.05	0.15	0.80	-0.02	0.40	-0.38
p_{10} (NLD)	0.01	0.40	0.59	0.01	0.09	0.90	0.00	0.31	-0.31
p_{50} (BGR)	0.07	0.58	0.35	0.12	0.19	0.69	-0.05	0.39	-0.34
p_{90} (KOR)	0.03	0.66	0.32	0.04	0.17	0.79	-0.01	0.49	-0.47


Input-Output evidence

2 These differences widen with development

Input-Output evidence

3 Manufacturing hump more apparent in GDP than in cons or inv

Model

Overview

- Standard neo-classical growth model
 - Three sectors: agriculture, industry, services
 - All goods used for consumption and investment

Overview

- Standard neo-classical growth model
 - Three sectors: agriculture, industry, services
 - All goods used for consumption and investment
- Structural change because of
 - Non-homothetic demands (Kongsamut, Rebelo, Xie, 2001)
 - ▶ Non-unitary elasticity of substitution (Baumol, 1967; Ngai, Pissarides, 2007)
 - > Transitional dynamics: diff composition of investment and consumption

Overview

- Standard neo-classical growth model
 - Three sectors: agriculture, industry, services
 - All goods used for consumption and investment
- Structural change because of
 - Non-homothetic demands (Kongsamut, Rebelo, Xie, 2001)
 - ▶ Non-unitary elasticity of substitution (Baumol, 1967; Ngai, Pissarides, 2007)
 - > Transitional dynamics: diff composition of investment and consumption
- We start with a closed economy, but estimates allow for open economy

Consumer Side

Set up

ullet A representative household owns capital k_t and rents it to firms

Consumer Side

Set up

- ullet A representative household owns capital k_t and rents it to firms
- It buys goods from all three sectors $i = \{a, m, s\}$

Set up

- ullet A representative household owns capital k_t and rents it to firms
- It buys goods from all three sectors $i = \{a, m, s\}$
 - c_{at} , c_{mt} and c_{st} for consumption purposes

Set up

- ullet A representative household owns capital k_t and rents it to firms
- It buys goods from all three sectors $i = \{a, m, s\}$
 - c_{at} , c_{mt} and c_{st} for consumption purposes
 - x_{at} , x_{mt} and x_{st} for investment purposes

Set up

- A representative household owns capital k_t and rents it to firms
- It buys goods from all three sectors $i = \{a, m, s\}$
 - c_{at} , c_{mt} and c_{st} for consumption purposes
 - x_{at} , x_{mt} and x_{st} for investment purposes
- The flow budget constraint is given by,

$$w_t + r_t k_t = \sum_{i=\{a,m,s\}} p_{it} (c_{it} + x_{it})$$

Set up

- A representative household owns capital k_t and rents it to firms
- It buys goods from all three sectors i = $\{a, m, s\}$
 - c_{at} , c_{mt} and c_{st} for consumption purposes
 - x_{at} , x_{mt} and x_{st} for investment purposes
- The flow budget constraint is given by,

$$w_t + r_t k_t = \sum_{i=\{a,m,s\}} p_{it} \left(c_{it} + x_{it}\right)$$

Capital accumulates

$$k_{t+1} = (1 - \delta) k_t + x_t$$
 with $x_t = X(x_{at}, x_{mt}, x_{st})$

Set up

- A representative household owns capital k_t and rents it to firms
- It buys goods from all three sectors $i = \{a, m, s\}$
 - c_{at} , c_{mt} and c_{st} for consumption purposes
 - x_{at} , x_{mt} and x_{st} for investment purposes
- The flow budget constraint is given by,

$$w_t + r_t k_t = \sum_{i=\{a,m,s\}} p_{it} \left(c_{it} + x_{it}\right)$$

Capital accumulates

$$k_{t+1} = (1 - \delta) k_t + x_t$$
 with $x_t = X(x_{at}, x_{mt}, x_{st})$

Period utility is given by,

$$u(c_t)$$
 with $c_t = C(c_{at}, c_{mt}, c_{st})$

Aggregators

• The investment and consumption baskets are defined as

$$x = X(x_a, x_m, x_s) = \left[\sum_{i \in \{a, m, s\}} \left(\frac{\theta_i^x}{i} \right)^{1-\rho} \quad x_i^{\rho} \right]^{\frac{1}{\rho}}$$

$$c = C(c_a, c_m, c_s) = \left[\sum_{i \in \{a, m, s\}} \left(\frac{\theta_i^c}{i} \right)^{1-\rho} \left(c_i + \overline{c_i} \right)^{\rho} \right]^{\frac{1}{\rho}}$$

Aggregators

• The investment and consumption baskets are defined as

$$x = X(x_a, x_m, x_s) = \left[\sum_{i \in \{a, m, s\}} \left(\frac{\theta_i^x}{i} \right)^{1-\rho} x_i^{\rho} \right]^{\frac{1}{\rho}}$$

$$c = C(c_a, c_m, c_s) = \left[\sum_{i \in \{a, m, s\}} \left(\frac{\theta_i^c}{i} \right)^{1-\rho} \left(c_i + \overline{c_i} \right)^{\rho} \right]^{\frac{1}{\rho}}$$

