# Menu Costs, Aggregate Fluctuations and Large Shocks

Peter Karadi – Adam Reiff

European Central Bank\* – Central Bank of Hungary\*

ESSIM, May 2015

<sup>\*</sup>The view expressed are those of the authors, and do not necessarily reflect the official position of the ECB, the Eurosystem or the Central Bank of Hungary

### What we do?

- ▶ Question:
  - Extent of monetary non-neutrality,
  - ▶ in light of micro-data evidence on price setting

### What we do?

- ▶ Question:
  - ► Extent of monetary non-neutrality,
  - ▶ in light of micro-data evidence on price setting
- ► Framework:
  - ▶ Menu costs, idiosyncratic shocks, multi-product firms
  - ▶ Match frequency, size and dispersion of price changes

### What we do?

- ▶ Question:
  - ► Extent of monetary non-neutrality,
  - ▶ in light of micro-data evidence on price setting
- ► Framework:
  - ▶ Menu costs, idiosyncratic shocks, multi-product firms
  - ▶ Match frequency, size and dispersion of price changes
- ▶ Generalize unobserved idiosyncratic shock distribution
  - ▶ Mixture of normals
  - ▶ Unsynchronized stochastic volatility

# Why we do it?

- ▶ Distribution is key
  - ► Golosov-Lucas (JPE, 2007): Gaussian shocks, near neutrality
  - ▶ Midrigan (E, 2011): Poisson shocks, non-neutrality

# Why we do it?

- ▶ Distribution is key
  - ► Golosov-Lucas (JPE, 2007): Gaussian shocks, near neutrality
  - ▶ Midrigan (E, 2011): Poisson shocks, non-neutrality
- ▶ Distribution determines selection (Caplin-Spulber, 1987)
  - ▶ Which firms adjust after an aggregate shock
  - ▶ High selection in GL
  - ► Close to random in Midrigan like in Calvo (1983): whoever gets an idiosyncratic shock, adjusts

### Preview of results

- ► Model matches price change size distribution SS
  - ▶ Like Midrigan (2011)

### Preview of results

- ► Model matches price change size distribution SS
  - ▶ Like Midrigan (2011)
- - ▶ In contrast to Midrigan (2011)

### Preview of results

- ▶ Model matches price change size distribution SS
  - ▶ Like Midrigan (2011)
- - ► In contrast to Midrigan (2011)
- Monetary non-neutrality is not well identified by key steady state moments

# Preview of results, cont.

- ► Responses to large aggregate shocks facilitate identification
  - ▶ Fraction of adjusting firms identifies menu costs

# Preview of results, cont.

- ► Responses to large aggregate shocks facilitate identification
  - ▶ Fraction of adjusting firms identifies menu costs
- ► Responses to VAT changes support our model Shock

#### GE macro model

- ► Representative household HH
  - ▶ CES demand with quality shocks  $(A_t(i))$ ,
  - linear labor

### GE macro model

- ► Representative household III
  - ▶ CES demand with quality shocks  $(A_t(i))$ ,
  - linear labor
- Heterogeneous firms
  - Linear production:  $Y_t(i) = L_t(i)/A_t(i)$
  - ▶ Idiosyncratic quality shocks  $\ln A_t(i) = \ln A_{t-1}(i) + \varepsilon_t(i)$
  - ▶ Novel distribution: stochastic volatility: mixed normals

$$\varepsilon_t(i) = \begin{cases} N(0, \lambda^2 \sigma^2) & \text{with probability } p \\ N(0, \sigma^2) & \text{with probability } 1 - p \end{cases}$$

- Menu costs to change prices:  $\phi$
- ▶ Multi-product firms, correlation  $\rho_{\varepsilon}$ , ES:  $\gamma$

# Equilibrium and solution

- ► Standard RE equilibrium in the steady state Details
  - ▶ Agents maximize
  - ▶ Markets clear

# Equilibrium and solution

- ► Standard RE equilibrium in the steady state Details
  - ► Agents maximize
  - ▶ Markets clear

Exogenous, preannounced aggregate policy shocks Policy: perfect foresight transition between steady states

# Equilibrium and solution

- ► Standard RE equilibrium in the steady state Details
  - ► Agents maximize
  - ▶ Markets clear

- Exogenous, preannounced aggregate policy shocks Policy: perfect foresight transition between steady states
- ► Solved numerically with global heterogeneous agent methods Solution

