Optimal Time-Consistent Debt Maturity

Davide Debortoli Ricardo Nunes UPF and Barcelona GSF

Fed Board

Pierre Yared Columbia & NBER

May 2015

Motivation

• How should government debt maturity be structured?

Motivation

• How should government debt maturity be structured?

• One motive: Hedge against shocks

Motivation

• How should government debt maturity be structured?

• One motive: Hedge against shocks

- Results in Angeletos (2002) and Buera and Nicolini (2004):
 - Governments purchase short-term assets, and issues long-term debt
 - Positions are very large (several multiples of GDP)
 - Debt positions are constant, not actively managed

This paper

• Conclusions of previous research not robust to lack of commitment

This paper

- Conclusions of previous research not robust to lack of commitment
- In practice, government chooses debt and taxes sequentially
 Commitment problem
 - Government can change market value of outstanding debt ex-post
 - Ex-post policy not optimal ex-ante

This paper

- Conclusions of previous research not robust to lack of commitment
- In practice, government chooses debt and taxes sequentially
 Commitment problem
 - Government can change market value of outstanding debt ex-post
 - Ex-post policy not optimal ex-ante
- This paper: Optimal debt maturity under lack of commitment
 - Focus on Markov Perfect Equilibrium

• Standard model of optimal fiscal policy [Lucas-Stokey (1983)]

- Standard model of optimal fiscal policy [Lucas-Stokey (1983)]
- Add two frictions: non-contingent bonds and no gov't commitment

- Standard model of optimal fiscal policy [Lucas-Stokey (1983)]
- Add two frictions: non-contingent bonds and no gov't commitment
- Debt maturity can solve either problem separately

Non-contingent Bonds vs. Lack of Commitment

- Standard model of optimal fiscal policy [Lucas-Stokey (1983)]
- Add two frictions: non-contingent bonds and no gov't commitment
- Debt maturity can solve either problem separately

 $\begin{array}{cccc} \text{Non-contingent Bonds} & \text{vs.} & \text{Lack of Commitment} \\ & & & & \downarrow \\ \text{Large and Tilted Positions} & & \text{Flat Maturity} \end{array}$

- ullet If debt positions are large and titled \longrightarrow Lack of commitment is costly
 - Expectation of future deviation raises ex-ante borrowing costs
 - High average tax/spending distortions

- If debt positions are large and titled → Lack of commitment is costly
 - Expectation of future deviation raises ex-ante borrowing costs
 - --- High average tax/spending distortions
- If debt positions are flat → Lack of insurance is less costly
 - Flat debt position → Low fluctuation in market value of debt
 - High volatility in tax/spending distortions

- If debt positions are large and titled → Lack of commitment is costly
 - Expectation of future deviation raises ex-ante borrowing costs
 - High average tax/spending distortions
- If debt positions are flat → Lack of insurance is less costly
 - Flat debt position Low fluctuation in market value of debt
 - High volatility in tax/spending distortions
- High volatility of distortions less costly than high average distortions

- If debt positions are large and titled
 — Lack of commitment is costly
 - Expectation of future deviation raises ex-ante borrowing costs
 - High average tax/spending distortions
- If debt positions are flat → Lack of insurance is less costly
 - Flat debt position Low fluctuation in market value of debt
 - High volatility in tax/spending distortions
- High volatility of distortions less costly than high average distortions
- Optimal maturity is quantitatively nearly flat
 - Reducing borrowing costs more important than insurance
 - Optimal policy approximated by active consol management

Related Literature

- Government debt maturity under lack of commitment
 - e.g., Arellano-Ramayarayanan (2012), Aguiar-Amador (2013), Arellano-Bai-Kehoe-Ramayarayanan (2013)
 - This paper: Economy without risk of default or surprise inflation

Related Literature

- Government debt maturity under lack of commitment
 - e.g., Arellano-Ramayarayanan (2012), Aguiar-Amador (2013), Arellano-Bai-Kehoe-Ramayarayanan (2013)
 - This paper: Economy without risk of default or surprise inflation
- Optimal fiscal policy under non-contingent debt and full commitment
 - e.g., Barro (1979), AMSS (2002), Faraglia-Marcet-Scott (2010)
 - This paper: Long-term debt. No inefficiencies under full commitment