- Key difference: they have different sectoral composition
 - Different intensities θ_i^x , θ_i^c
 - Non-homotheticities \bar{c}_i in consumption

• Household problem can be split into

- Household problem can be split into
 - Dynamic problem: choice of consumption vs investment

- Household problem can be split into
 - Dynamic problem: choice of consumption vs investment
 - Static problems: choice of composition of consumption and investment

- Household problem can be split into
 - Dynamic problem: choice of consumption vs investment
 - Static problems: choice of composition of consumption and investment
- We will estimate the demand system resulting from the static model

- Household problem can be split into
 - Dynamic problem: choice of consumption vs investment
 - Static problems: choice of composition of consumption and investment
- We will estimate the demand system resulting from the static model
- We abstract from the **intertemporal choice**:
 - take investment rate as given from the data

- Household problem can be split into
 - Dynamic problem: choice of consumption vs investment
 - Static problems: choice of composition of consumption and investment
- We will estimate the demand system resulting from the static model
- We abstract from the intertemporal choice: take investment rate as given from the data
 - Plain neo-classical model cannot reproduce the hump in investment

```
Christiano (QR 89); Carroll, Overland, Weil (AER 00)
Chen, Imrohoroglu, Imrohoroglu (AER 06)
Buera, Shin (JPE 13)
```

- Household problem can be split into
 - Dynamic problem: choice of consumption vs investment
 - Static problems: choice of composition of consumption and investment
- We will estimate the demand system resulting from the static model
- We abstract from the intertemporal choice: take investment rate as given from the data
 - Plain neo-classical model cannot reproduce the hump in investment

```
Christiano (QR 89); Carroll, Overland, Weil (AER 00)
Chen, Imrohoroglu, Imrohoroglu (AER 06)
Buera, Shin (JPE 13)
```

Keep it simple, not needed for the main question of the paper

- Household problem can be split into
 - Dynamic problem: choice of consumption vs investment
 - Static problems: choice of composition of consumption and investment
- We will estimate the demand system resulting from the static model
- We abstract from the intertemporal choice: take investment rate as given from the data
 - Plain neo-classical model cannot reproduce the hump in investment

```
Christiano (QR 89); Carroll, Overland, Weil (AER 00)
Chen, Imrohoroglu, Imrohoroglu (AER 06)
Buera, Shin (JPE 13)
```

- Keep it simple, not needed for the main question of the paper
- No need to specify the production side of the economy

Within consumption and investment

The intratemporal conditions become:

$$\frac{p_m x_m}{p_x x} = g_m^x \left(\Theta^x; P\right) = \left[\sum_{i=a,m,s} \frac{\theta_i^x}{\theta_m^x} \left(\frac{p_m}{p_i}\right)^{\frac{\rho}{1-\rho}}\right]^{-1}$$

$$\frac{p_m c_m}{p_c c} = g_m^c \left(\Theta^c; P, p_c c\right) = \left[\sum_{i=a,m,s} \frac{\theta_i^c}{\theta_m^c} \left(\frac{p_m}{p_i}\right)^{\frac{\rho}{1-\rho}}\right]^{-1} \left[1 + \sum_{i=a,m,s} \frac{p_i \bar{c}_i}{p_c c}\right] - \frac{p_m \bar{c}_m}{p_c c}$$

Within consumption and investment

• The intratemporal conditions become:

$$\frac{p_m x_m}{p_x x} = g_m^x \left(\Theta^x; P\right) = \left[\sum_{i=a,m,s} \frac{\theta_i^x}{\theta_m^x} \left(\frac{p_m}{p_i}\right)^{\frac{\rho}{1-\rho}}\right]^{-1}$$

$$\frac{p_m c_m}{p_c c} = g_m^c \left(\Theta^c; P, p_c c\right) = \left[\sum_{i=a,m,s} \frac{\theta_i^c}{\theta_m^c} \left(\frac{p_m}{p_i}\right)^{\frac{\rho}{1-\rho}}\right]^{-1} \left[1 + \sum_{i=a,m,s} \frac{p_i \bar{c}_i}{p_c c}\right] - \frac{p_m \bar{c}_m}{p_c c}$$

• There is scope for structural change within each type of good due to:

Within consumption and investment

• The intratemporal conditions become:

$$\frac{p_m x_m}{p_x x} = g_m^x \left(\Theta^x; P\right) = \left[\sum_{i=a,m,s} \frac{\theta_i^x}{\theta_m^x} \left(\frac{p_m}{p_i}\right)^{\frac{\rho}{1-\rho}}\right]^{-1}$$

$$\frac{p_m c_m}{p_c c} = g_m^c \left(\Theta^c; P, p_c c\right) = \left[\sum_{i=a,m,s} \frac{\theta_i^c}{\theta_m^c} \left(\frac{p_m}{p_i}\right)^{\frac{\rho}{1-\rho}}\right]^{-1} \left[1 + \sum_{i=a,m,s} \frac{p_i \bar{c}_i}{p_c c}\right] - \frac{p_m \bar{c}_m}{p_c c}$$