### Calibration

- ► Set some parameters exogenously
  - Correlation of idiosyncratic shocks within firms  $\rho_{\varepsilon} = 0.6$
  - ▶ Discount rate:  $\beta = 0.96$  yearly
  - Elasticity of substitutions:  $\theta = 5, \gamma = 1.1$
  - ▶ Trend inflation:  $\pi = 4.2\%$

### Calibration

- ► Set some parameters exogenously
  - Correlation of idiosyncratic shocks within firms  $\rho_{\varepsilon} = 0.6$
  - ▶ Discount rate:  $\beta = 0.96$  yearly
  - Elasticity of substitutions:  $\theta = 5, \gamma = 1.1$
  - ▶ Trend inflation:  $\pi = 4.2\%$
- ► Calibrate (Parameters)
  - Menu cost  $\phi$
  - ▶ Idiosyncratic shock variance  $\sigma_{\varepsilon}$
  - ightharpoonup Poisson parameter p
  - ightharpoonup Relative variance parameter  $\lambda$

### Calibration, cont

- ► Target (Targeted Moments)
  - ▶ frequency and average absolute size of price change
  - ▶ kurtosis of the size distribution
  - ▶ interquartile range of the absolute size distribution

### Calibration, cont

- ► Target (Targeted Moments)
  - ▶ frequency and average absolute size of price change
  - ▶ kurtosis of the size distribution
  - ▶ interquartile range of the absolute size distribution
- ► Model matches price change distribution SS

### Calibration, cont

- ► Target (Targeted Moments)
  - ▶ frequency and average absolute size of price change
  - ▶ kurtosis of the size distribution
  - ▶ interquartile range of the absolute size distribution
- ► Model matches price change distribution SS
- ► Model predicts near money neutrality (IRF)

▶ High sensitivity to idiosyncratic distribution: why?

- ▶ High sensitivity to idiosyncratic distribution: why?
- ▶ Pass-through = Intensive margin + Selection

- ▶ High sensitivity to idiosyncratic distribution: why?
- ▶ Pass-through = Intensive margin + Selection
- ▶ Intensive margin: adjusters change by more
  - Measure of adjusters
  - ► Constant: equals the calibrated frequency

- ▶ High sensitivity to idiosyncratic distribution: why?
- ▶ Pass-through = Intensive margin + Selection
- ▶ Intensive margin: adjusters change by more
  - ► Measure of adjusters
  - ► Constant: equals the calibrated frequency
- ▶ Selection
  - ▶ Response of new adjusters
  - ▶ Explains the difference in money neutrality

- ► Selection in single product case (Caballero-Engel, 2007)
  - ▶ Multiple of the
  - ▶ inaction band width and
  - ▶ the density at the thresholds

- ► Selection in single product case (Caballero-Engel, 2007)
  - ▶ Multiple of the
  - ▶ inaction band width and
  - ▶ the density at the thresholds
- ▶ Distribution influences both Distributions
  - ▶ Gaussian: wide inaction band and high mass at thresholds
  - ▶ Poisson: narrow inaction band and low mass at thresholds
  - ▶ Mixed normal: reinforcing increase in both

- ▶ In random menu cost ( $\rho_{\varepsilon} = 0$ ):
  - ▶ Influence of varying the distribution ( $\lambda = 0$  Poisson;  $\lambda = 1$  normal;  $\lambda = 16\%$  mixed normal)
  - Exercise: vary  $\lambda$ , keep frequency, size, kurtosis constant

- ▶ In random menu cost ( $\rho_{\varepsilon} = 0$ ):
  - Influence of varying the distribution ( $\lambda = 0$  Poisson;  $\lambda = 1$  normal;  $\lambda = 16\%$  mixed normal)
  - Exercise: vary  $\lambda$ , keep frequency, size, kurtosis constant
- ► Standard moments do not identify monetary non-neutrality (comp. Alvarez, Bihan, Lippi, 2014)

# Why large shocks help identification?

▶ Fraction of adjusting firms identify the menu cost

Large shocks

▶ The desired price change distribution reveals itself

- ▶ +5% VAT increase/decrease in Hungary in 2006
  - ▶ Government closed the gap between tax rates
  - ▶ Processed food sector
  - Gross prices are quoted
  - ► Easily identifiable cost shocks

