Earnings Inequality and the Minimum Wage: Evidence from Brazil

Niklas Engbom Christian Moser

June 16, 2016

World Bank-Bank of Spain Conference

Shed light on drivers of earnings inequality by studying Brazil

Shed light on drivers of earnings inequality by studying Brazil

• Variance of log earnings declined by 26 log points from 1996–2012

Shed light on drivers of earnings inequality by studying Brazil

- Variance of log earnings declined by 26 log points from 1996-2012
- At the same time, real minimum wage increased by 119%

Shed light on drivers of earnings inequality by studying Brazil

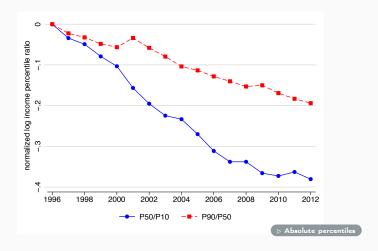
- Variance of log earnings declined by 26 log points from 1996–2012
- At the same time, real minimum wage increased by 119%

Question: To what extent can the rise in minimum wage explain Brazil's inequality decline?

What we do

- 1. Decompose evolution of earnings inequality in Brazil
- 2. Build a search model with heterogeneous firms and workers
- 3. Quantify effects of increase in minimum wage

Data


Data overview

- 1. Administrative linked employer-employee data (RAIS)
 - Universe of formal sector workers from 1988-2012
 - Restriction to male workers age 18–64
 - Earnings = average monthly labor income in employment
- 2. Administrative firm characteristics data (PIA)
 - All Manufacturing & Mining (M&M) firms with ≥ 30 employees or > \$300,000 revenues from 1996–2012
 - Value added p.w. = (revenues operating costs) / effective hours
- 3. Publicly available household survey data (PNAD)
 - Geography and informal sector

Facts

Fact 1: Compression throughout earnings distribution

• Compression up to 90th percentile, more pronounced at bottom

• Most initial inequality and the decline are between firms Graph

- Most initial inequality and the decline are between firms Graph
- How to tell apart changes among firms vs. workers?

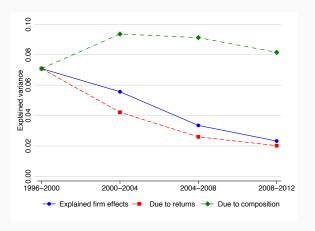
Most initial inequality and the decline are between firms

- How to tell apart changes among firms vs. workers?
- Two-way fixed effects model (AKM 1999):

$$\log(y_{it}) = \alpha_i + \alpha_{J(i,t)} + \gamma_t + \varepsilon_{it}$$

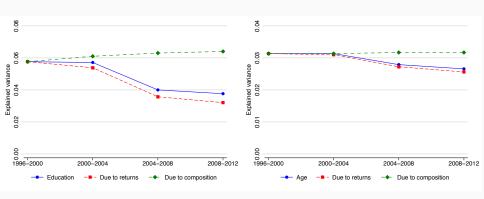
where α_i are worker effects, $\alpha_{J(i,t)}$ are firm effects, γ_t are year dummies, and ε_{it} is an error term

- Estimate this by OLS in overlapping 5-year periods
- Restriction to largest connected set


Table 1: Variance decomposition into components from AKM estimation

	(1)	(2)	(3)	
	1996–2000	2008-2012	Change	
Total variance of log earnings	0.72 (100%)	0.52 (100%)	-0.20 (100%)	
Variance of firm effects	0.17~(24%)	0.08~(15%)	-0.09 (45%)	
Variance of individual effects	0.35~(49%)	0.29~(57%)	-0.06 (28%)	
Covariance	0.14 (19%)	0.11~(21%)	-0.03 (16%)	
Variance of residual	0.06 (7%)	0.04~(7%)	-0.02 (10%)	
# worker years	90.2	123.7		
R ²	0.92	0.93		

Note: Cells contain variance level (share) explained by each component.


Fact 2: Lower pass-through from firm productivity to pay

- Firm productivity explains 50% of variation in firm pay premia
- And >50% of compression in firm pay premia
- ⇒ All due to rapid fall in pass-through from productivity to pay

Fact 3: Lower returns to worker ability

- Worker observables explain 35-45% of variation in worker component
- And close to 50% of the declining dispersion
- \implies All due to rapid fall in return to education and age

What do we learn about Brazil's inequality decline?

