Is Government Spending: at the Zero Lower Bound Desirable?

Florin Bilbiie (Paris School of Economics and CEPR) Tommaso Monacelli (Università Bocconi, IGIER and CEPR), Roberto Perotti (Università Bocconi, IGIER, CEPR and NBER),

May 2015

Government spending at the ZLB

Recent papers (Christiano, Eichenbaum, Rebelo 2011, Eggertson and Krugman 2011): government spending particularly powerful at ZLB.

Government spending at the ZLB

- Recent papers (Christiano, Eichenbaum, Rebelo 2011, Eggertson and Krugman 2011): government spending particularly powerful at ZLB.
- Basic intuition
- In neoclassical model, government spending increases output via a wealth effect on labor supply.

Government spending at the ZLB

- Recent papers (Christiano, Eichenbaum, Rebelo 2011, Eggertson and Krugman 2011): government spending particularly powerful at ZLB.
- Basic intuition
- 1. In neoclassical model, government spending **increases output** via a **wealth** effect on labor supply.
- At **ZLB** with **sticky prices**, further kick: ↑ G → ↑demand facing firms ⇒ ↑marginal cost ⇒ ↑ **expected** inflation ⇒ ↓ **real interest rate** (since i = 0) ⇒ private consumption increases further, etc.

► Yet what about welfare?

- Yet what about welfare?
- Negative income effect of taxation makes agents want to work more to produce extra output
- Consumption can increase only by working more (in these models)

This paper

- ► Multipliers extremely large at ZLB
- Government spending is generally welfare detrimental at the ZLB

A Sticky Price Economy

Economy

Utility

$$U(C_t, N_t, G_t) = \frac{\left[C_t^{\zeta} (1 - N_t)^{1 - \zeta}\right]^{1 - \sigma} - 1}{1 - \sigma} + \chi_G \frac{G_t^{1 - \sigma} - 1}{1 - \sigma}$$

$$\sigma > 0 \qquad 0 < \zeta < 1$$

Economy

Utility

$$U(C_t, N_t, G_t) = \frac{\left[C_t^{\zeta} (1 - N_t)^{1 - \zeta}\right]^{1 - \sigma} - 1}{1 - \sigma} + \chi_G \frac{G_t^{1 - \sigma} - 1}{1 - \sigma}$$

$$\sigma > 0 \qquad 0 < \zeta < 1$$

- Convex price adjustment costs
- Weight of G in utility χ_G computed **optimally**

Utility Weight of Government Spending

▶ In the steady state

$$U_{C}(Y-G)=U_{G}(G)$$

→ Derive **optimal** weight

$$\chi_{G} = \zeta \left(\frac{G}{Y}\right)^{\sigma} \left(1 - \frac{G}{Y}\right)^{\zeta(1-\sigma)-1} \left(\frac{1-N}{N}\right)^{(1-\zeta)(1-\sigma)}$$

Cyclical vs. Structural Spending

► Structural spending: "steady state" spending

$$G_t = G$$

▶ Cyclical G is "extra spending" at the ZLB

Wasteful vs Useful Spending

- ▶ **Useful** spending: cyclical G_t has weight χ_G in utility
- Wasteful spending: cyclical spending has zero utility weight, "structural" spending enters utility:

$$\chi_G \frac{\left(G^{1-\sigma}-1\right)}{\left(1-\sigma\right)}$$

Markovian Shock Process

$$\begin{split} \Pr\{\rho_{t+1} &= \rho^L | \rho_t = \rho^L \} = \rho \\ \Pr\{\rho_{t+1} &= \rho | \rho_t = \rho^L \} = 1 - \rho \\ \Pr\{\rho_{t+1} &= \rho^L | \rho_t = \rho \} = 0. \end{split}$$

Monetary Policy

$$i_t = \max\left(
ho + \phi_\pi \pi_t, 0\right)$$

Solution

$$\begin{split} c_L &= \frac{1-\beta p}{\Omega} \rho_L + \frac{\textit{M}_c}{V-G} \frac{\textit{G}}{\textit{Y}-\textit{G}} \textit{g}_L \\ \pi_L &= \frac{\kappa \left(1 + \frac{\textit{N}}{1-\textit{N}} \frac{\textit{Y}-\textit{G}}{\textit{Y}}\right)}{\Omega} \rho_L + \textit{M}_\pi \frac{\textit{G}}{\textit{Y}} \; \textit{g}_L, \end{split}$$
 where $\Omega \equiv \left(1 - \beta p\right) \left(1 - p\right) - \kappa p \left(1 + \frac{\textit{N}}{1-\textit{N}} \frac{\textit{Y}-\textit{G}}{\textit{Y}}\right)$