- ▶ +5% VAT increase/decrease in Hungary in 2006
  - ▶ Government closed the gap between tax rates
  - ▶ Processed food sector
  - Gross prices are quoted
  - ► Easily identifiable cost shocks
- ▶ Use micro-price data (equivalent Bils-Klenow, 2004)

- ▶ +5% VAT increase/decrease in Hungary in 2006
  - ▶ Government closed the gap between tax rates
  - ▶ Processed food sector
  - Gross prices are quoted
  - ► Easily identifiable cost shocks
- ▶ Use micro-price data (equivalent Bils-Klenow, 2004)
- ► Frequency: 12.6% (steady state)
  - $\rightarrow$  +5% VAT: 62%, -5% VAT: 27%

- ▶ +5% VAT increase/decrease in Hungary in 2006
  - ▶ Government closed the gap between tax rates
  - Processed food sector
  - Gross prices are quoted
  - ► Easily identifiable cost shocks
- ▶ Use micro-price data (equivalent Bils-Klenow, 2004)
- ► Frequency: 12.6% (steady state)
  - ▶ +5% VAT: 62%, -5% VAT: 27%
- ▶ Inflation pass-through  $((\pi_t \bar{\pi})/\Delta \tau_t)$ :
  - ► +5% VAT: 99%, -5% VAT: 33%

### How our model does?

- ► Inflation pass-through Inflation Pass-through
  - ▶ Baseline: matches pass-through, asymmetry
  - ► Calvo: Small pass-through; no asymmetry
  - ▶ Normal shocks: underestimates pass-through, asymmetry
  - ▶ Poisson shocks: overestimates pass-through, asymmetry

### How our model does?

- ► Inflation pass-through Inflation Pass-through
  - ▶ Baseline: matches pass-through, asymmetry
  - ► Calvo: Small pass-through; no asymmetry
  - ▶ Normal shocks: underestimates pass-through, asymmetry
  - ▶ Poisson shocks: overestimates pass-through, asymmetry
- ► Frequency effects Frequency
  - ▶ Baseline: Matches well
  - ► Calvo: No frequency effect
  - ▶ Normal: Too small
  - ▶ Poisson: Too large

### How our model does?

- ► Inflation pass-through Inflation Pass-through
  - ▶ Baseline: matches pass-through, asymmetry
  - ► Calvo: Small pass-through; no asymmetry
  - ▶ Normal shocks: underestimates pass-through, asymmetry
  - ▶ Poisson shocks: overestimates pass-through, asymmetry
- ► Frequency effects Frequency
  - ▶ Baseline: Matches well
  - ► Calvo: No frequency effect
  - ▶ Normal: Too small
  - ▶ Poisson: Too large
- ► Distribution Kurtosis IQR



#### Robustness

- ► Real-effects in various versions (Robustness)
  - ▶ Random menu cost  $(\rho_{\varepsilon} = 0)$
  - ▶ Random menu cost recalibrated for 0 inflation
  - ► Single product version
  - ▶ Baseline version with 2% inflation Inflation

#### Robustness

- ► Real-effects in various versions Robustness
  - ▶ Random menu cost ( $\rho_{\varepsilon} = 0$ )
  - ▶ Random menu cost recalibrated for 0 inflation
  - ► Single product version
  - ▶ Baseline version with 2% inflation Inflation
- ► Large shocks in the single product version Large shocks
  - ▶ Two-product version: matches price distributions better
  - ▶ Different menu cost calibration
  - ▶ Similar aggregate implications

#### Robustness

- ► Real-effects in various versions Robustness
  - ▶ Random menu cost  $(\rho_{\varepsilon} = 0)$
  - ▶ Random menu cost recalibrated for 0 inflation
  - ► Single product version
  - ▶ Baseline version with 2% inflation Inflation
- ► Large shocks in the single product version Large shocks
  - ▶ Two-product version: matches price distributions better
  - ▶ Different menu cost calibration
  - ► Similar aggregate implications
- Random menu cost version fails for large shocks
  - ▶ Proportion of free adjusters stays constant with the shock

### Related literature

▶ Monetary non-neutrality and selection: Caplin-Spulber (1987), Golosov-Lucas (2008), Gertler-Leahy (2008), Midrigan (2011), Vavra (2013), Alvarez, Bihan, Lippi (2014)