- Key insight:
 - In spite of greater underlying inequality...
 - ...changes in "wage policies" drove the decline

What do we learn about Brazil's inequality decline?

- Key insight:
 - In spite of greater underlying inequality...
 - ...changes in "wage policies" drove the decline
- Salient change in "wage policy": rise of minimum wage
 - 119% real growth
 - Minimum-to-median earnings from 34% to 60%

Model Summary

Model fundamentals

- Extension of Burdett-Mortensen (1998) equilibrium search model
- Heterogeneous worker abilities and firm productivities
- Workers search in frictional labor markets:
 - Search for jobs from unemployment
 - Search for better jobs while employed
- Firms post wages to maximize profits:
 - Profit per workers vs. number of employees
- $\bullet \ \ \, \mbox{Key feature: optimal wage depends on wages offered by other firms} \\ \Rightarrow \mbox{spill-over effects of minimum wage}$

Model results

Theoretical results:

- 1. More productive firms pay more for any worker
- 2. More able workers are paid more within any firm
- 3. Minimum wage reduces pass-through from productivity to pay as well as return to worker ability

Estimation

Quantitative experiment

- Estimate the model to fit data moments in 1996–2000 period
- Productivity-adjusted real minimum wage growth of 44.7 log points
- Holding all else constant, evaluate impact on earnings distribution

Estimation part 1

- One key parameter: $\kappa^e = \lambda^e/\delta = {\sf speed}$ of climbing firm ladder
- Similar estimates and time trends for κ^e across methods Details
- Calibrate or fix other parameters

Table 2: Monthly model parameters

Description	Parameter	Value
Discount rate	ρ	0.009
Exogenous separation rate	δ	0.030
Job finding rate from unemployment	λ^u	0.200
Labor market friction parameter	κ^{e}	1.101

Estimation part 2

Method of simulated moments / indirect inference (Smith 1993):

- Solve and simulate the model for a range of parameter values
- Apply AKM framework as auxiliary model on simulated data Details
- Find model parameters that minimize distance between AKM components in model versus data

Effects of the Minimum Wage

Inequality decomposition in model vs. data

Table 3: AKM decomposition of variance of log earnings

	1996	-2000	2008–2012		Change			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	Data	Model	Data	Model	Data	Model	% Explained	
Variance of earnings	0.72	0.46	0.52	0.32	-0.20	-0.14	70%	
Firm effects	0.17	0.17	0.08	0.13	-0.09	-0.04	48%	
Worker effects	0.35	0.35	0.29	0.29	-0.06	-0.06	110%	
Covariance	0.14	-0.06	0.11	-0.10	-0.03	-0.04	118%	
Residual	0.06	0.00	0.04	0.00	-0.02	0.00	0%	

Explaining Facts 1–3

Model predicts:

1. Largest effect at the bottom, yet significant compression far up the distribution ✓ Fact 1

Table 4: Percentile ratios of earnings in data vs. model

	1996	1996–2000		2008–2012		Change			
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	
	Data	Model	Data	Model		Data	Model	% Explained	
P50-P05	1.06	0.90	0.62	0.62		-0.44	-0.28	64%	
P50-P10	0.86	0.77	0.55	0.55		-0.31	-0.22	71%	
P50-P25	0.48	0.46	0.33	0.35		-0.15	-0.11	73%	
P75-P50	0.60	0.52	0.50	0.44		-0.10	-0.08	80%	
P90-P50	1.30	1.01	1.17	0.89		-0.13	-0.12	92%	
P95-P50	1.76	1.30	1.65	1.17		-0.11	-0.13	118%	

Explaining Facts 1–3

Model predicts:

- Largest effect at the bottom, yet significant compression far up the distribution ✓ Fact 1
- 2. All compression in firm effects due to lower pass-through from productivity ✓ Fact 2

Explaining Facts 1–3

Model predicts:

- Largest effect at the bottom, yet significant compression far up the distribution ✓ Fact 1
- 2. All compression in firm effects due to lower pass-through from productivity ✓ Fact 2
- All compression in worker effects driven by fall in returns to worker ability ✓ Fact 3

Empirical Evidence

Further support for the model

- We find empirical evidence in support of:
 - 1. The minimum wage story: different exposure by region and sector
 - 2. The model key ingredient: job ladder view of the labor market
 - 3. The model mechanism: minimum wage effect on worker composition