- There is scope for structural change within each type of good due to:
 - non-unitary elasticity of substitution between goods

Within consumption and investment

• The intratemporal conditions become:

$$\frac{p_m x_m}{p_x x} = g_m^x \left(\Theta^x; P\right) = \left[\sum_{i=a,m,s} \frac{\theta_i^x}{\theta_m^x} \left(\frac{p_m}{p_i}\right)^{\frac{\rho}{1-\rho}}\right]^{-1}$$

$$\frac{p_m c_m}{p_c c} = g_m^c \left(\Theta^c; P, p_c c\right) = \left[\sum_{i=a,m,s} \frac{\theta_i^c}{\theta_m^c} \left(\frac{p_m}{p_i}\right)^{\frac{\rho}{1-\rho}}\right]^{-1} \left[1 + \sum_{i=a,m,s} \frac{p_i \bar{c}_i}{p_c c}\right] - \frac{p_m \bar{c}_m}{p_c c}$$

- There is scope for structural change within each type of good due to:
 - non-unitary elasticity of substitution between goods
 - non-homotheticites

Changes in the investment rate

• In a closed economy, $y_m = x_m + c_m$

Changes in the investment rate

- In a closed economy, $y_m = x_m + c_m$
- Then, the share of manufacturing in total GDP can be decomposed as,

$$\frac{p_m y_m}{y} = \frac{p_m x_m + p_m c_m}{y} = \frac{p_m x_m}{p_x x} \frac{p_x x}{y} + \frac{p_m c_m}{p_c c} \left(1 - \frac{p_x x}{y}\right)$$

Changes in the investment rate

- In a closed economy, $y_m = x_m + c_m$
- Then, the share of manufacturing in total GDP can be decomposed as,

$$\frac{p_{m}y_{m}}{y} = \frac{p_{m}x_{m} + p_{m}c_{m}}{y} = \frac{p_{m}x_{m}}{p_{x}x} \frac{p_{x}x}{y} + \frac{p_{m}c_{m}}{p_{c}c} \left(1 - \frac{p_{x}x}{y}\right)$$

• Δ in the investment rate $\Rightarrow \Delta$ in the share of manufactures if

$$\frac{p_m x_m}{p_x x} > \frac{p_m c_m}{p_c c}$$

Introduction IO Data Model Estimation Results Conclusions

Estimation

Need to estimate the model parameters to measure the sectoral composition of c and x:

Need to estimate the model parameters to measure the sectoral composition of c and x:

1) With IO tables:

- build separate time series for $\frac{p_j x_j}{p_x x}$ and $\frac{p_j c_j}{p_c c}$
- estimate parameters of each aggregator separately
- → Difficult to get consistent IO tables over long periods of time (WIOD: data from 1995-2011 only, 40 mostly developed countries)

Need to estimate the model parameters to measure the sectoral composition of c and x:

1) With IO tables:

- build separate time series for $\frac{p_j x_j}{p_x x}$ and $\frac{p_j c_j}{p_c c}$
- estimate parameters of each aggregator separately
- → Difficult to get consistent IO tables over long periods of time (WIOD: data from 1995-2011 only, 40 mostly developed countries)

2) Without IO tables:

- only data for aggregate sectoral composition $\frac{p_j y_j}{y}$
- Need to rely on changes in the investment rate to identify the parameters
- → Time series from 1950 or 1960 for many countries

Need to estimate the model parameters to measure the sectoral composition of c and x:

1) With IO tables:

- build separate time series for $\frac{p_j x_j}{p_x x}$ and $\frac{p_j c_j}{p_c c}$
- estimate parameters of each aggregator separately
- → Difficult to get consistent IO tables over long periods of time (WIOD: data from 1995-2011 only, 40 mostly developed countries)

2) Without IO tables:

- only data for aggregate sectoral composition $\frac{p_j y_j}{y}$
- Need to rely on changes in the investment rate to identify the parameters
- → Time series from 1950 or 1960 for many countries
- ▷ Strategy 2 today.

