Is Government Spending: at the Zero Lower Bound Desirable?

Florin Bilbiie (Paris School of Economics and CEPR)
Tommaso Monacelli (Università Bocconi, IGIER and CEPR),
Roberto Perotti (Università Bocconi, IGIER, CEPR and NBER),

May 2015
Government spending at the ZLB

- Recent papers (Christiano, Eichenbaum, Rebelo 2011, Eggertson and Krugman 2011):
 government spending particularly powerful at ZLB.

 1. In neoclassical model, government spending increases output via a
 wealth effect on labor supply.
 2. At ZLB with sticky prices, further kick:
 \[G = \text{demand facing firms} = \text{marginal cost} \times \text{expected inflation} = \text{real interest rate} \]
 since \(i = 0 \) = \(r \), implying private consumption increases further, etc.
Government spending at the ZLB

- Recent papers (Christiano, Eichenbaum, Rebelo 2011, Eggertson and Krugman 2011): government spending particularly powerful at ZLB.

- Basic intuition

1. In neoclassical model, government spending increases output via a wealth effect on labor supply.
Government spending at the ZLB

- Recent papers (Christiano, Eichenbaum, Rebelo 2011, Eggertson and Krugman 2011): **government spending** particularly powerful at ZLB.

- Basic intuition

 1. In neoclassical model, government spending **increases output** via a **wealth** effect on labor supply.

 2. At **ZLB** with **sticky prices**, further kick: \(\uparrow G \rightarrow \uparrow \text{demand} \rightarrow \uparrow \text{marginal cost} \rightarrow \uparrow \text{expected inflation} \rightarrow \downarrow \text{real interest rate} \) (since \(i = 0 \)) \rightarrow private consumption increases further, etc.
Yet what about welfare?
Yet what about welfare?

- Negative income effect of taxation makes agents want to **work more** to produce extra output
- Consumption can increase **only** by working more (in these models)
This paper

- Multipliers extremely **large** at ZLB
- Government spending is generally **welfare detrimental** at the ZLB
A Sticky Price Economy
Utility

\[U(C_t, N_t, G_t) = \frac{C_t^\zeta (1 - N_t)^{1-\zeta}}{1 - \sigma} - 1 + \chi G \frac{G_t^{1-\sigma} - 1}{1 - \sigma} \]

\[\sigma > 0 \quad 0 < \zeta < 1 \]
Utility

\[U(C_t, N_t, G_t) = \frac{\left[C_t^\zeta (1 - N_t)^{1-\zeta} \right]^{1-\sigma} - 1}{1 - \sigma} + \chi_G \frac{G_t^{1-\sigma} - 1}{1 - \sigma} \]

\[\sigma > 0 \quad 0 < \zeta < 1 \]

- Convex price adjustment costs
- Weight of G in utility \(\chi_G \) computed optimally
Utility Weight of Government Spending

- In the steady state

\[U_C (Y - G) = U_G (G) \]

→ Derive **optimal** weight

\[
\chi_G = \zeta \left(\frac{G}{Y} \right)^\sigma \left(1 - \frac{G}{Y} \right)^{\zeta(1-\sigma)-1} \left(\frac{1-N}{N} \right)^{(1-\zeta)(1-\sigma)}
\]
Cyclical vs. Structural Spending

- **Structural** spending: "steady state" spending

 \[G_t = G \]

- **Cyclical** G is "extra spending" at the ZLB
Wasteful vs Useful Spending

- **Useful** spending: cyclical G_t has weight χ_G in utility
- **Wasteful** spending: cyclical spending has zero utility weight, "structural" spending enters utility:

\[
\chi_G \frac{(G^{1-\sigma} - 1)}{(1 - \sigma)}
\]
Markovian Shock Process

\[
\begin{align*}
\Pr\{\rho_{t+1} = \rho^L | \rho_t = \rho^L\} &= p \\
\Pr\{\rho_{t+1} = \rho | \rho_t = \rho^L\} &= 1 - p \\
\Pr\{\rho_{t+1} = \rho^L | \rho_t = \rho\} &= 0.
\end{align*}
\]
Monetary Policy

\[i_t = \max (\rho + \phi_\pi \pi_t, 0) \]
Solution

\[
\begin{align*}
 c_L &= \frac{1 - \beta p}{\Omega} \rho_L + M_c \frac{G}{Y - G} g_L \\
 \pi_L &= \kappa \left(1 + \frac{N}{1 - N} \frac{Y - G}{Y} \right) \rho_L + M_{\pi} \frac{G}{Y} g_L,
\end{align*}
\]