 Details

- Substantial fall in earnings inequality in Brazil 1996–2012
- We study the importance of the minimum wage for this decline

- Substantial fall in earnings inequality in Brazil 1996–2012
- We study the importance of the minimum wage for this decline
- We build an equilibrium search model, and show that in line with the data the model predicts:

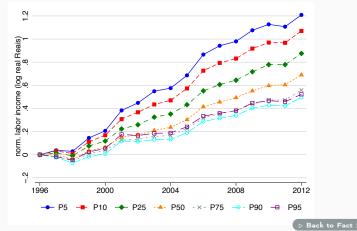
- Substantial fall in earnings inequality in Brazil 1996–2012
- We study the importance of the minimum wage for this decline
- We build an equilibrium search model, and show that in line with the data the model predicts:
 - 1. Fall in inequality throughout the distribution

Conclusion

- Substantial fall in earnings inequality in Brazil 1996–2012
- We study the importance of the minimum wage for this decline
- We build an equilibrium search model, and show that in line with the data the model predicts:
 - 1. Fall in inequality throughout the distribution
 - Compression in firm component due to lower pass-through from productivity to pay

Conclusion

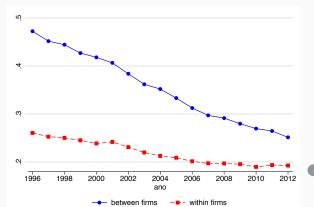
- Substantial fall in earnings inequality in Brazil 1996–2012
- We study the importance of the minimum wage for this decline
- We build an equilibrium search model, and show that in line with the data the model predicts:
 - 1. Fall in inequality throughout the distribution
 - Compression in firm component due to lower pass-through from productivity to pay
 - Compression in worker component due to lower return to worker ability


Conclusion

- Substantial fall in earnings inequality in Brazil 1996–2012
- We study the importance of the minimum wage for this decline
- We build an equilibrium search model, and show that in line with the data the model predicts:
 - 1. Fall in inequality throughout the distribution
 - Compression in firm component due to lower pass-through from productivity to pay
 - Compression in worker component due to lower return to worker ability
- Minimum wage was a significant contributor to the decline in earnings inequality (up to 70%)

Backup

Absolute earnings growth across percentiles


- All percentiles experienced real earnings growth from 1996–2012
- Fastest growth among bottom 75 percentiles

Much initial inequality and decline was between firms

- Recent work stresses firms as drivers of inequality dynamics
- Let y_{ijt} denote log earnings of worker i at firm j in year t, then:

$$Var\left(y_{ijt}\right) = \underbrace{Var\left(\overline{y}_{t}^{j}\right)}_{\text{between firms}} + \underbrace{\underbrace{Var\left(y_{ijt} \mid i \in j\right)}_{\text{within firms}}}_{\text{within firms}}$$

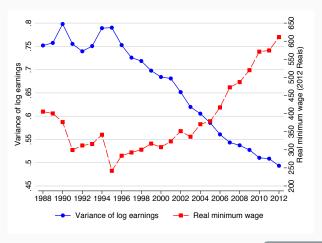
Back

Between and within firms: derivation

 Let y_{ijt} denote earnings of worker i employed by firm j in year t, then:

$$y_{ijt} = \underbrace{\overline{y_t}}_{\text{economy average}} + \underbrace{\left(\overline{y_t^j} - \overline{y_t}\right)}_{\text{employer deviaion}} + \underbrace{\left(y_{ijt} - \overline{y_t^j}\right)}_{\text{worker deviation}}$$

Re-arranging and taking variances on both sides we get


$$Var\left(y_{ijt} - \overline{y_t}\right) = Var\left(\overline{y}_t^j - \overline{y_t}\right) + Var\left(y_{ijt} - \overline{y}_t^j\right) + \underbrace{2Cov\left(\overline{y}_t^j - \overline{y_t}, y_{ijt} - \overline{y}_t^j\right)}_{=0}$$

Back

• Simplifying, we have

$$Var(y_{ijt}) = \underbrace{Var(\overline{y}_t^j)}_{\text{between firms}} + \underbrace{\underbrace{Var(y_{ijt} | i \in j)}_{\text{within firms}}}$$

Minimum wage evolution mirrors earnings inequality

Back to minimum wage

Can the minimum wage explain Brazil's inequality decline?