• Strategy 1. Two estimation equations for each sector j = m, s

$$\begin{array}{lcl} \frac{p_{jt}x_{jt}}{p_{xt}x_{t}} & = & g_{j}^{x}\left(\Theta^{x};P_{t}\right) + \varepsilon_{jt}^{x} \\ \frac{p_{jt}c_{jt}}{p_{ct}c_{t}} & = & g_{j}^{c}\left(\Theta^{c};P_{t},p_{ct}c_{t}\right) + \varepsilon_{jt}^{c} \end{array}$$

– Non-linear OLS is consistent if $E[\varepsilon_{it}^x|P_t]$ = 0 and $E[\varepsilon_{it}^c|P_t,p_{ct}c_t]$ = 0

• Strategy 1. Two estimation equations for each sector j = m, s

$$\begin{array}{lcl} \frac{p_{jt}x_{jt}}{p_{xt}x_{t}} & = & g_{j}^{x}\left(\Theta^{x};P_{t}\right) + \varepsilon_{jt}^{x} \\ \frac{p_{jt}c_{jt}}{p_{ct}c_{t}} & = & g_{j}^{c}\left(\Theta^{c};P_{t},p_{ct}c_{t}\right) + \varepsilon_{jt}^{c} \end{array}$$

- Non-linear OLS is consistent if $E[\varepsilon_{it}^x|P_t]$ = 0 and $E[\varepsilon_{it}^c|P_t,p_{ct}c_t]$ = 0
- Strategy 2. One estimation equation for each sector j = m, s

$$\frac{p_{jt}y_{jt}}{y_t} = g_j^x\left(\Theta^x; P_t\right) \frac{p_{xt}x_t}{y_t} + g_j^c\left(\Theta^c; P_t, p_{ct}c_t\right) \frac{p_{ct}c_t}{y_t} + \varepsilon_{jt}$$

where
$$\varepsilon_{jt} \equiv \varepsilon_{jt}^x \frac{p_{xt}x_t}{y_t} + \varepsilon_{jt}^c \frac{p_{ct}c_t}{y_t} + \varepsilon_{jt}^y$$

- Non-linear OLS is consistent if $E[\varepsilon_{jt}|P_t,p_{ct}c_t,\frac{p_{xt}x_t}{y_t}]$ = 0

Identification: simplest case

• Assume $\rho = 0$ and $\bar{c}_i = 0$:

$$\frac{p_{jt}y_{jt}}{y_t} = \theta_j^x \frac{p_{xt}x_t}{y_t} + \theta_j^c \left(1 - \frac{p_{xt}x_t}{y_t}\right) + \varepsilon_{jt} = \theta_j^c + \left(\theta_j^x - \theta_j^c\right) \frac{p_{xt}x_t}{y_t} + \varepsilon_{jt}$$

Identification: simplest case

• Assume $\rho = 0$ and $\bar{c}_i = 0$:

$$\frac{p_{jt}y_{jt}}{y_t} = \theta_j^x \frac{p_{xt}x_t}{y_t} + \theta_j^c \left(1 - \frac{p_{xt}x_t}{y_t}\right) + \varepsilon_{jt} = \theta_j^c + \left(\theta_j^x - \theta_j^c\right) \frac{p_{xt}x_t}{y_t} + \varepsilon_{jt}$$

- ullet Hence, a linear OLS regression recovers $heta^c_j$ and $heta^x_j$
- The covariance between $rac{p_{xt}x_t}{y_t}$ and $rac{p_{jt}y_{jt}}{y_t}$ identifies $\left(heta_j^x- heta_j^c
 ight)$

Potential problems

Potential problems

1 Reverse causality. Investment may be determined by size of sectors if

Potential problems

- 1 Reverse causality. Investment may be determined by size of sectors if
 - a) capital shares are different across sectors Acemoglu, Guerrieri (JPE 2008)
 - b) ES between capital and labor is different Alvarez-Cuadrado et al (2015)

Potential problems

- 1 Reverse causality. Investment may be determined by size of sectors if
 - a) capital shares are different across sectors Acemoglu, Guerrieri (JPE 2008)
 - b) ES between capital and labor is different Alvarez-Cuadrado et al (2015)

But:

Potential problems

- 1 Reverse causality. Investment may be determined by size of sectors if
 - a) capital shares are different across sectors Acemoglu, Guerrieri (JPE 2008)
 - b) ES between capital and labor is different Alvarez-Cuadrado et al (2015)

But:

 Cobb-Douglas with same capital share is a good description of sectoral technologies (US 1947-2010) Herrendorf, Herrington, Valentinyi (AEJm 2015)

Strategy 2

Potential problems

- 1 Reverse causality. Investment may be determined by size of sectors if
 - a) capital shares are different across sectors Acemoglu, Guerrieri (JPE 2008)
 - b) ES between capital and labor is different Alvarez-Cuadrado et al (2015)

But:

- Cobb-Douglas with same capital share is a good description of sectoral technologies (US 1947-2010) Herrendorf, Herrington, Valentinyi (AEJm 2015)
- ② Open economy. Exports and imports should appear in RHS. If they are correlated with the investment rate → omitted variable bias

• Market clearing in goods sector with exports (e) and imports (d):

$$y_j + d_j = c_j + x_j + e_j$$

Market clearing in goods sector with exports (e) and imports (d):

$$y_j + d_j = c_j + x_j + e_j$$

$$\frac{p_j y_j}{y} = \frac{p_j c_j}{p_c c} \frac{p_c c}{y} + \frac{p_j x_j}{p_x x} \frac{p_x x}{y} + \frac{p_j e_j}{p_e e} \frac{p_e e}{y} - \frac{p_j d_j}{p_d d} \frac{p_d d}{y}$$