### Related literature

- ▶ Monetary non-neutrality and selection: Caplin-Spulber (1987), Golosov-Lucas (2008), Gertler-Leahy (2008), Midrigan (2011), Vavra (2013), Alvarez, Bihan, Lippi (2014)
- ► Evidence supporting state-dependent pricing models: Gagnon (2009, et.al. 2012), Costain-Nakov, 2014 Alvarez et.al. (2012)

### Related literature

- ▶ Monetary non-neutrality and selection: Caplin-Spulber (1987), Golosov-Lucas (2008), Gertler-Leahy (2008), Midrigan (2011), Vavra (2013), Alvarez, Bihan, Lippi (2014)
- ► Evidence supporting state-dependent pricing models: Gagnon (2009, et.al. 2012), Costain-Nakov, 2014 Alvarez et.al. (2012)
- ▶ Evidence supporting menu cost assumptions:
  - vs. information frictions: Mankiw-Reis (2002), Woodford (2003), Mackowiak-Wiederholt (2009)
  - ▶ vs. search frictions: Cabral-Fishman (2012), Yang-Ye (2008)
  - ▶ vs. fairness: Rotemberg (2005, 2011)



► Menu cost model with mixed normal distribution matches pricing facts well

- Menu cost model with mixed normal distribution matches pricing facts well
- ▶ Implies monetary near neutrality

- ► Menu cost model with mixed normal distribution matches pricing facts well
- ▶ Implies monetary near neutrality
- ► In contrast with robust macro-evidence on the real effects of monetary shocks

- ► Menu cost model with mixed normal distribution matches pricing facts well
- ▶ Implies monetary near neutrality
- ► In contrast with robust macro-evidence on the real effects of monetary shocks
- Need for other frictions: wage-rigidity, real rigidity, information frictions

Thank you!

## Steady state distribution of price changes



# Impulse responses to a monetary shock



## Price changes at the months of tax changes



# Calibrated parameters

| Parameters | Mixed | Poisson | Normal |
|------------|-------|---------|--------|
| $\phi$     | 2.4%  | 1.6%    | 5.0%   |
| $\sigma_A$ | 4.3%  | 4.4%    | 3.8%   |
| p          | 91.2% | 90.6%   | 0      |
| $\lambda$  | 8.8%  | 0       | 1      |

### Matched moments

| Used in             |          | Data         | Models |         |        |
|---------------------|----------|--------------|--------|---------|--------|
| calibration         | Baseline | Midr. (2011) | Mixed  | Poisson | Normal |
| Frequency           | 12.6%    | 11.6%        | 12.6%  | 12.6%   | 12.6%  |
| Size                | 9.9%     | 11%          | 9.9%   | 9.9%    | 9.9%   |
| Kurtosis            | 3.98     | 4.02         | 3.98   | 3.98    | 1.97   |
| Interquartile range | 8.13%    | 8%           | 8.13%  | 9.55%   | 6.3%   |
| Inflation           | 4.23%    | 0%           | 4.23%  | 4.23%   | 4.23%  |

# Simulated effects of large shocks



## Monthly inflation



# Pass-through

| Moment       | Size | Data | Mixed | Poisson | Normal | Calvo |
|--------------|------|------|-------|---------|--------|-------|
| Pass through | +5%  | 99%  | 88%   | 143%    | 49%    | 8.0%  |
|              | -5%  | 33%  | 27%   | 12%     | 39%    | 6.6%  |

# Frequency

| Moment    | Size | Data | Mixed | Poisson | Normal | Calvo |
|-----------|------|------|-------|---------|--------|-------|
| Frequency | +5%  | 62%  | 55%   | 90%     | 25%    | 12.6% |
|           | -5%  | 27%  | 19%   | 11%     | 17%    | 12.6% |

### Kurtosis

| Moment   | Size | Data | Mixed | Poisson | Normal |
|----------|------|------|-------|---------|--------|
| Kurtosis | +5%  | 8.1  | 13.1  | 21.3    | 5.6    |
|          | -5%  | 9.2  | 5.9   | 3.4     | 3.4    |

# Interquartile range

| Moment              | Size | Data | Mixed | Poisson | Normal |
|---------------------|------|------|-------|---------|--------|
| Interquartile range | +5%  | 5.9  | 4.3   | 2.7     | 6.5    |
|                     | -5%  | 5.0  | 5.8   | 11.5    | 6.6    |