- Rapid rise in federal real minimum wage from 1996–2012:
 - 119% growth, reaching BRL622 (USD-PPP410) per month
 - Minimum-to-median earnings from 34% to 60%
- Suggestive evidence on link b/w minimum wage and inequality:
 - 1. Minimum wage mirrors earnings inequality from 1988–2012

 | Mirror image | Mirr
 - 2. Faster wage growth at the bottom Absolute percentiles
- But <5% of workers earning exactly minimum wage throughout
 - Qualitative challenge: compression throughout distribution
 - Quantitative challenge: magnitude of decline & worker/firm channels
- Potential solution: indirect "spill-over" effects of minimum wage

Model: workers' problem

• Value of unemployment:

$$\rho W_{\theta} = b_{\theta} + \lambda_{\theta}^{u} \int \max \{V_{\theta}(w) - W_{\theta}, 0\} dF_{\theta}(w)$$

• Value of employment of type θ at current wage w:

$$\rho V_{\theta}(w) = w + \lambda_{\theta}^{e} \int_{w} \left[V_{\theta}(w') - V_{\theta}(w) \right] dF_{\theta}(w') + \delta_{\theta} \left[W_{\theta} - V_{\theta}(w) \right]$$

• Worker types' reservation wage:

$$w_{\theta}^{R} = b_{\theta} + (\lambda_{\theta}^{u} - \lambda_{\theta}^{e}) \int_{w_{\theta}^{R}} \frac{1 - F_{\theta}(w)}{\phi + \delta_{\theta} + \lambda_{\theta}^{e}(1 - F_{\theta}(w))} dw$$

Model: firms' problem

• In each active market θ , a firm with productivity p solves:

$$\max_{w_{\theta} > w^{min}} (p\theta - w_{\theta}) I_{\theta} (w_{\theta})$$

Equilibrium firm size:

$$l_{\theta}(w) = (1 - u_{\theta}) m_{\theta} \frac{dG_{\theta}(w)}{dF_{\theta}(w)} = (1 - u_{\theta}) m_{\theta} \frac{1 + \kappa^{e}}{\left[1 + \kappa^{e} \left(1 - F_{\theta}(w)\right)\right]^{2}}$$

$$l(w) = \int l_{\theta}(w) d\theta$$

⊳ Back ∫

Equilibrium with segmented labor markets

A search equilibrium with segmented labor markets is a set

$$\left\{ w^{min}, \phi_{\theta}, u_{\theta}, I_{\theta}(w), F_{\theta}(w), G_{\theta}(w) \right\}$$

for each $\theta \in \Theta = \{\theta_1, \dots, \theta_N\}$ such that:

- 1. Productivity $\Gamma_{\theta}\left(p\right)$ is truncated at $\underline{p}\left(\theta;w^{min}\right)=\max\left\{\frac{\phi_{\theta}}{\theta},\frac{w^{min}}{\theta},p_{0}\right\}$.
- 2. Ability distribution $H(\theta)$ is truncated at $\underline{\theta}(w^{min}) = \frac{w^{min}}{\overline{\rho}}$.
- 3. Workers accept any higher-paid job while employed and any job whose wage exceeds their reservation value ϕ_{θ} while unemployed.
- 4. Firms choose which markets θ to recruit from and offer wage schedule $\{w_{\theta}(p)\}_{\theta}$ to maximize profits.
- 5. The unemployment rate $u = \int u_{\theta} dH(\theta)$ and firm sizes $I(\cdot) = \int I(\cdot; \theta) dH(\theta)$ are consistent with $F_{\theta}(\cdot)$, $G_{\theta}(\cdot)$, and $(\delta, \lambda^{u}, \lambda^{e})$.

