Reconciling Hayek’s and Keynes’ views of recessions

Paul Beaudry, Dana Galizia & Franck Portier

Vancouver School of Economics, Carleton University & Toulouse School of Economics

ESSIM, Tarragona
May 27, 2015
0. Introduction
Recessions

- Recessions often come after periods of rapid accumulation of assets (productive capital, houses, durable goods)
- Two opposite views of economic policy in those recessions
 - Hayek
 - Keynes
0. Introduction

Recessions

- Recessions often come after periods of rapid accumulation of assets (productive capital, houses, durable goods)
- Two opposite views of economic policy in those recessions
 - Hayek
 - Keynes
0. Introduction

Recessions

- Recessions often come after periods of rapid accumulation of assets (productive capital, houses, durable goods)
- Two opposite views of economic policy in those recessions
 - Hayek
 - Keynes
0. Introduction

Recessions

- Recessions often come after periods of rapid accumulation of assets (productive capital, houses, durable goods)
- Two opposite views of economic policy in those recessions
 - Hayek
 - Keynes
0. Introduction
Two opposite views

The Liquidationist View
(Friedrich Hayek)

- Recessions are needed to cleanse the economy.
- Gvt spendings, aggregate demand management only delays necessary adjustment

The Aggregate Demand View
(John Maynard Keynes)

- Recessions are periods of insufficient demand
- Activist fiscal policy is needed
0. Introduction
Two opposite views

The Liquidationist View (Friedrich Hayek)

- Recessions are needed to cleanse the economy.
- Gvt spendings, aggregate demand management only delays necessary adjustment

The Aggregate Demand View (John Maynard Keynes)

- Recessions are periods of insufficient demand
- Activist fiscal policy is needed
0. Introduction
Two opposite views

The Liquidationist View (Friedrich Hayek)
- Recessions are needed to cleanse the economy.
- Gvt spendings, aggregate demand management only delays necessary adjustment

The Aggregate Demand View (John Maynard Keynes)
- Recessions are periods of insufficient demand
- Activist fiscal policy is needed
0. Introduction
Two opposite views

The Liquidationist View (Friedrich Hayek)
- Recessions are needed to cleanse the economy.
- Gvt spendings, aggregate demand management only delays necessary adjustment

The Aggregate Demand View (John Maynard Keynes)
- Recessions are periods of insufficient demand
- Activist fiscal policy is needed
0. Introduction
This Paper

- We show that the two views are not mutually exclusive
- “Over-” (“mal-”) accumulation of physical assets creates the need for liquidation \rightarrow recession
- This liquidation will cause the economy to function particularly inefficiently.
- Some stimulative policies may remain desirable even if they postpone a recovery.
0. Introduction
This Paper

- We show that the two views are not mutually exclusive
- “Over-” (“mal-”) accumulation of physical assets creates the need for \textit{liquidation} \Rightarrow recession
- This \textit{liquidation} will cause the economy to function particularly inefficiently.
- Some stimulative policies may remain desirable even if they postpone a recovery.
0. Introduction
This Paper

- We show that the two views are not mutually exclusive
- “Over-” (“mal-”) accumulation of physical assets creates the need for liquidation \leadsto recession
- This liquidation will cause the economy to function particularly inefficiently.
- Some stimulative policies may remain desirable even if they postpone a recovery.
0. Introduction
This Paper

- We show that the two views are not mutually exclusive
- “Over-” (“mal-”) accumulation of physical assets creates the need for *liquidation* \leadsto recession
- This *liquidation* will cause the economy to function particularly inefficiently.
- Some stimulative policies may remain desirable even if they postpone a recovery.
0. Introduction

Main Ingredients

- Environment with decentralized markets & flexible prices.
- Two imperfections:
 - Labor market matching friction in the spirit of Diamond–Mortensen–Pissarides implies unemployment risk.
 - Adverse selection in the insurance market: unemployment risk is not (fully) insurable.
0. Introduction
Main Ingredients

- **Environment with decentralized markets & flexible prices.**
- **Two imperfections:**
 - Labor market matching friction in the spirit of Diamond-Mortensen-Pissarides \leadsto unemployment risk
 - Adverse selection in the insurance market: unemployment risk is not (fully) insurable.
0. Introduction
Main Ingredients

- Environment with decentralized markets & flexible prices.
- Two imperfections:
 - Labor market matching friction in the spirit of Diamond-Mortensen-Pissarides → unemployment risk
 - Adverse selection in the insurance market: unemployment risk is not (fully) insurable.
0. Introduction
Main Ingredients

- Environment with decentralized markets & flexible prices.
- Two imperfections:
 - Labor market matching friction in the spirit of Diamond-Mortensen-Pissarides \leadsto unemployment risk
 - Adverse selection in the insurance market: unemployment risk is not (fully) insurable.
0. Introduction
What we do not do

- We do not propose a theory of why the economy might find itself with a (too) large stock of houses, durables and/or capital goods.
 - Noisy news
 - Lax monetary policy
 - Exuberance
 - Perfect foresights limit cycle
0. Introduction
What we do not do

[] Noisy news
[] Lax monetary policy
[] Exuberance
[] Perfect foresights limit cycle

- We do not propose a theory of why the economy might find itself with a (too) large stock of houses, durables and/or capital goods.
0. Introduction
What we do not do

- We do not propose a theory of why the economy might find itself with a (too) large stock of houses, durables and/or capital goods.
 - Noisy news
 - Lax monetary policy
 - Exuberance
 - Perfect foresights limit cycle
We do not propose a theory of why the economy might find itself with a (too) large stock of houses, durables and/or capital goods.