where \(\Omega \equiv (1 - \beta p) (1 - p) - \kappa p \left(1 + \frac{N}{1 - N} \frac{Y - G}{Y} \right) \)
Solution

\[c_L = \frac{1 - \beta p}{\Omega} \rho_L + M_c \frac{G}{Y-G} g_L \]

\[\pi_L = \kappa \left(1 + \frac{N}{1-N} \frac{Y-G}{Y} \right) \rho_L + M_\pi \frac{G}{Y} g_L, \]

where \(\Omega \equiv (1 - \beta p) (1 - p) - \kappa p \left(1 + \frac{N}{1-N} \frac{Y-G}{Y} \right) \)

- **Consumption and inflation multipliers**

\[M_c \equiv \frac{\left[(1 - \beta p) (1 - p) \zeta (\sigma - 1) + \kappa p \frac{N}{1-N} \frac{Y-G}{Y}\right]}{\Omega} \]

\[M_\pi \equiv \frac{(1 - p) \kappa \left[\left(\frac{Y}{Y-G} + \frac{N}{1-N} \right) \zeta (\sigma - 1) + \frac{N}{1-N} \right]}{\Omega} \]

- **Impose restriction**

\[\Omega > 0 \]
Welfare gap

\[\tilde{U}_L(g_L) = 100 \cdot \frac{U_L(g_L) - U_L(0)}{|U_L(0)|} \]

with extra G

with G kept at ss
Understanding the Welfare Effect of Government Spending

\[C_t + G_t = \frac{N_t}{\Delta_t} \]

\[\Delta_t \equiv \left(1 - \frac{\nu}{2} \pi_t^2 \right)^{-1} \geq 1 \]

- Second order approximation to resource constraint

\[y_L = n_L = \frac{Y - G}{Y} c_L + \frac{G}{Y} g_L + \frac{1}{2} \nu \pi_L^2 \]
Effect of G on welfare

\[
\frac{dU_L}{dG_L} = W_L \Delta_L U_C (C_L, N_L)
\]

\[+ \quad \nu' (G_L) \quad \text{contribution of } G \text{ in utility} \]

\[\left[\left(\frac{1}{MRS_t/MMT_t} - 1 \right) \frac{dC_L}{dG_L} \right] \quad \text{multiplier channel: } \propto \text{L wedge} \]

\[\left[- \frac{1}{\Delta_L} \frac{d\Delta_L}{dG_L} \right] \quad \text{income effect} \]

\[\left[- \frac{C_L}{\Delta_L} \frac{d\Delta_L}{dG_L} \right] \quad \text{inflation distortion} \]
Effect of G on welfare

\[
\frac{dU_L}{dG_L} = W_L \Delta_L U_C (C_L, N_L) + v' (G_L)
\]

- contribution of G in utility

\[
\left(\frac{1}{MRS_t / MRT_t} - 1 \right) \frac{dC_L}{dG_L}
\]

- multiplier channel: $\propto L$ wedge

\[
- \frac{1}{\Delta_L} \frac{d\Delta_L}{dG_L}
\]

- income effect

\[
- \frac{C_L}{\Delta_L} \frac{d\Delta_L}{dG_L}
\]

- inflation distortion

Welfare effect of G: three channels

1. Multiplier channel
2. Income effect
3. Inflation distortion
Multiplier channel

Multiplier channel:

\[
\left(\frac{1}{\frac{MRS_t}{MRT_t}} - 1\right) \frac{dC_L}{dG_L}
\]

- Requires **positive** consumption multiplier at the ZLB
- High when \(\frac{MRS_t}{MRT_t} \) is low, i.e., **labor wedge** is high
- In NK jargon: when **markup** is high
Multiplier: extreme non-linearity in transition probability \(p \)
Baseline experiment

- Natural real interest rate falls to \(-1\%\) per annum

 → At baseline calibration: GDP falls 4% per annum
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ</td>
<td>transition probability</td>
<td>0.8</td>
</tr>
<tr>
<td>ρ_L</td>
<td>quarterly discount rate</td>
<td>-0.0025</td>
</tr>
<tr>
<td>β</td>
<td>discount factor in steady state</td>
<td>0.99</td>
</tr>
<tr>
<td>σ</td>
<td>relative risk aversion</td>
<td>2</td>
</tr>
<tr>
<td>φ</td>
<td>inverse labor elasticity</td>
<td>$N/(1-N)$</td>
</tr>
<tr>
<td>κ</td>
<td>slope of the Phillips curve</td>
<td>0.028</td>
</tr>
<tr>
<td>ϕ_π</td>
<td>Taylor rule coefficient</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Government spending and welfare