Solution

$$egin{align} c_L &= rac{1-eta p}{\Omega}
ho_L + rac{ extit{M}_c}{Y-G} extit{g}_L \ \pi_L &= rac{\kappa \left(1 + rac{N}{1-N} rac{Y-G}{Y}
ight)}{\Omega}
ho_L + extit{M}_\pi rac{G}{Y} extit{g}_L, \end{split}$$

where
$$\Omega \equiv (1-eta p) \, (1-p) - \kappa p \, ig(1 + rac{N}{1-N} rac{Y-G}{Y}ig)$$

Consumption and inflation multipliers

$$\begin{split} & \textit{M}_{\textit{c}} \equiv \frac{\left[\left(1 - \beta \rho \right) \left(1 - \rho \right) \zeta \left(\sigma - 1 \right) + \kappa \rho \frac{N}{1 - N} \frac{Y - G}{Y} \right]}{\Omega} \\ & \textit{M}_{\pi} \equiv \frac{\left(1 - \rho \right) \kappa \left[\left(\frac{Y}{Y - G} + \frac{N}{1 - N} \right) \zeta \left(\sigma - 1 \right) + \frac{N}{1 - N} \right]}{\Omega} \end{split}$$

Impose restriction

$$\Omega > 0$$

Welfare gap

$$ilde{U}_L(g_L) = 100 \cdot rac{ egin{array}{c} ext{with extra G} & ext{with G kept} \ U_L(g_L) & - & U_L(0) \ \hline |U_L(0)| & \end{array} }{|U_L(0)|}$$

Understanding the Welfare Effect of Government Spending

$$C_t + G_t = \frac{N_t}{\underbrace{\Delta_t}_{\substack{\text{inflation distortion}}}}$$

$$\Delta_t \equiv \left(1 - rac{
u}{2} \pi_t^2
ight)^{-1} \geq 1$$

▶ Second order approximation to resource constraint

$$y_L = n_L = \frac{Y - G}{Y}c_L + \frac{G}{Y}g_L + \underbrace{\frac{1}{2}\nu\pi_L^2}_{\substack{\text{inflation} \\ \text{distortion}}}$$

Effect of G on welfare

$$\frac{dU_L}{dG_L} = W_L \Delta_L U_C (C_L, N_L)$$

$$+ \underbrace{v'(G_L)}_{\text{contribution of G in utility}}$$

$$\underbrace{\left(\frac{1}{\textit{MRS}_t / \textit{MRT}_t} - 1\right) \frac{dC_L}{dG_L}}_{\text{multiplier channel: } \propto L \text{ wedge}}$$

$$\underbrace{-\frac{1}{\Delta_L} \frac{d\Delta_L}{dG_L}}_{\text{income effect}}$$

$$\underbrace{-\frac{C_L}{\Delta_L} \frac{d\Delta_L}{dG_L}}_{\text{inflation distortion}}$$

Effect of G on welfare

$$\frac{dU_L}{dG_L} = W_L \Delta_L U_C (C_L, N_L) \begin{bmatrix} \underbrace{\begin{pmatrix} 1 \\ MRS_t/MRT_t \end{pmatrix} - 1 \end{pmatrix} \frac{dC_L}{dG_L}}_{\text{multiplier channel: } \propto L \text{ wedge}} \\ \underbrace{-1}_{\text{income effect}} \underbrace{-\frac{C_L}{\Delta_L} \frac{d\Delta_L}{dG_L}}_{\text{inflation distortion}} \end{bmatrix} \\ + \underbrace{v'(G_L)}_{\text{contribution of } G \text{ in utility}}$$

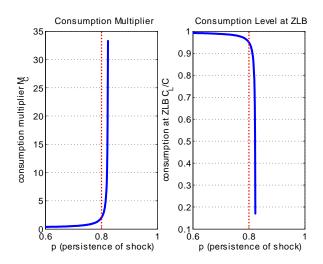
- Welfare effect of G: three channels
- 1. Multiplier channel
- Income effect.
- 3. Inflation distortion

Multiplier channel

multiplier channel:
$$\left(\frac{1}{MRS_t/MRT_t} - 1\right) \frac{dC_L}{dG_L}$$

- Requires positive consumption multiplier at the ZLB
- ▶ High when MRS_t / MRT_t is low, ie, **labor wedge** is high
- ▶ In NK jargon: when **markup** is high