## Varying the relative variability $\lambda$



## Desired price change distributions and inaction bands



## Varying the relative variability $\lambda$ , cont.



| Pass-through           | Dec06-Inc09 | Inc06-Inc09 |
|------------------------|-------------|-------------|
| # of products          | 29          | 73          |
| Inflation              | 4.7%        | 4.7%        |
| Frequency              | 12.9%       | 12.4%       |
| 2006 January, -5%      | 31.3%       |             |
| 2006 September, $+5\%$ |             | 88%         |
| 2009 July $+5%$        | 68.8%       | 51.1%       |

### Household

► Maximizes utility

$$\max_{\{C_t(i,g),L_t\}} E \sum_{t=0}^{\infty} \beta^t \left(\log C_t - \mu L_t\right),\,$$

### Household

► Maximizes utility

$$\max_{\{C_t(i,g),L_t\}} E \sum_{t=0}^{\infty} \beta^t \left(\log C_t - \mu L_t\right),\,$$

▶ subject to

$$\int_{i} \sum_{g} P_{t}(i,g) C_{t}(i,g) + B_{t+1}/R_{t} = B_{t} + W_{t}L_{t} + \tilde{\Pi}_{t} + T_{t},$$

### Household

► Maximizes utility

$$\max_{\{C_t(i,g),L_t\}} E \sum_{t=0}^{\infty} \beta^t \left( \log C_t - \mu L_t \right),$$

▶ subject to

$$\int_{i} \sum_{g} P_{t}(i,g) C_{t}(i,g) + B_{t+1}/R_{t} = B_{t} + W_{t}L_{t} + \tilde{\Pi}_{t} + T_{t},$$

► CES aggregator:

$$C_t = \left( \int C_t(i)^{\frac{\theta - 1}{\theta}} di \right)^{\frac{\theta}{\theta - 1}}$$

$$C_t(i) = \left( \frac{1}{G} \sum_{g=1}^G \left[ A_t(i, g) C_t(i, g) \right]^{(\gamma - 1)/\gamma} \right)^{\gamma/(\gamma - 1)}$$

## Household, cont.

▶ Price indices

$$P_{t} = \left( \int P_{t}(i)^{1-\theta} di \right)^{\frac{1}{1-\theta}}$$

$$P_{t}(i) = \left( \frac{1}{G} \sum_{g=1}^{G} \left[ P_{t}(i,g) / A_{t}(i,g) \right]^{1-\gamma} \right)^{1/(1-\gamma)}$$

Euler equation

$$\frac{1}{R_t} = \beta E_t \frac{P_t C_t}{P_{t+1} C_{t+1}}$$

Product demand

$$C_t(i,g) = A_t(i,g)^{-1} \left(\frac{P_t(i,g)/A_t(i,g)}{P_t(i)}\right)^{-\gamma} \left(\frac{P_t(i)}{P_t}\right)^{-\theta} C_t$$

Labor supply

$$\mu C_t = W_t/P_t$$

ightharpoonup Production for firm i, product g:

$$Y_t(i,g) = L_t(i,g)/A_t(i,g),$$

 $\triangleright$  Production function for firm i, product g:

$$Y_t(i,g) = L_t(i,g)/A_t(i,g),$$

▶  $\ln A_t(i,g) = \ln A_{t-1}(i,g) + \varepsilon_t(i,g)$  idiosyncratic shock, with stochastic volatility

$$\varepsilon_t(i,g) \sim N(0,\delta_t^2), \delta_t^2 = \begin{cases} \lambda^2 \sigma^2 & \text{with probability } p \\ \sigma^2 & \text{with probability } 1-p \end{cases}$$

 $\triangleright$  Production function for firm i, product g:

$$Y_t(i,g) = L_t(i,g)/A_t(i,g),$$

▶  $\ln A_t(i,g) = \ln A_{t-1}(i,g) + \varepsilon_t(i,g)$  idiosyncratic shock, with stochastic volatility

$$\varepsilon_t(i,g) \sim N(0,\delta_t^2), \delta_t^2 = \begin{cases} \lambda^2 \sigma^2 & \text{with probability } p \\ \sigma^2 & \text{with probability } 1-p \end{cases}$$