- Noisy news
- Lax monetary policy
- Exuberance
- Perfect foresights limit cycle
0. Introduction
What we do not do

- We do not propose a theory of why the economy might find itself with a (too) large stock of houses, durables and/or capital goods.
 - Noisy news
 - Lax monetary policy
 - Exuberance
 - Perfect foresights limit cycle
0. Introduction
What I will present

▶ Static version of model (except for a few slides).
▶ Version where “capital” is indeed “durable goods” or “houses” (simpler)
0. Introduction
What I will present

▶ Static version of model (except for a few slides).
▶ Version where “capital” is indeed “durable goods” or ”houses” (simpler)
References

- Lucas and Prescott [1974], Lucas [1990]
- Lagos and Wright [2005]
- Angeletos and La’O [2013]
- Carroll [1992]
- Guerrieri and Lorenzoni [2009]
- Challe and Ragot [2013]
- Ravn and Sterk [2012]
- den Haan, Rendahl, and Riegler [2014]
- Chamley [2014], Kaplan and Menzio [2013], Heathcote and Perri [2012]
0. Introduction

Roadmap

1. Model setup
2. Equilibrium
3. Interesting Properties of the Static Equilibrium
4. Extensions / Dynamics / Policy Trade-offs
0. Introduction
Roadmap

1. Model setup
2. Equilibrium
3. Interesting Properties of the Static Equilibrium
4. Extensions / Dynamics / Policy Trade-offs
1. Model setup

Figure 1: Overview: timeline

- Morning
- Afternoon
1. Model setup

Figure 2: Overview: Initial goods

\[X_j \text{ GIVEN} \]

\[\text{MORNING} \quad \text{AFTERNOON} \]
1. Model setup

Figure 3: Overview: markets

LABOR (FRICTIONS)

MORNING AFTERNOON
1. Model setup

Figure 4: Overview: markets
1. Model setup

Figure 5: Overview: markets

- **Labor (frictions)**
 - Morning (durable) good
 - Afternoon (centralized) good

Labor and (non-d.) good
1. Model setup

Figure 6: Overview: firms
1. Model setup

Figure 7: Overview: firms
1. Model setup

Figure 8: Overview: households
1. Model setup

Figure 9: Overview: households
1. Model setup

Figure 10: Overview: households
1. Model setup

Figure 11: Overview: households

- Morning
- Afternoon
- HH works, Buys
- And balances books

aj
1. Model setup

Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Afternoon is centralized, all the action is in the morning
- Frictions on the morning labor market
- Unemployment risk that is not insured
- No coordination between firms, shoppers and workers
- Shoppers and workers credit/debit a bank account that they will clear in the afternoon.
- Morning good is referred to as “durable” as it will be in the dynamic extension
- Afternoon good is non durable and serves as the numéraire.
1. Model setup

Checklist

- \(X \): exogenous amount of good that is already in households' hands
- Mass \(L \) of households always looking for jobs
- Afternoon is centralized, all the action is in the morning
- Frictions on the morning labor market
- Unemployment risk that is not insured
- No coordination between firms, shoppers and workers
- Shoppers and workers credit/debit a bank account that they will clear in the afternoon.
- Morning good is referred to as “durable” as it will be in the dynamic extension
- Afternoon good is non durable and serves as the numéraire.
1. Model setup

Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Afternoon is centralized, all the action is in the morning
- Frictions on the morning labor market
- Unemployment risk that is not insured
- No coordination between firms, shoppers and workers
- Shoppers and workers credit/debit a bank account that they will clear in the afternoon.
- Morning good is referred to as “durable” as it will be in the dynamic extension
- Afternoon good is non durable and serves as the numéraire.
1. Model setup

Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Afternoon is centralized, all the action is in the morning
- Frictions on the morning labor market
- Unemployment risk that is not insured
- No coordination between firms, shoppers and workers
- Shoppers and workers credit/debit a bank account that they will clear in the afternoon.
- Morning good is referred to as “durable” as it will be in the dynamic extension
- Afternoon good is non durable and serves as the numéraire.
1. Model setup
Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Afternoon is centralized, all the action is in the morning
- Frictions on the morning labor market
- Unemployment risk that is not insured
- No coordination between firms, shoppers and workers
- Shoppers and workers credit/debit a bank account that they will clear in the afternoon.
- Morning good is referred to as “durable” as it will be in the dynamic extension
- Afternoon good is non durable and serves as the numéraire.
1. Model setup

Checklist

- **X**: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Afternoon is centralized, all the action is in the morning
- Frictions on the morning labor market
- Unemployment risk that is not insured
- No coordination between firms, shoppers and workers
- Shoppers and workers credit/debit a bank account that they will clear in the afternoon.
- Morning good is referred to as “durable” as it will be in the dynamic extension
- Afternoon good is non durable and serves as the numéraire.
1. Model setup

Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Afternoon is centralized, all the action is in the morning
- Frictions on the morning labor market
- Unemployment risk that is not insured
- No coordination between firms, shoppers and workers
- Shoppers and workers credit/debit a bank account that they will clear in the afternoon.