• Market clearing in goods sector with exports (e) and imports (d):

$$y_j + d_j = c_j + x_j + e_j$$

• Hence, we can obtain

$$\frac{p_j y_j}{y} = \frac{p_j c_j}{p_c c} \frac{p_c c}{y} + \frac{p_j x_j}{p_x x} \frac{p_x x}{y} + \frac{p_j e_j}{p_e e} \frac{p_e e}{y} - \frac{p_j d_j}{p_d d} \frac{p_d d}{y}$$

• The con, inv, exp, and imp rates are measured in the data

• Market clearing in goods sector with exports (e) and imports (d):

$$y_j + d_j = c_j + x_j + e_j$$

$$\frac{p_j y_j}{y} = \frac{p_j c_j}{p_c c} \frac{p_c c}{y} + \frac{p_j x_j}{p_x x} \frac{p_x x}{y} + \frac{p_j e_j}{p_e e} \frac{p_e e}{y} - \frac{p_j d_j}{p_d d} \frac{p_d d}{y}$$

- The con, inv, exp, and imp rates are measured in the data
- The sectoral shares of c and x are given by the model

• Market clearing in goods sector with exports (e) and imports (d):

$$y_j + d_j = c_j + x_j + e_j$$

$$\frac{p_j y_j}{y} = \frac{p_j c_j}{p_c c} \frac{p_c c}{y} + \frac{p_j x_j}{p_x x} \frac{p_x x}{y} + \frac{p_j e_j}{p_e e} \frac{p_e e}{y} - \frac{p_j d_j}{p_d d} \frac{p_d d}{y}$$

- The con, inv, exp, and imp rates are measured in the data
- The sectoral shares of c and x are given by the model
- What to do with the sectoral shares of e and d?

• Market clearing in goods sector with exports (e) and imports (d):

$$y_j + d_j = c_j + x_j + e_j$$

$$\frac{p_j y_j}{y} = \frac{p_j c_j}{p_c c} \frac{p_c c}{y} + \frac{p_j x_j}{p_x x} \frac{p_x x}{y} + \frac{p_j e_j}{p_e e} \frac{p_e e}{y} - \frac{p_j d_j}{p_d d} \frac{p_d d}{y}$$

- The con, inv, exp, and imp rates are measured in the data
- The sectoral shares of c and x are given by the model
- What to do with the sectoral shares of e and d?
 - impose an aggregator (as with c and x) and estimate its parameters

• Market clearing in goods sector with exports (e) and imports (d):

$$y_j + d_j = c_j + x_j + e_j$$

$$\frac{p_j y_j}{y} = \frac{p_j c_j}{p_c c} \frac{p_c c}{y} + \frac{p_j x_j}{p_x x} \frac{p_x x}{y} + \frac{p_j e_j}{p_e e} \frac{p_e e}{y} - \frac{p_j d_j}{p_d d} \frac{p_d d}{y}$$

- The con, inv, exp, and imp rates are measured in the data
- The sectoral shares of c and x are given by the model
- What to do with the sectoral shares of e and d?
 - impose an aggregator (as with c and x) and estimate its parameters
 - use trade data on value of exports and imports by sector (WDI)

• Market clearing in goods sector with exports (e) and imports (d):

$$y_j + d_j = c_j + x_j + e_j$$

$$\frac{p_j y_j}{y} = \frac{p_j c_j}{p_c c} \frac{p_c c}{y} + \frac{p_j x_j}{p_x x} \frac{p_x x}{y} + \frac{p_j e_j}{p_e e} \frac{p_e e}{y} - \frac{p_j d_j}{p_d d} \frac{p_d d}{y}$$

- The con, inv, exp, and imp rates are measured in the data
- The sectoral shares of c and x are given by the model
- What to do with the sectoral shares of e and d?
 - impose an aggregator (as with c and x) and estimate its parameters
 - use trade data on value of exports and imports by sector (WDI)
 - use IO data on value added of exports and imports by sector (WIOD)

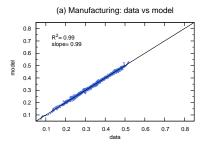
• Market clearing in goods sector with exports (e) and imports (d):

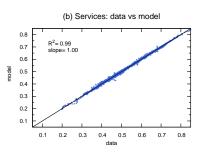
$$y_j + d_j = c_j + x_j + e_j$$

$$\frac{p_j y_j}{y} = \frac{p_j c_j}{p_c c} \frac{p_c c}{y} + \frac{p_j x_j}{p_x x} \frac{p_x x}{y} + \frac{p_j e_j}{p_e e} \frac{p_e e}{y} - \frac{p_j d_j}{p_d d} \frac{p_d d}{y}$$

- The con, inv, exp, and imp rates are measured in the data
- The sectoral shares of c and x are given by the model
- What to do with the sectoral shares of e and d?
 - impose an aggregator (as with c and x) and estimate its parameters
 - use trade data on value of exports and imports by sector (WDI)
 - use IO data on value added of exports and imports by sector (WIOD)
 - estimate a low-order polynomial