Lemma 1

1. A firm with productivity p is active in labor markets $\theta \geq \frac{w^{min}}{p}$.

Lemma 1

- 1. A firm with productivity p is active in labor markets $\theta \geq \frac{w^{min}}{p}$.
- 2. Unique equilibrium wage posted:

$$w\left(p,\theta;w^{min}\right) = \theta p - \theta \int_{\underline{\rho}\left(\theta;w^{min}\right)}^{p} \left[\frac{1 + \frac{\lambda^{e}}{\delta}\left(1 - \Gamma_{\theta}\left(p;w^{min}\right)\right)}{1 + \frac{\lambda^{e}}{\delta}\left(1 - \Gamma_{\theta}\left(x;w^{min}\right)\right)}\right]^{2} dx$$

where

$$\Gamma_{\theta}(p; w^{min}) = \frac{\Gamma(p) - \Gamma\left(\underline{p}\left(\theta; w^{min}\right)\right)}{1 - \Gamma\left(\underline{p}\left(\theta; w^{min}\right)\right)}$$

Lemma 1

- 1. A firm with productivity p is active in labor markets $\theta \geq \frac{w^{min}}{p}$.
- 2. Unique equilibrium wage posted:

$$w\left(p,\theta;w^{min}\right) = \theta p - \theta \int_{\underline{\rho}\left(\theta;w^{min}\right)}^{p} \left[\frac{1 + \frac{\lambda^{e}}{\delta}\left(1 - \Gamma_{\theta}\left(p;w^{min}\right)\right)}{1 + \frac{\lambda^{e}}{\delta}\left(1 - \Gamma_{\theta}\left(x;w^{min}\right)\right)}\right]^{2} dx$$

where

$$\Gamma_{\theta}(p; w^{min}) = \frac{\Gamma(p) - \Gamma\left(\underline{p}\left(\theta; w^{min}\right)\right)}{1 - \Gamma\left(\underline{p}\left(\theta; w^{min}\right)\right)}$$

3. More productive firms post higher wages:

$$\partial w\left(p,\theta;w^{min}\right)/\partial p>0$$

Lemma 1

- 1. A firm with productivity p is active in labor markets $\theta \geq \frac{w^{min}}{p}$.
- 2. Unique equilibrium wage posted:

$$w\left(p,\theta;w^{min}\right) = \theta p - \theta \int_{\underline{\rho}\left(\theta;w^{min}\right)}^{p} \left[\frac{1 + \frac{\lambda^{e}}{\delta}\left(1 - \Gamma_{\theta}\left(p;w^{min}\right)\right)}{1 + \frac{\lambda^{e}}{\delta}\left(1 - \Gamma_{\theta}\left(x;w^{min}\right)\right)}\right]^{2} dx$$

where

$$\Gamma_{\theta}(p; w^{min}) = \frac{\Gamma(p) - \Gamma\left(\underline{p}\left(\theta; w^{min}\right)\right)}{1 - \Gamma\left(\underline{p}\left(\theta; w^{min}\right)\right)}$$

3. More productive firms post higher wages:

$$\partial w\left(p,\theta;w^{min}\right)/\partial p>0$$

4. Higher ability workers are offered higher wages:

$$\partial w\left(p,\theta;w^{min}\right)/\partial\theta>0$$

ullet Key labor parameter κ^{e} over-identified in data relative to model:

- Key labor parameter κ^e over-identified in data relative to model:
 - 1. Duration: Mean job duration along the firm ladder

$$\overline{d}_{\theta}\left(w\right) = \underbrace{\frac{1}{\delta\left(1 + \kappa^{e}\right)}}_{\equiv \beta_{0}} + \underbrace{\frac{\kappa^{e}}{\delta\left(1 + \kappa^{e}\right)}}_{\beta_{1}} G_{\theta}\left(w\right) \quad \iff \quad \hat{\kappa}_{duration}^{e} = \frac{\hat{\beta}_{1}^{OLS}}{\hat{\beta}_{0}^{OLS}}$$

- Key labor parameter κ^e over-identified in data relative to model:
 - 1. Duration: Mean job duration along the firm ladder

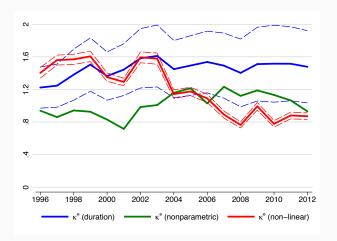
$$\overline{d}_{\theta}(w) = \underbrace{\frac{1}{\delta(1+\kappa^{e})}}_{\equiv \beta_{0}} + \underbrace{\frac{\kappa^{e}}{\delta(1+\kappa^{e})}}_{\beta_{1}} G_{\theta}(w) \quad \iff \quad \hat{\kappa}_{duration}^{e} = \frac{\hat{\beta}_{1}^{OLS}}{\hat{\beta}_{0}^{OLS}}$$