→ Optimal G is 0.5% of steady state output (baseline calibration) in useful case
Large values of optimal G occur when decline in GDP is exceptionally high
Optimal government spending and slope of PC

Optimal Govt. Spending at the ZLB: Wasteful

Implied Fall in GDP

\(\kappa \)

\[\frac{100 \cdot (G_L - G)}{Y} \]

\(\rho_L = 0.0025 \)

\(\rho_L = 0.01 \)
Holding constant the decline in GDP
So far: when p is at its maximum admissible level optimal increase in G is about 1.9 percent of steady state GDP

GDP declines by **70 percent** from its steady state

Now: hold size of recession **constant** by changing value of the shock
Optimal government spending and shock persistence
Decline in GDP constant at 4 percent

Optimal increase in G about 0.6% of steady-state GDP
Alternative solution methods
Optimal G: Alternative Solution Methods

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS, 1st order</td>
<td>ρ^1_L</td>
<td>ρ^2_L</td>
<td>ΔY^1</td>
<td>ΔY^2</td>
<td>M_C^1</td>
<td>M_C^2</td>
<td>$g_{L,u}^*$</td>
<td>$g_{L,u}^*$</td>
<td>$g_{L,w}^*$</td>
<td>$g_{L,w}^*$</td>
</tr>
<tr>
<td></td>
<td>-0.0025</td>
<td>-0.0025</td>
<td>-4.0</td>
<td>-4.0</td>
<td>2.02</td>
<td>2.02</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LS, 2nd order</td>
<td>-0.0025</td>
<td>-0.0025</td>
<td>-4.0</td>
<td>-4.0</td>
<td>2.02</td>
<td>2.02</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>LD, 1st order</td>
<td>-0.0025</td>
<td>-0.0150</td>
<td>-0.7</td>
<td>-4.0</td>
<td>0.60</td>
<td>0.60</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>LD, 2nd order</td>
<td>-0.0025</td>
<td>-0.0150</td>
<td>-0.7</td>
<td>-4.0</td>
<td>0.60</td>
<td>0.60</td>
<td>0.0</td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NLS</td>
<td>-0.0025</td>
<td>-0.0035</td>
<td>-3.0</td>
<td>-4.0</td>
<td>1.10</td>
<td>1.10</td>
<td>0.1</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Great Depression
Reproducing the Great Depression

- GDP collapse of 28.8 percent (annualized)
- Deflation of 10 percent (annualized)

→ Need much higher price stickiness ($\kappa = 0.003147 \rightarrow \text{about 20 qrt}$) and higher shock persistence $p = 0.903$)
Optimal Government Spending: Great Depression Calibration

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ρ_L</td>
<td>ΔY</td>
<td>M_C</td>
<td>$g_{L,u}^*$</td>
<td>$g_{L,w}^*$</td>
</tr>
<tr>
<td>LS, 1st order</td>
<td>-0.010</td>
<td>-28.8</td>
<td>1.29</td>
<td>11.5</td>
<td>5.5</td>
</tr>
<tr>
<td>LS, 2nd order</td>
<td>-0.010</td>
<td>-28.8</td>
<td>1.29</td>
<td>14.5</td>
<td>13.5</td>
</tr>
<tr>
<td>LD, 1st order</td>
<td>-0.055</td>
<td>-28.8</td>
<td>0.25</td>
<td>9.5</td>
<td>0.0</td>
</tr>
<tr>
<td>LD, 2nd order</td>
<td>-0.055</td>
<td>-28.8</td>
<td>0.25</td>
<td>10.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NLS</td>
<td>-0.017</td>
<td>-28.8</td>
<td>0.55</td>
<td>25.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Why Larger Values of Optimal G in the Great Depression?

- GD calibration very close to asymptote and starvation points
- Price stickiness 20 qrts → very high cost of negative output gap
Conclusions

- Standard NK model supports notion of extremely high multiplier of G at the ZLB
- Optimal increase in G is however generally small or zero
- Need setups in which welfare cost of negative output gap at the ZLB is significantly higher