Multiplier: extreme non-linearity in transition probability p

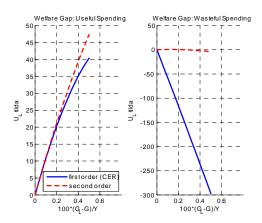


Baseline experiment

- ▶ Natural real interest rate falls to -1% per annum
- ightarrowAt baseline calibration: GDP falls 4% per annum

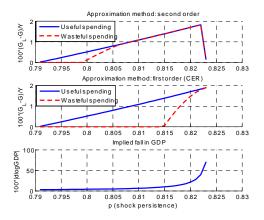
Table 1. Baseline calibration					
Parameter	Description	Value			
р	transition probability	0.8			
ρ_L	quarterly discount rate	0025			
β	discount factor in steady state	0.99			
σ	relative risk aversion	2			
φ	inverse labor elasticity	N/(1-N)			
κ	slope of the Phillips curve	0.028			
ϕ_{π}	Taylor rule coefficient	1.5			

Government spending and welfare



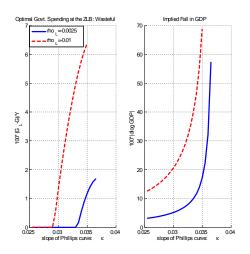
 \rightarrow Optimal G is 0.5% of steady state output (baseline calibration) in useful case

Optimal government spending and shock persistence



 \rightarrow Large values of optimal G occur when decline in GDP is exceptionally high

Optimal government spending and slope of PC



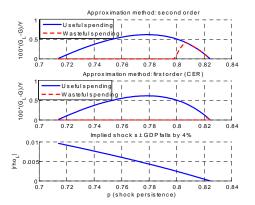
Holding constant the decline in GDP

- ► So far: when *p* is at its maximum admissible level optimal increase in G is about 1.9 percent of steady state GDP
- ▶ GDP declines by **70 percent** from its steady state
- Now: hold size of recession constant by changing value of the shock

Optimal government spending and shock persistence

Decline in GDP constant at 4 percent

.



ightarrowOptimal increase in G about 0.6% of steady-state GDP

Alternative solution methods

Optimal G: Alternative Solution Methods

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	$ ho_L^1$	$ ho_L^2$	ΔY^1	ΔY^2	M_C^1	M_C^2	$g_{L,u}^{st,1}$	$g_{L,u}^{*,2}$	$g_{L,w}^{st,1}$	$g_{L,w}^{*,2}$
LS, 1st order	-0.0025	-0.0025	-4.0	-4.0	2.02	2.02	0.5	0.5	0.0	0.0
LS, 2nd order	-0.0025	-0.0025	-4.0	-4.0	2.02	2.02	0.5	0.5	0.1	0.1
LD, 1st order	-0.0025	-0.0150	-0.7	-4.0	0.60	0.60	0.0	0.4	0.0	0.0
LD, 2nd order	-0.0025	-0.0150	-0.7	-4.0	0.60	0.60	0.0	1.1	0.0	0.0
NLS	-0.0025	-0.0035	-3.0	-4.0	1.10	1.10	0.1	0.8	0.0	0.0

Great Depression

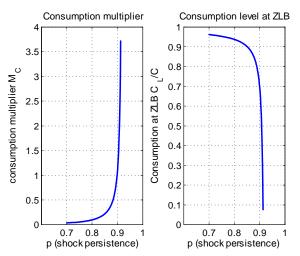
Reproducing the Great Depression

- ▶ Woodford (2011), Eggertsson (2010)
- ► GDP collapse of **28.8** percent (annualized)
- Deflation of 10 percent (annualized)
- ightarrow Need much higher price stickiness ($\kappa=0.003147
 ightarrow$ about 20 qrt) and higher shock persistence p=0.903)

Optimal Government Spending: Great Depression Calibration

	(1)	(2)	(3)	(4)	(5)
	$ ho_L$	ΔY	M_C	$g_{L,u}^*$	$g_{L,w}^*$
LS, 1st order	-0.010	-28.8	1.29	11.5	5.5
LS, 2nd order	-0.010	-28.8	1.29	14.5	13.5
LD, 1st order	-0.055	-28.8	0.25	9.5	0.0
LD, 2nd order	-0.055	-28.8	0.25	10.0	0.0
NLS	-0.017	-28.8	0.55	25.5	0.0

Why Larger Values of Optimal G in the Great Depression?



- ▶ GD calibration very close to asymptote and starvation points
- Price stickiness 20 qrts → very high cost of negative output gap

Conclusions

- Standard NK model supports notion of extremely high multiplier of G at the ZLB
- Optimal increase in G is however generally small or zero
- Need setups in which welfare cost of negative output gap at the ZLB is significantly higher