▶ Golosov-Lucas ( $\lambda = 1$ ), Midrigan ( $\lambda = 0$ ) are special cases

 $\triangleright$  Production function for firm i, product g:

$$Y_t(i,g) = L_t(i,g)/A_t(i,g),$$

▶  $\ln A_t(i,g) = \ln A_{t-1}(i,g) + \varepsilon_t(i,g)$  idiosyncratic shock, with stochastic volatility

$$\varepsilon_t(i,g) \sim N(0,\delta_t^2), \delta_t^2 = \begin{cases} \lambda^2 \sigma^2 & \text{with probability } p \\ \sigma^2 & \text{with probability } 1-p \end{cases}$$

- ▶ Golosov-Lucas ( $\lambda = 1$ ), Midrigan ( $\lambda = 0$ ) are special cases
- Menu cost  $\phi P_t(i)C_t(i)$  to change all prices

# Firms, cont.

▶ Period profit

$$\tilde{\Pi}_{t}(i) = \sum_{g=1}^{G} \left[ \frac{1}{1+\tau_{t}} P_{t}(i,g) Y_{t}(i,g) - W_{t} L_{t}(i,g) \right]$$

#### Firms, cont.

▶ Period profit

$$\tilde{\Pi}_{t}(i) = \sum_{g=1}^{G} \left[ \frac{1}{1+\tau_{t}} P_{t}(i,g) Y_{t}(i,g) - W_{t} L_{t}(i,g) \right]$$

▶ Normalized profit (by  $P_tY_t$ ):

$$\bar{\Pi}_{t}(i) = \sum_{g=1}^{G} \left[ \frac{1}{1+\tau_{t}} p_{t}(i,g)^{1-\gamma} - w_{t} p_{t}(i,g)^{-\gamma} \right]$$

$$\left( \frac{1}{G} \sum_{g=1}^{G} p_{t}(i,g)^{1-\gamma} \right)^{(\gamma-\theta)/(1-\gamma)}$$

- ▶  $p_t(i,g) = \frac{P_t(i,g)}{A \cdot (i,g)P_t}$  is quality adjusted relative price
- $w_t = W_t/P_t$  is real wage



► Single idiosyncratic state

$$\mu_{t-1}(i,g) = \frac{P_{t-1}(i,g)}{A_t(i,g)P_{t-1}} = p_{t-1}(i,g)\frac{A_{t-1}}{A_t}$$

► Single idiosyncratic state

$$\mu_{t-1}(i,g) = \frac{P_{t-1}(i,g)}{A_t(i,g)P_{t-1}} = p_{t-1}(i,g)\frac{A_{t-1}}{A_t}$$

▶ Aggregate state variables  $\Omega_t = \{\tau_{t+i}, M_{t+i}, \Gamma_{t+i}\}_{i=0}^{\infty}$ 

► Single idiosyncratic state

$$\mu_{t-1}(i,g) = \frac{P_{t-1}(i,g)}{A_t(i,g)P_{t-1}} = p_{t-1}(i,g)\frac{A_{t-1}}{A_t}$$

- ▶ Aggregate state variables  $\Omega_t = \{\tau_{t+i}, M_{t+i}, \Gamma_{t+i}\}_{i=0}^{\infty}$
- ► Two options: change, don't change

► Single idiosyncratic state

$$\mu_{t-1}(i,g) = \frac{P_{t-1}(i,g)}{A_t(i,g)P_{t-1}} = p_{t-1}(i,g)\frac{A_{t-1}}{A_t}$$

- ▶ Aggregate state variables  $\Omega_t = \{\tau_{t+i}, M_{t+i}, \Gamma_{t+i}\}_{i=0}^{\infty}$
- ► Two options: change, don't change
- ► No price-change

$$V^{NC}(\mu_{t-1}(i), \Omega_t) = \bar{\Pi}\left(\frac{\mu_{t-1}(i)}{1 + \pi_t}, w_t, \tau_t\right) + \beta E_t V\left(\frac{\mu_{t-1}(i)e^{\varepsilon_{t+1}(i)}}{1 + \pi_t}, \Omega_{t+1}\right),$$

# Firms' dynamic program, cont.

► Price change

$$V^{C}(\Omega_{t}) = \max_{\mathbf{p}_{t}^{*}(i)} \left\{ \Pi(\mathbf{p}_{t}^{*}(i), w_{t}, \tau_{t}) - \phi + \beta E_{t} V\left(\mathbf{p}_{t}^{*}(i) e^{\varepsilon_{t+1}(i)}, \Omega_{t+1}\right) \right\}.$$