2. Nonparametric: Relation between job offer distribution F_{θ} and realized wage distribution $G_{\theta}\left(w\right)$

$$F_{ heta}\left(w
ight) = rac{\left(1 + \kappa^{e}\right)G_{ heta}\left(w
ight)}{1 + \kappa^{e}G_{ heta}\left(w
ight)} \quad \Longleftrightarrow \quad \hat{\kappa}_{nonparametric}^{e} = rac{\hat{F}_{ heta}\left(w
ight) - \hat{G}_{ heta}\left(w
ight)}{\left(1 - \hat{F}_{ heta}\left(w
ight)
ight)\hat{G}_{ heta}\left(w
ight)}$$

- Key labor parameter κ^e over-identified in data relative to model:
 - 1. Duration: Mean job duration along the firm ladder

$$\overline{d}_{\theta}(w) = \underbrace{\frac{1}{\delta(1+\kappa^{e})}}_{\equiv \beta_{0}} + \underbrace{\frac{\kappa^{e}}{\delta(1+\kappa^{e})}}_{\beta_{1}} G_{\theta}(w) \quad \iff \quad \hat{\kappa}_{duration}^{e} = \frac{\hat{\beta}_{1}^{OLS}}{\hat{\beta}_{0}^{OLS}}$$


2. Nonparametric: Relation between job offer distribution F_{θ} and realized wage distribution $G_{\theta}\left(w\right)$

$$F_{ heta}\left(w
ight) = rac{\left(1 + \kappa^{e}
ight)G_{ heta}\left(w
ight)}{1 + \kappa^{e}G_{ heta}\left(w
ight)} \quad \Longleftrightarrow \quad \hat{\kappa}_{nonparametric}^{e} = rac{\hat{F}_{ heta}\left(w
ight) - \hat{G}_{ heta}\left(w
ight)}{\left(1 - \hat{F}_{ heta}\left(w
ight)
ight)\hat{G}_{ heta}\left(w
ight)}$$

3. Nonlinear: From distribution of wages of recently hired workers $G_{m,\theta}\left(w\right)$

$$G_{m,\theta}\left(w
ight) = rac{\log\left(1 + \kappa^e G_{\theta}\left(w
ight)
ight)}{\log\left(1 + \kappa^e
ight)} \quad \Longleftrightarrow \quad \hat{\kappa}_{nonlinear}^e ext{ using NLLS}$$

Figure 1: Different estimates of labor mobility parameter κ^e

Mapping from model into AKM decomposition

Proposition 1

Without binding minimum wage, workers' earnings are given by

$$\log w(p, \theta) = \underbrace{\log \theta}_{\text{"worker effect"}} + \underbrace{\log \tilde{w}(p)}_{\text{"firm effect"}}$$

where

$$\tilde{w}(p) = p - \int_{p_0}^{p} \left[\frac{1 + \kappa^e (1 - F(p))}{1 + \kappa^e (1 - F(x))} \right]^2 dx$$

Mapping from model into AKM decomposition

Proposition 1

Without binding minimum wage, workers' earnings are given by

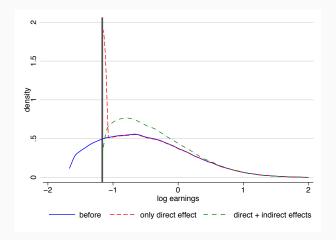
$$\log w(p, \theta) = \underbrace{\log \theta}_{\text{"worker effect"}} + \underbrace{\log \tilde{w}(p)}_{\text{"firm effect"}}$$

where

$$\tilde{w}(p) = p - \int_{p_0}^{p} \left[\frac{1 + \kappa^e (1 - F(p))}{1 + \kappa^e (1 - F(x))} \right]^2 dx$$

Key insight:

- Exact mapping of model into AKM framework
- Minimum wage distorts mapping $w(p, \theta)$, but retains monotonicity


• Sparse parameterization of worker and firm heterogeneity:

$$\log\left(heta
ight) \sim \mathcal{N}\left(0, \sigma_{ heta}^{2}
ight), \qquad \log\left(p
ight) \sim \mathcal{N}\left(0, \sigma_{p}^{2}
ight)$$