Data


- Use 13 time series
 - Investment, consumption, export, import rates in current LCU (PWT)
 - Sectoral value added shares in current LCU (WDI, G10S)
 - Sectoral and GDP price deflators in LCU (WDI, G10S)
 - GDP per capita in constant LCU and PPP (PWT)


Data

- Use 13 time series
 - Investment, consumption, export, import rates in current LCU (PWT)
 - Sectoral value added shares in current LCU (WDI, G10S)
 - Sectoral and GDP price deflators in LCU (WDI, G10S)
 - GDP per capita in constant LCU and PPP (PWT)
- Selection of 47 countries (1950-2011)
 - Have all data since at least 1985
 - Not too small (Population in 2005 > 4M)
 - Not too poor (gdp pc in 2005 > 5% of US)
 - Not oil-based (oil rents < 10% of GDP)

Quality of model fit

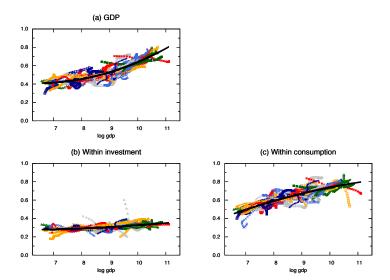
All data points together

Quality of model fit

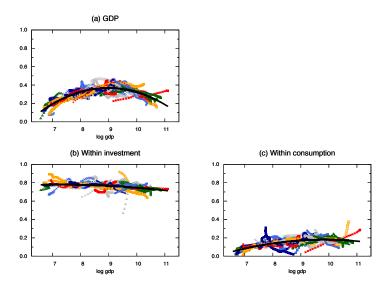
Country by country

	Corr. predicted and actual data				
	Agr	Man	Ser	Average	
India Mexico South Korea	0.98 0.98 0.98	0.98 0.98 0.98	0.98 0.98 0.97	0.98 0.98 0.98	
Colombia Japan United States	0.98 0.98 0.97	0.97 0.97 0.98	0.98 0.98 0.98	0.98 0.98 0.98	
Taiwan South Africa Denmark	0.98 0.98 0.97	0.98 0.97 0.98	0.98 0.98 0.98	0.98 0.98 0.98	
Costarica Sri Lanka Malaysia	0.96 0.97 0.97	0.94 0.93 0.96	0.97 0.97 0.94	0.96 0.96 0.96	
United Kingdom Jordan	0.89 0.93 0.88	0.97 0.95 0.97	0.98 0.95 0.97	0.95 0.94 0.94	
Singapore Chile Hong Kong	0.93 0.84	0.95 0.97	0.94 0.97	0.94 0.93	
Morocco	0.69	0.96	0.96	0.87	

Implied sectoral shares in x and c (country averages)


- We recover
 - a) Similar average asymmetry between goods as in the data
 - b) Larger heterogeneity in the asymmetry between goods across countries

Implied sectoral shares in x and c (country averages)


- We recover
 - a) Similar average asymmetry between goods as in the data
 - b) Larger heterogeneity in the asymmetry between goods across countries

	investment (x)			consumption (c)		(c)	difference $(x-c)$		
	a	m	s	а	m	s	а	m	s
Whole sample									
Estimates (mean)	0.09	0.57	0.34	0.15	0.24	0.61	-0.06	0.33	-0.27
WIOD sample									
Estimates (mean) Data (mean)	$\begin{vmatrix} 0.05 \\ 0.03 \end{vmatrix}$	$0.58 \\ 0.54$	$0.37 \\ 0.43$	$0.06 \\ 0.05$	$0.24 \\ 0.16$	0.70 0.79	-0.01 -0.02	$0.34 \\ 0.38$	-0.34 -0.36
Estimates (sd) Data (sd)							0.12 0.04	0.17 0.06	0.20 0.08

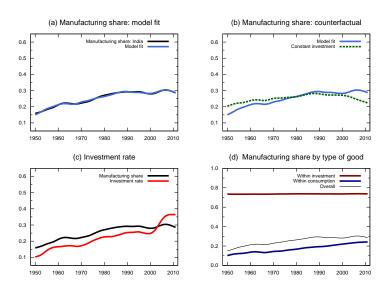
Estimated sectoral shares (within country variation): services

Estimated sectoral shares (within country variation): manufactures

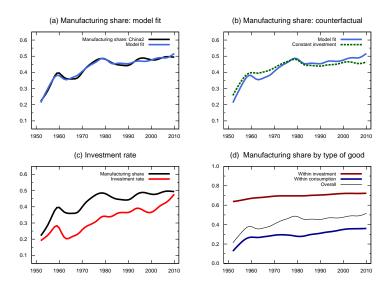
Development episodes

▶ The increase in investment demand accounts for a large fraction of industrialization in several episodes