Related Literature

- Government debt maturity under lack of commitment
 - e.g., Arellano-Ramayarayanan (2012), Aguiar-Amador (2013), Arellano-Bai-Kehoe-Ramayarayanan (2013)
 - This paper: Economy without risk of default or surprise inflation
- Optimal fiscal policy under non-contingent debt and full commitment
 - e.g., Barro (1979), AMSS (2002), Faraglia-Marcet-Scott (2010)
 - This paper: Long-term debt. No inefficiencies under full commitment
- Optimal fiscal policy under contingent debt and lack of commitment
 - e.g., Debortoli-Nunes (2013), Krusell-Martin-Rios-Rul (2006)
 - This paper: Long-term debt. No inefficiencies under complete markets

Outline

- Model
- 2 Lack of commitment benchmark
- Lack of insurance benchmark
- Maturity management under both frictions

Lucas and Stokey (1983)

• $t \in \{0, 1, ...\}$. Shock $\theta_t \in \Theta$.

8 / 36

Lucas and Stokey (1983)

- $t \in \{0, 1, ...\}$. Shock $\theta_t \in \Theta$.
- Representative household. Preferences:

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}u\left(c_{t},n_{t}\right)+\theta_{t}v\left(g_{t}\right)$$

Lucas and Stokey (1983)

- $t \in \{0, 1, ...\}$. Shock $\theta_t \in \Theta$.
- Representative household. Preferences:

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}u\left(c_{t},n_{t}\right)+\theta_{t}v\left(g_{t}\right)$$

Household budget constraints

$$c_{t} = n_{t} (1 - \tau_{t}) + \sum_{j=1}^{\infty} q_{t}^{t+j} \left(B_{t-1}^{t+j} - B_{t}^{t+j} \right) + B_{t-1}^{t}$$

Lucas and Stokey (1983)

- $t \in \{0, 1, ...\}$. Shock $\theta_t \in \Theta$.
- Representative household. Preferences:

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}u\left(c_{t},n_{t}\right)+\theta_{t}v\left(g_{t}\right)$$

Household budget constraints

$$c_{t} = n_{t} (1 - \tau_{t}) + \sum_{j=1}^{\infty} q_{t}^{t+j} \left(B_{t-1}^{t+j} - B_{t}^{t+j} \right) + B_{t-1}^{t}$$

• Government budget constraint

$$au_{t} n_{t} - g_{t} = \sum_{j=1}^{\infty} q_{t}^{t+j} \left(B_{t-1}^{t+j} - B_{t}^{t+j} \right) + B_{t-1}^{t}$$

Markov Perfect Competitive Equilibrium

 $\bullet \; \text{Government strategy: choose} \; \tau_t, g_t, \left\{B_t^{t+j}\right\}_{j=1}^{\infty} \; \text{given} \; \theta_t, \left\{B_{t-1}^{t+j}\right\}_{j=1}^{\infty}$

Markov Perfect Competitive Equilibrium

- Government strategy: choose $\tau_t, g_t, \left\{B_t^{t+j}\right\}_{j=1}^{\infty}$ given $\theta_t, \left\{B_{t-1}^{t+j}\right\}_{j=1}^{\infty}$
- Household allocation: choose c_t , n_t , $\left\{B_t^{t+j}\right\}_{j=1}^{\infty}$ given τ_t , $\left\{q_t^{t+j}, B_{t-1}^{t+j}\right\}_{j=1}^{\infty}$