- Morning good is referred to as “durable” as it will be in the dynamic extension
- Afternoon good is non durable and serves as the numéraire.
1. Model setup

Checklist

▶ X: exogenous amount of good that is already in households hands
▶ Mass L of households always looking for jobs
▶ Afternoon is centralized, all the action is in the morning
▶ Frictions on the morning labor market
▶ Unemployment risk that is not insured
▶ No coordination between firms, shoppers and workers
▶ Shoppers and workers credit/debit a bank account that they will clear in the afternoon.
▶ Morning good is referred to as “durable” as it will be in the dynamic extension
▶ Afternoon good is non durable and serves as the numéraire.
1. Model setup

Checklist

- X: exogenous amount of good that is already in households' hands
- Mass L of households always looking for jobs
- Afternoon is centralized, all the action is in the morning
- Frictions on the morning labor market
- Unemployment risk that is not insured
- No coordination between firms, shoppers, and workers
- Shoppers and workers credit/debit a bank account that they will clear in the afternoon.
- Morning good is referred to as “durable” as it will be in the dynamic extension
- Afternoon good is non-durable and serves as the numéraire.
1. Model setup
Preferences

\[U(X_j + e_j) - \nu(l_j) + V(-p_e + I_j w \ell_j). \]

- Initial endowment of \(X_j \) units of durable good.
- Continuation value \(V(a_j) \) given \((in this talk) \)
- \(I_j = \begin{cases} 1 & \text{if employed} \\ 0 & \text{if unemployed} \end{cases} \)
1. Model setup

Preferences

- Initial endowment of X_j units of durable good.
- Continuation value $V(a_j)$ given (*in this talk*)

$$U(X_j + e_j) - \nu(\ell_j) + V(-pe_j + I_j w\ell_j).$$

$$I_j = \begin{cases} 1 & \text{if employed} \\ 0 & \text{if unemployed} \end{cases}$$
1. Model setup
Preferences

- Initial endowment of X_j units of durable good.
- Continuation value $V(a_j)$ given (in this talk)

$$U(X_j + e_j) - \nu(\ell_j) + V(-pe_j + I_j w\ell_j).$$

$$I_j = \begin{cases}
1 & \text{if employed} \\
0 & \text{if unemployed}
\end{cases}$$
1. Model setup

Preferences

\[U(X_j + e_j) - \nu(\ell_j) + V(-pe_j + I_j w\ell_j). \]

- Initial endowment of \(X_j \) units of durable good.
- Continuation value \(V(a_j) \) given (in this talk)

\[I_j = \begin{cases}
1 & \text{if employed} \\
0 & \text{if unemployed}
\end{cases} \]
1. Model setup

Firms

- Vacancy posting cost Φ.
- Decreasing-returns-to-scale production function $F(\ell)$.
- Net production of a firm hiring ℓ hours of labor from one worker is $F(\ell) - \Phi$.
1. Model setup

Firms

- Vacancy posting cost Φ.
- Decreasing-returns-to-scale production function $F(\ell)$.
- Net production of a firm hiring ℓ hours of labor from one worker is $F(\ell) - \Phi$.
1. Model setup

Firms

- Vacancy posting cost Φ.
- Decreasing-returns-to-scale production function $F(\ell)$.
- Net production of a firm hiring ℓ hours of labor from one worker is $F(\ell) - \Phi$.
1. Model setup
Matching

- $N = \text{number firms who decide to search for workers.}$
- $M(N, L) = \text{number of matches (CRS).}$
- “Competitive” match surplus split $\leadsto \text{within-a-match hours demand :}$

$$F'(\ell) = \frac{w}{p}$$
1. Model setup

Matching

- $N = \text{number firms who decide to search for workers.}$
- $M(N, L) = \text{number of matches (CRS).}$
- “Competitive” match surplus split $\sim \text{within-a-match hours demand}:$

$$F'(\ell) = \frac{w}{p}$$
1. Model setup

Matching

- \(N \) = number firms who decide to search for workers.
- \(M(N, L) \) = number of matches (CRS).
- “Competitive” match surplus split \(\rightsquigarrow \) \textit{within-a-match} hours demand:
 \[F'(\ell) = \frac{w}{p} \]
1. Model setup
Normalization and Assumption

- Normalization: \(L = 1 \)
- Symmetry: \(X_j = X \)
1. Model setup
Normalization and Assumption

- Normalization: $L = 1$
- Symmetry: $X_j = X$
1. Model setup
Household morning decisions

- Worker problem:

\[
\max_{\ell_j} -\nu(\ell_j) + V\left(-pe_j + I_jw\ell_j\right)
\]

- Shopper problem:

\[
\max_{e_j} U(X + e_j) + \mu V(w\ell_j - pe_j) + (1 - \mu) V(-pe_j)
\]

\[\mu \equiv M(N, L)/L \text{ job finding probability.}\]
1. Model setup
Household morning decisions

- **Worker problem:**

\[
\max_{\ell_j} -\nu(\ell_j) + V\left(-pe_j + \underbrace{I_j w\ell_j}_{a_j} \right)
\]

- **Shopper problem:**

\[
\max_{e_j} U(X + e_j) + \mu V (w\ell_j - pe_j) + (1 - \mu) V (-pe_j)
\]

\[\mu \equiv M(N, L)/L \text{ job finding probability.}\]
1. Model setup
 Deriving the value function $V(a)$

- Not here...