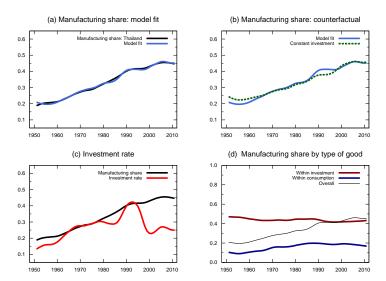
(Especially in Asia, but not only)

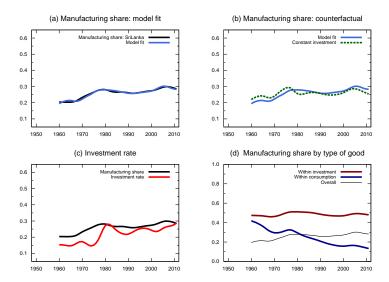

Development episodes

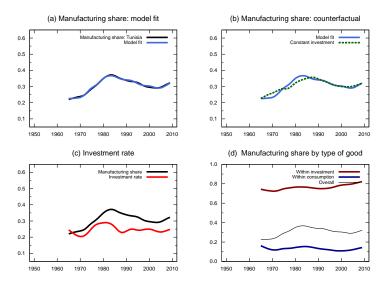
▶ The increase in investment demand accounts for a large fraction of industrialization in several episodes

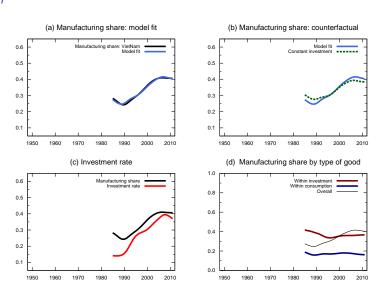

(Especially in Asia, but not only)

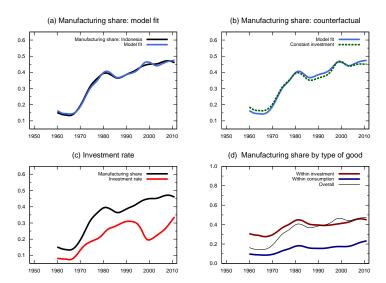
		Δ Share of Manufactures					
country	period	model	no inv	diff	% diff		
India	1950-2009	14.7	3.0	11.7	79.8		
China	1952-2010	30.3	20.7	9.7	31.9		
Thailand	1951-1992	20.4	13.5	6.8	33.5		
Srilanka	1974-2011	2.8	-3.0	5.8	203.7		
Tunisia	1970-1981	12.7	7.1	5.6	44.4		
Vietnam	1987-2008	15.9	10.4	5.5	34.3		
Indonesia	1960-2011	31.1	26.6	4.5	14.6		
Paraguay	1962-1980	6.5	2.2	4.4	66.7		
South Korea	1959-1992	26.5	22.1	4.4	16.4		

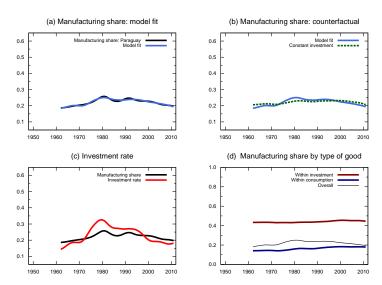

India

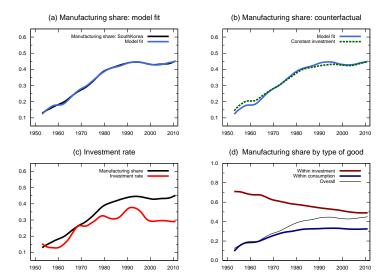

China


Thailand


Sri Lanka


Tunisia

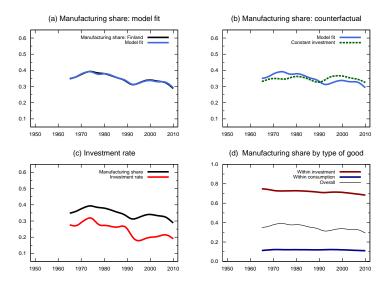

Vietnam


Indoensia

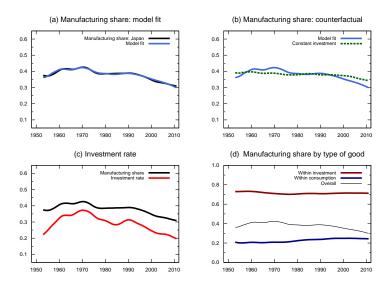
Paraguay

South Korea

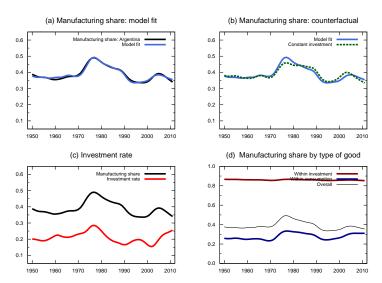
Investment decline

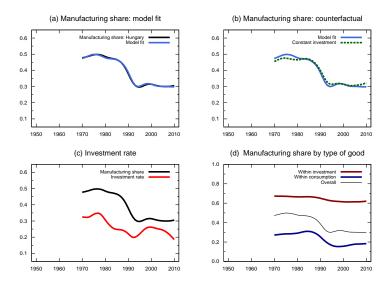

▶ The fall in investment demand accounts for a large fraction of deindustrialization in some episodes