Markov Perfect Competitive Equilibrium

- $\bullet \; \; \mathsf{Government} \; \; \mathsf{strategy:} \; \; \mathsf{choose} \; \tau_t, g_t, \left\{B_t^{t+j}\right\}_{j=1}^{\infty} \; \mathsf{given} \; \theta_t, \left\{B_{t-1}^{t+j}\right\}_{j=1}^{\infty}$
- $\bullet \text{ Household allocation: choose } c_t, n_t, \left\{B_t^{t+j}\right\}_{j=1}^{\infty} \text{ given } \tau_t, \left\{q_t^{t+j}, B_{t-1}^{t+j}\right\}_{j=1}^{\infty}$
- Markov Perfect Competitive Equilibrium:
 - Government strategy optimal
 - 4 Household allocation optimal
 - **3** Bond prices q_t^{t+j} clears the market

Equilibrium conditions

Primal approach

• Intertemporal condition:

$$q_t^{t+j} = \beta^j \mathbb{E}_t \frac{u_{c,t+j}}{u_{c,t}}$$

Equilibrium conditions

Primal approach

• Intertemporal condition:

$$q_t^{t+j} = \beta^j \mathbb{E}_t \frac{u_{c,t+j}}{u_{c,t}}$$

• Intratemporal condition:

$$1-\tau_t=-\frac{u_{n,t}}{u_{c,t}}$$

10 / 36

• Intertemporal condition:

$$q_t^{t+j} = \beta^j \mathbb{E}_t \frac{u_{c,t+j}}{u_{c,t}}$$

• Intratemporal condition:

$$1 - \tau_t = -\frac{u_{n,t}}{u_{c,t}}$$

Budget Constraint (implementability condition):

$$\underbrace{\mathbb{E}_t \sum_{j=0}^{\infty} \beta^j u_{c,t} \left[c_t + \frac{u_{n,t}}{u_{c,t}} n_t \right]}_{\text{Primary Surpluses } S(\theta_t)} = \underbrace{\mathbb{E}_t \sum_{j=0}^{\infty} \beta^j u_{c,t+j} B_{t-1}^{t+j}}_{\text{Value of Debt}}$$

10 / 36

Benchmark: Commitment and Complete Markets

ullet Perfect insurance: fiscal policies only depend on $heta_t$, not on the history

Benchmark: Commitment and Complete Markets

- ullet Perfect insurance: fiscal policies only depend on $heta_t$, not on the history
- Optimal spending:

$$u_{c,t}\left[\left(1+\mu\right)+\mu\frac{u_{cc,t}c_t+u_{cn,t}n_t}{u_{c,t}}\right]=\theta_t v_{g,t}$$

Optimal taxes:

$$u_{c,t} = -u_{n,t} - \frac{\mu}{1+\mu} \left[\left(u_{cc,t} + u_{cn,t} \right) c_t + \left(u_{cn,t} + u_{nn,t} \right) n_t \right]$$

Benchmark: Commitment and Complete Markets

- Perfect insurance: fiscal policies only depend on θ_t , not on the history
- Optimal spending:

$$u_{c,t}\left[\left(1+\mu\right)+\mu\frac{u_{cc,t}c_t+u_{cn,t}n_t}{u_{c,t}}\right]=\theta_t v_{g,t}$$

Optimal taxes:

$$u_{c,t} = -u_{n,t} - \frac{\mu}{1+\mu} \left[\left(u_{cc,t} + u_{cn,t} \right) c_t + \left(u_{cn,t} + u_{nn,t} \right) n_t \right]$$

ullet Government may choose to reduce these distortions ex-post (i.e. change μ)

Example of Three Period Economy

• t = 0, 1, 2. $\theta_0 > \theta_1 = \theta_2 = 1$ (high spending at date 0)

Example of Three Period Economy

- t = 0, 1, 2. $\theta_0 > \theta_1 = \theta_2 = 1$ (high spending at date 0)
- Suppose that tax revenues are exogenously fixed
 - ullet e.g., applies under GHH preference with commitment to au

Example of Three Period Economy

- t=0,1,2. $\theta_0>\theta_1=\theta_2=1$ (high spending at date 0)
- Suppose that tax revenues are exogenously fixed
 - \bullet e.g., applies under GHH preference with commitment to τ
- Government welfare:

$$(1-\psi)\log c + \psi\theta g$$

ullet Consider the limit as $\psi
ightarrow 1$

12 / 36

Example of Three Period Economy (cont'd)

• The government solves the following problem

$$\min \quad \theta_0 c_0 + \beta c_1 + \beta^2 c_2$$

s.t.