- $V(a)$ is strictly concave, with the key property that $V'(a_1) > V'(a_2)$ if $a_1 < 0 < a_2$
1. Model setup
Deriving the value function $V(a)$

- Not here...
- $V(a)$ is strictly concave, with the key property that $V'(a_1) > V'(a_2)$ if $a_1 < 0 < a_2$
Figure 12: The Value Function $V(a)$
Figure 12: The Value Function $V(a)$
Figure 12: The Value Function $V(a)$

$a_1 < 0$
Figure 12: The Value Function $V(a)$
Figure 12: The Value Function $V(a)$
Figure 12: The Value Function $V(a)$

$V'(a_1) < 0$

$V'(a_2) > 0$
0. Introduction
Roadmap

1. Model setup
2. Equilibrium
3. Interesting Properties of the Static Equilibrium
4. Extensions / Dynamics / Policy Trade-offs
2. Equilibrium

- Afternoon: $V(a_j)$
- Morning: markets clear and agents optimize
2. Equilibrium

- Afternoon: $V(a_j)$
- Morning: markets clear and agents optimize
The equilibrium is given by the following equations

\[\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V'(w \ell - p(c - X)) \]

\[+ \left[1 - \frac{M(N, L)}{L} \right] V'(-p(c - X)) \]

\[\nu'(\ell) = V'(w \ell - p(c - X)) w \]

\[pF'(\ell) = w \]

\[\frac{M(N, L)}{N} [pF(\ell) - w \ell] = p \Phi \]

\[M(N, L)F(\ell) = L(c - X) + N \Phi \]
2. Equilibrium
First sub-period

The equilibrium is given by the following equations

\[
\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V' (w \ell - p(c - X)) \\
+ \left[1 - \frac{M(N, L)}{L} \right] V' (-p(c - X))
\]

\[
\nu'(\ell) = V' (w \ell - p(c - X)) w
\]

\[
pF'(\ell) = w
\]

\[
\frac{M(N, L)}{N} [pF(\ell) - w \ell] = p\Phi
\]

\[
M(N, L)F(\ell) = L(c - X) + N\Phi
\]
The equilibrium is given by the following equations:

\[
\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V' (w\ell - p(c - X)) \\
+ \left[1 - \frac{M(N, L)}{L}\right] V' (-p(c - X))
\]

\[
\nu'(\ell) = V' (w\ell - p(c - X)) w
\]

\[
pF'(\ell) = w
\]

\[
\frac{M(N, L)}{N} [pF(\ell) - w\ell] = p\Phi
\]

\[
M(N, L)F(\ell) = L(c - X) + N\Phi
\]
2. Equilibrium
First sub-period

The equilibrium is given by the following equations

\[
\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V' \left(w\ell - p(c - X) \right) + \left[1 - \frac{M(N, L)}{L} \right] V' \left(-p(c - X) \right)
\]

\[
\nu'(\ell) = V' \left(w\ell - p(c - X) \right) w
\]

\[
pF'(\ell) = w
\]

\[
\frac{M(N, L)}{N} [pF(\ell) - w\ell] = p\Phi
\]

\[
M(N, L)F(\ell) = L(c - X) + N\Phi
\]
2. Equilibrium
First sub-period

- The equilibrium is given by the following equations

\[
\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V' (w \ell - p(c - X)) \\
+ \left[1 - \frac{M(N, L)}{L} \right] V' (-p(c - X))
\]

\[
\nu'(\ell) = V' (w \ell - p(c - X)) w
\]

\[
pF'(\ell) = w
\]

\[
\frac{M(N, L)}{N} \left[pF(\ell) - w \ell \right] = p\Phi
\]

\[
M(N, L)F(\ell) = L(c - X) + N\Phi
\]
2. Equilibrium
First sub-period

- The equilibrium is given by the following equations

\[
\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V' \left(w\ell - p(c - X) \right)
+ \left[1 - \frac{M(N, L)}{L} \right] V' \left(-p(c - X) \right)
\]

\[
\nu'(\ell) = V' \left(w\ell - p(c - X) \right) w
\]

\[
pF'(\ell) = w
\]

\[
\frac{M(N, L)}{N} \left[pF(\ell) - w\ell \right] = p\Phi
\]

\[
M(N, L)F(\ell) = L(c - X) + N\Phi
\]
2. Equilibrium
A labor market wedge

\[
\frac{\nu'(\ell)}{U'(c)} \left\{ 1 + (1 - \mu) \left[\frac{V'(-p(c - X))}{V'(w\ell - p(c - X))} - 1 \right] \right\} = F'(\ell)
\]

1+ labor wedge
0. Introduction
Roadmap

1. Model setup
2. Equilibrium
3. Interesting Properties of the Static Equilibrium
4. Extensions / Dynamics / Policy Trade-offs
Our main goal now is to explore the effects of changes in X on equilibrium outcomes.

- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- In this talk I restrict the analysis to

 $M(N, L) = \min\{N, L\}$
3. Interesting Properties of the Static Equilibrium
Goal and parametric restrictions

- Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- In this talk I restrict the analysis to $M(N, L) = \min\{N, L\}$.
3. Interesting Properties of the Static Equilibrium
Goal and parametric restrictions

- Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- In this talk I restrict the analysis to $M(N, L) = \min\{N, L\}$
3. Interesting Properties of the Static Equilibrium
Goal and parametric restrictions

- Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- In this talk I restrict the analysis to
 \[M(N, L) = \min\{N, L\} \]
3. Interesting Properties of the Static Equilibrium

Goal and parametric restrictions

- Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- In this talk I restrict the analysis to

 $M(N, L) = \min\{N, L\}$
Figure 13: The Matching Function $M(N, L)$
3. Interesting Properties of the Static Equilibrium
Goal and parametric restrictions

▶ Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
▶ Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
▶ Can liquidation periods be socially painful?
▶ We restrict the analysis to
 $M(N, L) = \min\{N, L\}$
 $V(a) = \begin{cases}
 (1 + \tau) \cdot v \cdot a & \text{if } a < 0 \\
 v \cdot a & \text{if } a \geq 0
 \end{cases}$
3. Interesting Properties of the Static Equilibrium
Goal and parametric restrictions

- Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- We restrict the analysis to
 \[M(N, L) = \min\{N, L\} \]
 \[V(a) = \begin{cases}
 (1 + \tau) \cdot v \cdot a & \text{if } a < 0 \\
 v \cdot a & \text{if } a \geq 0
 \end{cases} \]
Figure 14: The Value Function $V(a)$
Figure 14: The Value Function $V(a)$
Figure 14: The Value Function $V(a)$

The value function $V(a)$ is shown in the diagram. The slope at $a_1 < 0$ is given by $(1 + \tau)v$.
Figure 14: The Value Function $V(a)$

\[V(a) \]

\[a_1 < 0 \]

\[a_2 > 0 \]

slope ν

slope $(1 + \tau)\nu$
3. Interesting Properties of the Static Equilibrium
With piecewise linear V

$$\frac{\nu'(\ell)}{U'(c)} \left\{ 1 + (1 - \mu) \left[\frac{V'(-p(c-X))}{V'(w\ell - p(c-X))} \right] - 1 \right\} = F'(\ell)$$
3. Interesting Properties of the Static Equilibrium
Two key parameters (1)
3. Interesting Properties of the Static Equilibrium
Two key parameters (2)
Figure 15: Proposition 1: Existence and Uniqueness
Figure 15: Proposition 1: Existence and Uniqueness
Figure 15: Proposition 1: Existence and Uniqueness

Unique equilibrium
Figure 15: Proposition 1: Existence and Uniqueness

- Unique equilibrium
- Multiple equilibria
Figure 16: Proposition 2: The three regimes
Figure 16: Proposition 2: The three regimes

$0 \quad X^* \quad X$
Figure 16: Proposition 2: The three regimes

Full employment

0 \quad X^* \quad X^{**} \quad X
Figure 16: Proposition 2: The three regimes
Figure 16: Proposition 2: The three regimes

- Full employment
- Unemployment
- No employment
3. Interesting Properties of the Static Equilibrium Consumption as a function of X

- How does vary equilibrium consumption when X increases?
 - In the full employment regime:
 - Marginal utility of spendings decrease with $X \rightarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime:
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime:
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime:
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime:
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X
- In the no employment regime:
 - $c = X$
 - c increases one to one with X
- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?

- In the full employment regime:
 - Marginal utility of spendings decrease with $X \rightsquigarrow \text{less production}$
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spends decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?

- In the full employment regime:
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - "Multiplier > 1"
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime:
 - Marginal utility of spendings decrease with $X \simless$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X
- In the no employment regime:
 - $c = X$
 - c increases one to one with X
- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime:
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?

- In the full employment regime:
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime:
 - Marginal utility of spendings decrease with $X \approx$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime:
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium Consumption as a function of X

- **How does vary equilibrium consumption when X increases?**

- **In the full employment regime:**
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- **In the no employment regime:**
 - $c = X$
 - c increases one to one with X

- **In the unemployment regime**
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime:
 - Marginal utility of spendings decrease with $X \Rightarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime:
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium

Figure 17: Proposition 3, Consumption as function of X.

![Graph showing consumption as a function of X with critical points X^*, X, and X^{**}]
3. Interesting Properties of the Static Equilibrium

Is there deficient demand in the unemployment regime?
3. Interesting Properties of the Static Equilibrium
Is there deficient demand in the unemployment regime?

Definition: *Deficient demand* is a situation where
- increased demand by one agent would favor increased demand by other agents,
- a feasible coordinated increased in demand by all agents would leave everyone better off.
3. Interesting Properties of the Static Equilibrium
Is there deficient demand in the unemployment regime?

Definition: Deficient demand is a situation where
- increased demand by one agent would favor increased demand by other agents,
- a feasible coordinated increased in demand by all agents would leave everyone better off.