Investment decline

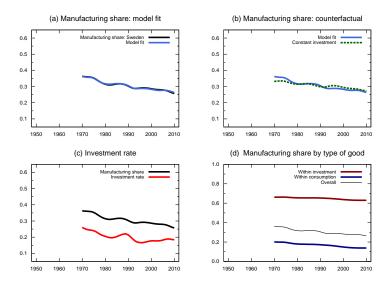

▶ The fall in investment demand accounts for a large fraction of deindustrialization in some episodes

	$ $ Δ Share of Manufactures					
country	period	model	no inv	diff	% diff	
Finland Japan Argentina Hungary Sweden Denmark	1974-1995 1970-2011 1977-2002 1977-2010 1970-1996 1972-1993	-7.2 -12.5 -12.4 -19.7 -7.4 -5.3	1.4 -4.7 -6.5 -14.8 -2.6 -0.6	-8.6 -7.7 -5.9 -4.9 -4.8 -4.7	120.1 62.1 47.9 24.7 64.6 89.0	

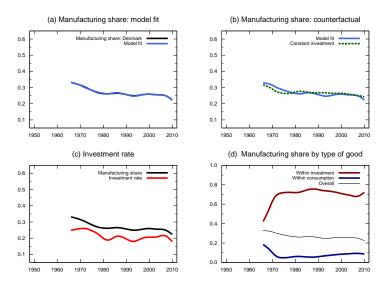

Finland


Japan

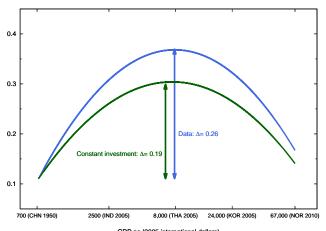
Argentina



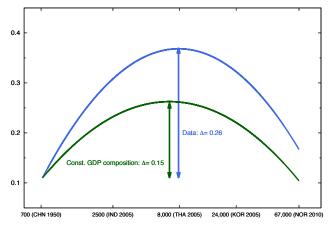
Hungary


Investment decline

Sweden

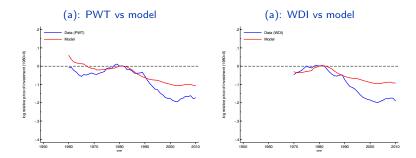

Investment decline

Denmark


Hump in manufacturing

• Changes in investment explain 25% of the hump in manufacturing

Hump in manufacturing


- Changes in investment explain 25% of the hump in manufacturing
- \bullet Changes in GDP composition explain up to 42%

Relative price of investment and consumption

- Relative price of investment p_x/p_c :
 - is larger in poor countries
 Caselli, Feyrer (QJE 2007), Hsieh, Klenow (AER 2007)
 - has declined around 0.3 log points since 1980
 Karabarbounis, Neiman (QJE 2014)
- Reltative price of manufactures p_m/p_s :
 - is larger in poor countries
 - has declined over time
 Herrendorf, Rogerson, Valentinyi (HEG 2013)
- \triangleright We find that decline in p_m/p_s explains 1/2 of decline in p_x/p_c
 - The coarse distinction between services and manufactures takes care of 1/2 of the investment specific technical change

Relative price of investment and consumption

• We estimate important differences in sectoral composition between final investment goods \boldsymbol{x} and final consumption goods \boldsymbol{c} for a wide panel of countries at different stages of development

- We estimate important differences in sectoral composition between final investment goods x and final consumption goods c for a wide panel of countries at different stages of development
- These differences have important implications:

- We estimate important differences in sectoral composition between final investment goods x and final consumption goods c for a wide panel of countries at different stages of development
- These differences have important implications:
 - Changes in the investment rate are key for the trends of manufacturing in countries where the investment rates changed substantially over the period (China, India, Thailand, Vietnam, Japan, Finland, Argentina)

- We estimate important differences in sectoral composition between final investment goods x and final consumption goods c for a wide panel of countries at different stages of development
- These differences have important implications:
 - Changes in the investment rate are key for the trends of manufacturing in countries where the investment rates changed substantially over the period (China, India, Thailand, Vietnam, Japan, Finland, Argentina)
 - 2. Overall, they explain 25% of the hump in industrial production

- We estimate important differences in sectoral composition between final investment goods x and final consumption goods c for a wide panel of countries at different stages of development
- These differences have important implications:
 - Changes in the investment rate are key for the trends of manufacturing in countries where the investment rates changed substantially over the period (China, India, Thailand, Vietnam, Japan, Finland, Argentina)
 - 2. Overall, they explain 25% of the hump in industrial production
 - 3. The decline of p_m/p_s accounts for 1/2 of the decline in p_x/p_c since 1950