• The government solves the following problem

$$\min \quad \theta_0 c_0 + \beta c_1 + \beta^2 c_2$$

s.t.
$$[c_0 - n(1-\tau)] +$$

• The government solves the following problem

$$\min \quad \theta_0 c_0 + \beta c_1 + \beta^2 c_2$$

s.t.
$$\left[c_0 - n(1-\tau)\right] + \beta \frac{c_0}{c_1} \left[c_1 - n(1-\tau)\right] + \beta^2 \frac{c_0}{c_2} \left[c_2 - n(1-\tau)\right] \ge 0$$

The government solves the following problem

min
$$\theta_0 c_0 + \beta c_1 + \beta^2 c_2$$

s.t. $[c_0 - n(1-\tau)] + \beta \frac{c_0}{c_1} [c_1 - n(1-\tau)] + \beta^2 \frac{c_0}{c_2} [c_2 - n(1-\tau)] \ge 0$

• At an optimum:

$$c_1 = c_2 = n(1-\tau) + \overline{B}$$

where \overline{B} is the primary surplus at date 1 and 2.

The government solves the following problem

min
$$\theta_0 c_0 + \beta c_1 + \beta^2 c_2$$

s.t. $[c_0 - n(1-\tau)] + \beta \frac{c_0}{c_1} [c_1 - n(1-\tau)] + \beta^2 \frac{c_0}{c_2} [c_2 - n(1-\tau)] \ge 0$

• At an optimum:

$$c_1 = c_2 = n(1-\tau) + \overline{B}$$

where \overline{B} is the primary surplus at date 1 and 2.

REMARK 1: It implies a bond price at date 1

$$q_1^2 = \beta \frac{c_1}{c_2} = \beta$$

The government solves the following problem

min
$$\theta_0 c_0 + \beta c_1 + \beta^2 c_2$$

s.t. $[c_0 - n(1-\tau)] + \beta \frac{c_0}{c_1} [c_1 - n(1-\tau)] + \beta^2 \frac{c_0}{c_2} [c_2 - n(1-\tau)] \ge 0$

• At an optimum:

$$c_1 = c_2 = n\left(1 - \tau\right) + \overline{B}$$

where \overline{B} is the primary surplus at date 1 and 2.

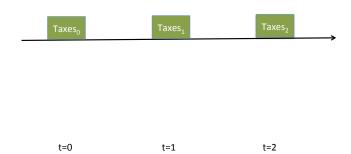
• REMARK 1: It implies a bond price at date 1

$$q_1^2 = \beta \frac{c_1}{c_2} = \beta$$

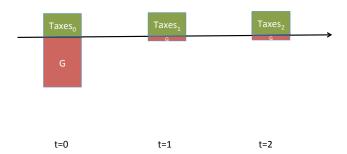
• REMARK 2: it can be implemented with any maturity structure, such that