# Firms' dynamic program, cont.

▶ Price change

$$V^{C}(\Omega_{t}) = \max_{\mathbf{p}_{t}^{*}(i)} \left\{ \Pi(\mathbf{p}_{t}^{*}(i), w_{t}, \tau_{t}) - \phi + \beta E_{t} V\left(\mathbf{p}_{t}^{*}(i) e^{\varepsilon_{t+1}(i)}, \Omega_{t+1}\right) \right\}.$$

▶ Value function

$$V\left(\mu_{t-1}(i),\Omega_{t}\right) = \max_{\left\{C,NC\right\}} \left[V^{NC}\left(\mu_{t-1}(i),\Omega_{t}\right),V^{C}\left(\Omega_{t}\right)\right].$$

# Monetary and fiscal policy

▶ Money supply growth: AR(1) with a drift

$$\log(M_t/M_{t-1}) = g_{Mt} = \mu_M + \rho_M g_{Mt-1} + \varepsilon_{Mt}$$

## Monetary and fiscal policy

 $\blacktriangleright$  Money supply growth: AR(1) with a drift

$$\log(M_t/M_{t-1}) = g_{Mt} = \mu_M + \rho_M g_{Mt-1} + \varepsilon_{Mt}$$

ightharpoonup Exogenous value-added tax rate  $\tau_t$ 

$$\tau_t = \tau_{t-1} + \varepsilon_{\tau t}$$

#### Monetary and fiscal policy

▶ Money supply growth: AR(1) with a drift

$$\log(M_t/M_{t-1}) = g_{Mt} = \mu_M + \rho_M g_{Mt-1} + \varepsilon_{Mt}$$

ightharpoonup Exogenous value-added tax rate  $\tau_t$ 

$$\tau_t = \tau_{t-1} + \varepsilon_{\tau t}$$

▶ Revenues are redistributed lump-sum

$$M_t - M_{t-1} + \frac{\tau_t}{1 + \tau_t} P_t C_t = T_t$$

#### Equilibrium

- 1. Household maximizes utility subject to budget constraint taking prices, wages as given
- Firms set nominal prices to maximize their value functions, taking their relative prices and idiosyncratic technology, and the future path of aggregate variables as given.
- 3. Money supply equals aggregate demand  $M_t = P_t C_t$ .
- 4. Money supply growth, taxes follow exogenous path.
- 5. Market clearing in the goods, bond, labor markets.

## Numerical solution: Steady state

► No aggregate uncertainty

## Numerical solution: Steady state

- ► No aggregate uncertainty
- ► Aggregate endogenous variables are constant
  - inflation:  $\pi_t = \pi = \mu_M/(1-\rho_M)$ , real wage:  $w_t$  constant
  - $\blacktriangleright$  distribution over idiosyncratic state variables  $\Gamma$  is time-invariant

#### Numerical solution: Steady state

- ► No aggregate uncertainty
- ► Aggregate endogenous variables are constant
  - inflation:  $\pi_t = \pi = \mu_M/(1 \rho_M)$ , real wage:  $w_t$  constant
  - $\blacktriangleright$  distribution over idiosyncratic state variables  $\Gamma$  is time-invariant
- $\triangleright$  Iteration in w
  - 1. Guess a value  $w_0$  (implies an aggregate supply Y)
  - 2. For  $w_i = w_{i-1}$  solve for value and policy functions
  - 3. Calculate equilibrium quality-adjusted relative price distribution  $(\Gamma_i)$
  - 4. Calculate aggregate demand  $(C_t)$
  - 5. If excess demand, increase  $w_{i+1}$ ; repeat until convergence



#### Numerical solution: Transitional dynamics

- ▶ One time persistent/permanent shock to  $g_M, \tau$ 
  - Shooting
  - ightharpoonup Assume new SS reached in T periods

#### Numerical solution: Transitional dynamics

- ▶ One time persistent/permanent shock to  $g_M$ ,  $\tau$ 
  - Shooting
  - ightharpoonup Assume new SS reached in T periods
  - ▶ Iterate on inflation path
    - 1. Guess inflation path  $\{\pi_1, \pi_2, ..., \pi_T\}$
    - 2. Money growth implies an output growth and real wage  $\{w_t\}$  path
    - 3. Calculate value- and policy functions by backward induction
    - 4. Calculate price distribution path
    - 5. Obtain resulting inflation path