Proposition 4
When the economy is in the unemployment regime ($X^* < X < X^{**}$), there is deficient demand.
3. Interesting Properties of the Static Equilibrium
Effects of changes in X on welfare
3. Interesting Properties of the Static Equilibrium
Effects of changes in X on welfare

Proposition 5 (Welfare)

- *If the economy is the unemployment regime and if τ is large enough (close enough to $\bar{\tau}$),*
- *then an increase in X leads to a fall in welfare.*
3. Interesting Properties of the Static Equilibrium

Figure 18: Welfare as function of X
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government in the morning
- \(u(X + e + G_n) + \gamma \tilde{u}(G_u) \)
- Government:
 - purchase \(G_n \) that is perfectly substitutable with private consumption
 - purchase \(G_w \) that is useless (\(\gamma = 0 \)), or enters additively in utility
 - Lump-sum taxes
 - Balance budget
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government in the morning
- $u(X + e + G_n) + \gamma \tilde{u}(G_u)$
- Government:
 - purchase G_n that is perfectly substitutable with private consumption
 - purchase G_w that is useless ($\gamma = 0$), or enters additively in utility
 - Lump-sum taxes
 - Balance budget
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government in the morning
- \(u(X + e + G_n) + \gamma \tilde{u}(G_u) \)
- Government:
 - purchase \(G_n \) that is perfectly substitutable with private consumption
 - purchase \(G_w \) that is useless (\(\gamma = 0 \)), or enters additively in utility
 - Lump-sum taxes
 - Balance budget
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government in the morning
- $u(X + e + G_n) + \gamma \tilde{u}(G_u)$
- Government:
 - purchase G_n that is perfectly substitutable with private consumption
 - purchase G_w that is useless ($\gamma = 0$), or enters additively in utility
 - Lump-sum taxes
 - Balance budget
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government in the morning
- \(u(X + e + G_n) + \gamma \tilde{u}(G_u) \)
- Government:
 - purchase \(G_n \) that is perfectly substitutable with private consumption
 - purchase \(G_w \) that is useless (\(\gamma = 0 \)), or enters additively in utility
 - Lump-sum taxes
 - Balance budget
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government in the morning
- \(u(X + e + G_n) + \gamma \tilde{u}(G_u) \)
- Government:
 - purchase \(G_n \) that is perfectly substitutable with private consumption
 - purchase \(G_w \) that is useless (\(\gamma = 0 \)), or enters additively in utility
 - Lump-sum taxes
 - Balance budget
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government in the morning
- \(u(X + e + G_n) + \gamma \tilde{u}(G_u) \)
- Government:
 - purchase \(G_n \) that is perfectly substitutable with private consumption
 - purchase \(G_w \) that is useless (\(\gamma = 0 \)), or enters additively in utility
 - Lump-sum taxes
 - Balance budget
Proposition 6 (Fiscal Multipliers)

- An increase in G_n has no effect
- An increase in G_w increases activity.
- The multiplier de/dG_w is
 - greater than one in the unemployment regime
 - smaller than one in the full-employment regime
3. Interesting Properties of the Static Equilibrium
Introducing government spending (continued)

Proposition 6 (Fiscal Multipliers)

- *An increase in* G_n *has no effect*
- *An increase in* G_w *increases activity.*
- *The multiplier* $\frac{d\delta e}{dG_w}$ *is*
 - greater than one in the unemployment regime
 - smaller than one in the full-employment regime
Proposition 6 (Fiscal Multipliers)

- An increase in G_n has no effect
- An increase in G_w increases activity.
- The multiplier de/dG_w is
 - greater than one in the unemployment regime
 - smaller than one in the full-employment regime
3. Interesting Properties of the Static Equilibrium

Introducing government spending (continued)

Proposition 6 (Fiscal Multipliers)

- An increase in G_n has no effect
- An increase in G_w increases activity.
- The multiplier $\frac{de}{dG_w}$ is
 - greater than one in the unemployment regime
 - smaller than one in the full-employment regime
3. Interesting Properties of the Static Equilibrium
Introducing government spending (continued)

Proposition 6 (Fiscal Multipliers)

- An increase in G_n has no effect
- An increase in G_w increases activity.
- The multiplier de/dG_w is
 - greater than one in the unemployment regime
 - smaller than one in the full-employment regime
Proposition 7 (Fiscal policy and welfare)

- *In the unemployment regime*
- *in the zone where a fall in X would increase welfare,*
- *an increase in G_w will increase welfare.*
0. Introduction

Roadmap

1. Model setup
2. Equilibrium
3. Interesting Properties of the Static Equilibrium
4. Extensions / Dynamics / Policy Trade-offs
4. Extensions / Dynamics / Policy Trade-offs
Relaxing functional-form assumptions

► Results are robust to:
 ❌ Relaxing functional assumptions (matching function)
 ❌ Other ways of splitting the surplus (Nash Bargaining, directed search)
 ❌ Introduction of productive capital
 ❌ Addition of another good in the morning (cf Krugman)

► Simple characterization is not always possible
► but main results hold.
4. Extensions / Dynamics / Policy Trade-offs
Relaxing functional-form assumptions

- Results are robust to:
 - Relocating functional assumptions (matching function)
 - Other ways of splitting the surplus (Nash Bargaining, directed search)
 - Introduction of productive capital
 - Addition of another good in the morning (*cf* Krugman)

- Simple characterization is not always possible
- but main results hold.
Results are robust to:

- Relaxing functional assumptions (matching function)
- Other ways of splitting the surplus (Nash Bargaining, directed search)
- Introduction of productive capital
- Addition of another good in the morning (cf. Krugman)

Simple characterization is not always possible

but main results hold.
4. Extensions / Dynamics / Policy Trade-offs

Relaxing functional-form assumptions

- Results are robust to:
 - Relaxing functional assumptions (matching function)
 - Other ways of splitting the surplus (Nash Bargaining, directed search)
 - Introduction of productive capital
 - Addition of another good in the morning (cf Krugman)

- Simple characterization is not always possible
- but main results hold.
4. Extensions / Dynamics / Policy Trade-offs
Relaxing functional-form assumptions

- Results are robust to:
 - Relaxing functional assumptions (matching function)
 - Other ways of splitting the surplus (Nash Bargaining, directed search)
 - Introduction of productive capital
 - Addition of another good in the morning (*cf* Krugman)

- Simple characterization is not always possible
- but main results hold.
4. Extensions / Dynamics / Policy Trade-offs
Relaxing functional-form assumptions

- Results are robust to:
 - Relaxing functional assumptions (matching function)
 - Other ways of splitting the surplus (Nash Bargaining, directed search)
 - Introduction of productive capital
 - Addition of another good in the morning (cf Krugman)

- Simple characterization is not always possible
- but main results hold.
4. Extensions / Dynamics / Policy Trade-offs
Relaxing functional-form assumptions

- Results are robust to:
 - Relaxing functional assumptions (matching function)
 - Other ways of splitting the surplus (Nash Bargaining, directed search)
 - Introduction of productive capital
 - Addition of another good in the morning (cf. Krugman)

- Simple characterization is not always possible
- but main results hold.
We endogenize the absence of unemployment insurance.

Information friction: adverse selection.

We can then compute the constrained efficient planner allocations.
4. Extensions / Dynamics / Policy Trade-offs
Endogenous imperfect insurance

- We endogenize the absence of unemployment insurance.
- Information friction: adverse selection.
- We can then compute the constrained efficient planner allocations
4. Extensions / Dynamics / Policy Trade-offs

Endogenous imperfect insurance

- We endogenize the absence of unemployment insurance.
- Information friction: adverse selection.
- We can then compute the constrained efficient planner allocations.
4. Extensions / Dynamics / Policy Trade-offs
Dynamic Setup

- An infinite number of periods t,
- Each period consists of a morning and an afternoon
- The only financial trade is between morning and afternoon by assumption

\[X_{t+1} = (1 - \delta)X_t + \gamma e_t \]

\[\mathcal{U} = \sum_{t=0}^{\infty} \beta^t \left(U(c_t) - \nu(l_t) + V(a_t) \right) \]
4. Extensions / Dynamics / Policy Trade-offs

Dynamic Setup

- An infinite number of periods t,
- Each period consists of a morning and an afternoon
- The only financial trade is between morning and afternoon by assumption

$$X_{t+1} = (1 - \delta)X_t + \gamma e_t$$

$$U = \sum_{t=0}^{\infty} \beta^t \left(U(c_t) - \nu(\ell_t) + V(a_t) \right)$$
4. Extensions / Dynamics / Policy Trade-offs

Dynamic Setup

- An infinite number of periods t,
- Each period consists of a morning and an afternoon
- The only financial trade is between morning and afternoon by assumption

$$X_{t+1} = (1 - \delta)X_t + \gamma e_t$$

$$U = \sum_{t=0}^{\infty} \beta^t \left(U(c_t) - \nu(l_t) + V(a_t) \right)$$
4. Extensions / Dynamics / Policy Trade-offs

Dynamic Setup

- An infinite number of periods t,
- Each period consists of a morning and an afternoon
- The only financial trade is between morning and afternoon by assumption

$$X_{t+1} = (1 - \delta)X_t + \gamma e_t$$

$$U = \sum_{t=0}^{\infty} \beta^t \left(U(c_t) - \nu(l_t) + V(a_t) \right)$$
4. Extensions / Dynamics / Policy Trade-offs
Dynamic Setup

- An infinite number of periods t,
- Each period consists of a morning and an afternoon
- The only financial trade is between morning and afternoon by assumption

$$X_{t+1} = (1 - \delta)X_t + \gamma e_t$$

$$\mathcal{U} = \sum_{t=0}^{\infty} \beta^t \left(U(c_t) - \nu(l_t) + V(a_t) \right)$$
4. Extensions / Dynamics / Policy Trade-offs

Figure 19: Global Dynamics when $\beta = 0$

\[
-c'(X_t) < \frac{1 - \delta - \gamma}{\gamma} < -c'(X_t) < \frac{2 - \delta - \gamma}{\gamma} < -c'(X_t) > \frac{2 - \delta - \gamma}{\gamma}
\]
When X is high, the economy will converge with the SS with inefficiently low demand on the way.