$$B_0^1 + \beta B_0^2 = (1+\beta)\overline{B}$$

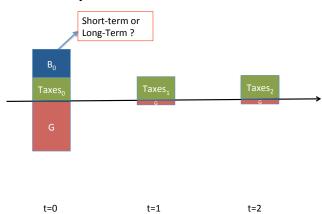
A Simple Example No Uncertainty

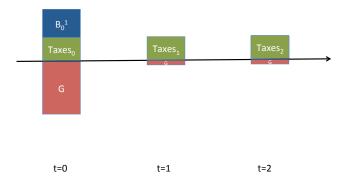


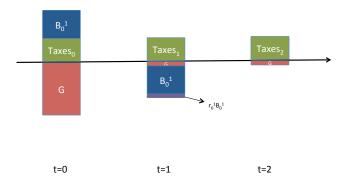
A Simple Example: No Uncertainty

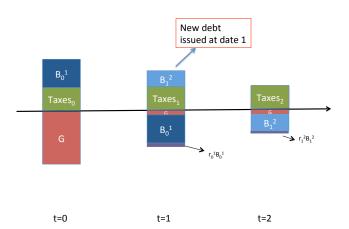


A Simple Example No Uncertainty



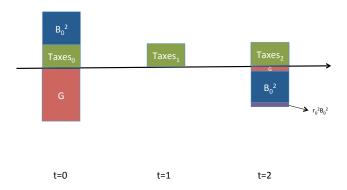




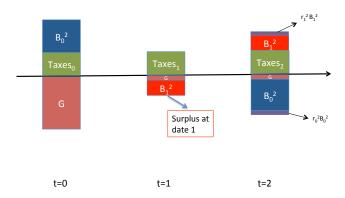


Only **Long -term** debt

Only Long -term debt



Only Long -term debt



Lack of Commitment

- If government is allowed to deviate in period 1
- ullet ... given a maturity structure B_0^1 and B_0^2

- If government is allowed to deviate in period 1
- ullet ... given a maturity structure B_0^1 and B_0^2

min
$$c_1 + \beta c_2$$

s.t.
$$[c_1 - n(1-\tau)] + \beta \frac{c_1}{c_2} [c_2 - n(1-\tau)] \ge B_0^1 + \beta \frac{c_1}{c_2} B_0^2$$

- If government is allowed to deviate in period 1
- ullet ... given a maturity structure B_0^1 and B_0^2

min
$$c_1 + \beta c_2$$

s.t. $[c_1 - n(1 - \tau)] + \beta \frac{c_1}{c_2} [c_2 - n(1 - \tau)] \ge B_0^1 + \beta \frac{c_1}{c_2} B_0^2$

• Is it still optimal to choose $c_1 = c_2$?

- If government is allowed to deviate in period 1
- ullet ... given a maturity structure B_0^1 and B_0^2

min
$$c_1 + \beta c_2$$

s.t. $[c_1 - n(1 - \tau)] + \beta \frac{c_1}{c_2} [c_2 - n(1 - \tau)] \ge B_0^1 + \beta \frac{c_1}{c_2} B_0^2$

- Is it still optimal to choose $c_1 = c_2$?
- The FOC implies

$$\frac{c_1}{c_2} = \left(\frac{n(1-\tau) + B_0^1}{n(1-\tau) + B_0^2}\right)^{1/2}$$

- If government is allowed to deviate in period 1
- ullet ... given a maturity structure B_0^1 and B_0^2

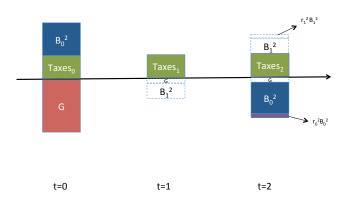
min
$$c_1 + \beta c_2$$

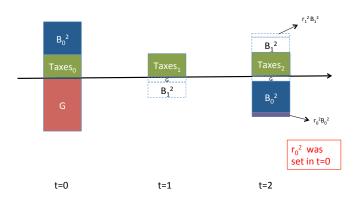
s.t. $[c_1 - n(1 - \tau)] + \beta \frac{c_1}{c_2} [c_2 - n(1 - \tau)] \ge B_0^1 + \beta \frac{c_1}{c_2} B_0^2$

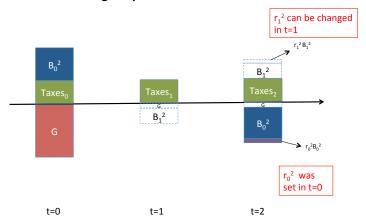
- Is it still optimal to choose $c_1 = c_2$?
- The FOC implies

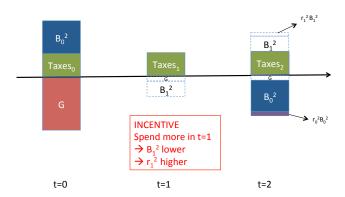
$$\frac{c_1}{c_2} = \left(\frac{n(1-\tau) + B_0^1}{n(1-\tau) + B_0^2}\right)^{1/2}$$