- Three model parameters: σ_{θ} , σ_{p} , and minimum wage (numeraire)
- Three data targets:
 - 1. Variance of AKM worker effects
 - 2. Variance of AKM firm effects
 - 3. Minimum-to-median wage ratio

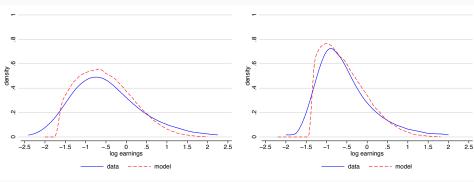

Direct vs. indirect effects

Figure 2: Illustration of direct and indirect effects of minimum wage

Explaining Fact 1: Bottom-driven inequality decline

Figure 3: Earnings distributions in 1996–2000 (left) and 2008–2012 (right)

Fact 2: Illustration

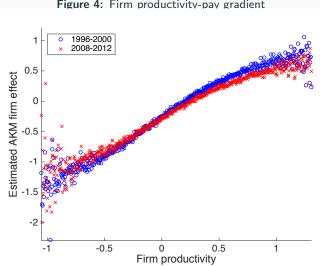
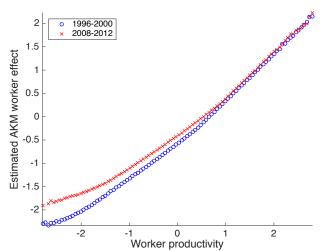
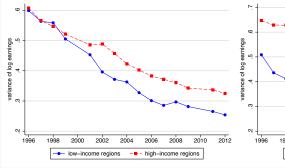
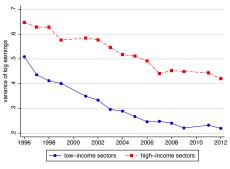
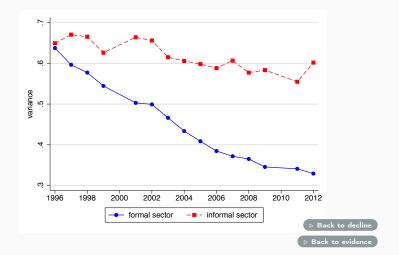



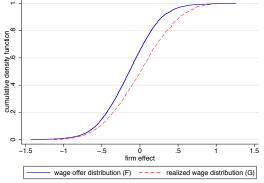
Figure 4: Firm productivity-pay gradient


Fact 3: Illustration


Figure 5: Worker ability-pay gradient

Evidence in support of minimum wage #1

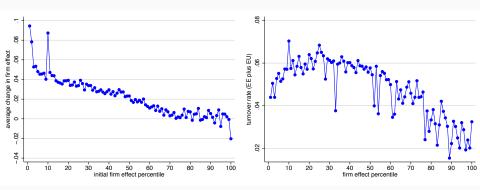

- More pronounced decline of earnings inequality in:
 - initially low-income regions
 - initially low-income sectors


Evidence in support of minimum wage #2

- More pronounced decline of earnings inequality in formal sector
- Consistent w/ enforcement of labor regulation in formal sector

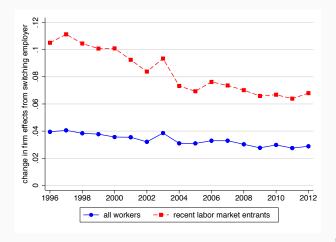
Evidence in support of job ladder #1

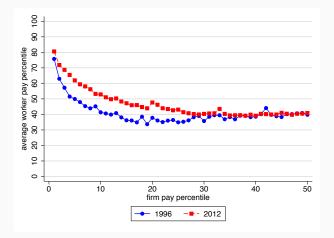
- Workers climb up firm ranks
 - Realized wage distribution FOSDs wage offer distribution
 - Employer transitions associated with positive change in firm effect



Change in firm effect	Average value,
from switching employer	1996–2012
Absolute change	6.8
Percentile rank change	6.0

Evidence in support of job ladder #2


- Further evidence in support of job ladder:
 - Gains from switching decline in previous firm pay percentile
 - Turnover rate lower for higher-paying firms


Evidence in support of job ladder #3

- Job ladder becomes flatter as minimum wage increases
 - Particularly pronounced for new labor market entrants

Evidence in support of model mechanism

- Confirm key model prediction:
 - Minimum wage cuts off lowest-paying firms from lowest-paid workers
 - Degree of negative sorting becomes stronger as minimum wage rises