- Welfare today would be increased by stimulating demand today.
- But this would imply higher X tomorrow,
- And therefore lower consumption in all subsequent periods until the liquidation is complete.
- This tradeoff is aimed at capturing the tension between the Keynesian and Hayekian prescriptions in recession.
4. Extensions / Dynamics / Policy Trade-offs

Policy Trade-off

- When X is high, the economy will converge with the SS with inefficiently low demand on the way.
- Welfare today would be increased by stimulating demand today.
- But this would imply higher X tomorrow,
- And therefore lower consumption in all subsequent periods until the liquidation is complete.
- This tradeoff is aimed at capturing the tension between the Keynesian and Hayekian prescriptions in recession.
4. Extensions / Dynamics / Policy Trade-offs

Policy Trade-off

▶ When X is high, the economy will converge with the SS with inefficiently low demand on the way.
▶ Welfare today would be increased by stimulating demand today.
▶ But this would imply higher X tomorrow,
▶ And therefore lower consumption in all subsequent periods until the liquidation is complete.
▶ This tradeoff is aimed at capturing the tension between the Keynesian and Hayekian prescriptions in recession.
When X is high, the economy will converge with the SS with inefficiency low demand on the way.

- Welfare today would be increased by stimulating demand today.
- But this would imply higher X tomorrow,
- And therefore lower consumption in all subsequent periods until the liquidation is complete.

- This tradeoff is aimed at capturing the tension between the Keynesian and Hayekian prescriptions in recession.
4. Extensions / Dynamics / Policy Trade-offs

Policy Trade-off

- When X is high, the economy will converge with the SS with inefficiently low demand on the way.
- Welfare today would be increased by stimulating demand today.
- But this would imply higher X tomorrow,
- And therefore lower consumption in all subsequent periods until the liquidation is complete.
- This tradeoff is aimed at capturing the tension between the Keynesian and Hayekian prescriptions in recession.
Proposition 8 (Aggregate demand management is desirable)

- Suppose the economy is in steady state in the unemployment regime.
- Then, to a first-order approximation, a (feasible) change in the path of expenditures from this steady state equilibrium will increase the present discounted value of expected welfare ...
- ... if and only if it increases the presented discounted sum of the resulting expenditure path, $\sum_{i=0}^{\infty} \beta^i e_{t+i}$.
- Aggregate demand management is therefore desirable.
5. Recap
Main Mechanism

▶ If the economy finds itself with an “excess” of accumulated goods (houses, durables and/or capital goods):
 × Consumers and firms will spend less because they already have a lot, *(Hayek view, this is the efficient thing to do)*
 × Firms will hire less as demand is low
 × Consumers will consume less by fear of being unemployed,
 × Spendings will therefore be low *(Keynes view, a (negative) multiplier shows up)*
 × etc...

▶ There is socially excessive precautionary savings

▶ Aggregate demand management (e.g. government spendings) can boost mutually beneficial trades ...

▶ ... but it will postpone the recovery by slowing down the liquidation process *(in the dynamic version of the model)*
5. Recap
Main Mechanism

- If the economy finds itself with an “excess” of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, *this is the efficient thing to do*)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 - etc...

- There is socially excessive precautionary savings

- Aggregate demand management (e.g. government spendings) can boost mutually beneficial trades ...

- ... but it will postpone the recovery by slowing down the liquidation process (*in the dynamic version of the model*)
If the economy finds itself with an “excess” of accumulated goods (houses, durables and/or capital goods):

- Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
- Firms will hire less as demand is low
- Consumers will consume less by fear of being unemployed,
- Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
- etc...

There is socially excessive precautionary savings

Aggregate demand management (e.g. government spendings) can boost mutually beneficial trades ...

... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
5. Recap
Main Mechanism

- If the economy finds itself with an “excess” of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, *this is the efficient thing to do*)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 - etc...

- There is socially excessive precautionary savings

- Aggregate demand management (e.g. government spendings) can boost mutually beneficial trades ...

- ... but it will postpone the recovery by slowing down the liquidation process (*in the dynamic version of the model*)
5. Recap
Main Mechanism

▶ If the economy finds itself with an “excess” of accumulated goods (houses, durables and/or capital goods):
 × Consumers and firms will spend less because they already have a lot, *(Hayek view, this is the efficient thing to do)*
 × Firms will hire less as demand is low
 × Consumers will consume less by fear of being unemployed,
 × Spendsings will therefore be low *(Keynes view, a (negative) multiplier shows up)*
 × etc...

▶ There is socially excessive precautionary savings
▶ Aggregate demand management (e.g. government spendings) can boost mutually beneficial trades ...
▶ ... but it will postpone the recovery by slowing down the liquidation process *(in the dynamic version of the model)*
5. Recap
Main Mechanism

- If the economy finds itself with an “excess” of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 - etc...

- There is socially excessive precautionary savings

- Aggregate demand management (e.g. government spendings) can boost mutually beneficial trades ...

- ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
5. Recap
Main Mechanism

- If the economy finds itself with an “excess” of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 - etc...

- There is socially excessive precautionary savings

- Aggregate demand management (e.g. government spendings) can boost mutually beneficial trades ...

- ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
5. Recap
Main Mechanism

- If the economy finds itself with an “excess” of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 - etc...

- There is socially excessive precautionary savings

- Aggregate demand management (e.g. government spendings) can boost mutually beneficial trades ...

- ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
5. Recap
Main Mechanism

- If the economy finds itself with an “excess” of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 - etc...

- There is socially excessive precautionary savings

- Aggregate demand management (e.g. government spendings) can boost mutually beneficial trades ...

- ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)