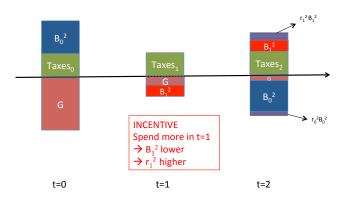
ullet FLAT MATURITY solves commitment problem: $c_1=c_2\Leftrightarrow B_0^1=B_0^2$







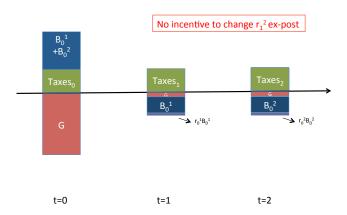




FLAT MATURITY solves COMMITMENT PROBLEM

FLAT MATURITY solves COMMITMENT PROBLEM

FLAT MATURITY solves COMMITMENT PROBLEM



Why Does a Flat Debt Position Fix Commitment?

Government wants to reduce value of what it owes:

$$B_0^1 + \beta \frac{c_1}{c_2} B_0^2$$

ullet If $B_0^1=0$ and $B_0^2>0\Rightarrow\uparrow c_2$ and $\downarrow c_1$ (deviation: $\uparrow\ B_1^2)$

Why Does a Flat Debt Position Fix Commitment?

Government wants to reduce value of what it owes:

$$B_0^1 + \beta \frac{c_1}{c_2} B_0^2$$

- If $B_0^1=0$ and $B_0^2>0\Rightarrow\uparrow c_2$ and $\downarrow c_1$ (deviation: $\uparrow B_1^2)$
- Government wants to increase value of what it issues:

$$\beta \frac{c_1}{c_2} B_1^2$$

• If $B_0^1>0$ and $B_0^2=0\Rightarrow B_1^2>0\Rightarrow\downarrow c_2$ and $\uparrow c_1$ (deviation: $\downarrow B_1^2)$

Why Does a Flat Debt Position Fix Commitment?

Government wants to reduce value of what it owes:

$$B_0^1 + \beta \frac{c_1}{c_2} B_0^2$$

- If $B_0^1=0$ and $B_0^2>0\Rightarrow\uparrow c_2$ and $\downarrow c_1$ (deviation: $\uparrow B_1^2)$
- Government wants to increase value of what it issues:

$$\beta \frac{c_1}{c_2} B_1^2$$

- If $B_0^1>0$ and $B_0^2=0\Rightarrow B_1^2>0\Rightarrow\downarrow c_2$ and $\uparrow c_1$ (deviation: $\downarrow B_1^2)$
- If $B_0^2 = B_0^1 = \overline{B} \Rightarrow$ No gains from deviation
 - True since it implies $B_0^2=B_1^2=\overline{B}$

Cost of Lack of Commitment Depends on Maturity

• **Proposition.** Let $B_0^1 + \beta B_0^2 = \overline{B}(1+\beta)$. The higher is $|B_0^2 - B_0^1|$, the higher the cost of lack of commitment.

Cost of Lack of Commitment Depends on Maturity

- **Proposition.** Let $B_0^1 + \beta B_0^2 = \overline{B}(1+\beta)$. The higher is $|B_0^2 B_0^1|$, the higher the cost of lack of commitment.
- Date 1 government wants to relax implementability condition:

$$\frac{c_1 - n(1 - \tau)}{c_1} + \beta \frac{c_2 - n(1 - \tau)}{c_2} \ge \frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2}$$

ullet e.g. if $B_0^2>B_0^1$, reducing c_1/c_2 reduces RHS

Cost of Lack of Commitment Depends on Maturity

- **Proposition.** Let $B_0^1 + \beta B_0^2 = \overline{B}(1+\beta)$. The higher is $|B_0^2 B_0^1|$, the higher the cost of lack of commitment.
- Date 1 government wants to relax implementability condition:

$$\frac{c_1 - n(1 - \tau)}{c_1} + \beta \frac{c_2 - n(1 - \tau)}{c_2} \ge \frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2}$$

- e.g. if $B_0^2 > B_0^1$, reducing c_1/c_2 reduces RHS
- ... BUT this tightens the constraint at date 0

$$\frac{c_0 - n(1 - \tau)}{c_0} + \beta \left(\frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2}\right) \ge 0$$

Cost of Lack of Commitment Depends on Maturity

- **Proposition.** Let $B_0^1 + \beta B_0^2 = \overline{B}(1+\beta)$. The higher is $|B_0^2 B_0^1|$, the higher the cost of lack of commitment.
- Date 1 government wants to relax implementability condition:

$$\frac{c_1 - n(1 - \tau)}{c_1} + \beta \frac{c_2 - n(1 - \tau)}{c_2} \ge \frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2}$$

- e.g. if $B_0^2 > B_0^1$, reducing c_1/c_2 reduces RHS
- ... BUT this tightens the constraint at date 0

$$\frac{c_0 - n(1 - \tau)}{c_0} + \beta \left(\frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2}\right) \ge 0$$

• If $|B_0^2 - B_0^1| \uparrow \Rightarrow$ deviation at time 1 \uparrow

Cost of Lack of Commitment Depends on Maturity

- **Proposition.** Let $B_0^1 + \beta B_0^2 = \overline{B}(1+\beta)$. The higher is $|B_0^2 B_0^1|$, the higher the cost of lack of commitment.
- Date 1 government wants to relax implementability condition:

$$\frac{c_1 - n(1 - \tau)}{c_1} + \beta \frac{c_2 - n(1 - \tau)}{c_2} \ge \frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2}$$

- e.g. if $B_0^2 > B_0^1$, reducing c_1/c_2 reduces RHS
- ... BUT this tightens the constraint at date 0

$$\frac{c_0 - n(1 - \tau)}{c_0} + \beta \left(\frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2}\right) \ge 0$$

• If $|B_0^2 - B_0^1| \uparrow \Rightarrow$ deviation at time $1 \uparrow$ \Rightarrow the tighter the constraint at date $0 \Rightarrow$ welfare at time $0 \downarrow$.

Generalizable Insights from Example

- Government can deviate ex post to relax budget constraint
 - Method: Increase consumption in direction of maturity of debt
 - Deviation incentives larger if debt more tilted
 - Relaxing budget allows reducing ex-post tax/spending distortions

18 / 36

Generalizable Insights from Example

- Government can deviate ex post to relax budget constraint
 - Method: Increase consumption in direction of maturity of debt
 - Deviation incentives larger if debt more tilted
 - Relaxing budget allows reducing ex-post tax/spending distortions
- Expectation of future deviation raises ex-ante borrowing rates
 - Households expect higher future consumption in high debt periods
 - Higher borrowing rates + large debt positions tighten ex-ante budget

Generalizable Insights from Example

- Government can deviate ex post to relax budget constraint
 - Method: Increase consumption in direction of maturity of debt
 - Deviation incentives larger if debt more tilted
 - Relaxing budget allows reducing ex-post tax/spending distortions
- Expectation of future deviation raises ex-ante borrowing rates
 - Households expect higher future consumption in high debt periods
 - ullet Higher borrowing rates + large debt positions tighten ex-ante budget
- Tighter ex-ante budget → Higher initial tax/spending distortions

Quantitative Assessment of Lack of Commitment

• Three period environment t = 0, 1, 2

19 / 36

Quantitative Assessment of Lack of Commitment

- Three period environment t = 0, 1, 2
- Preferences and parameters [following Chari, Christiano and Kehoe (1995)]

$$\log c + \eta \log (1 - n) + \theta_t \log g$$

- $\beta = 0.9644$ (yearly model)
- $\eta = 3.33$ (implies n = 0.23)
- $\theta_1 = \theta_2 = 0.2195$ (imply $g_1/y_1 = g_2/y_2 = 0.18$)
- $\theta_0 = 0.2360$, implies $g_0/y_0 = 0.19$ (std(g)=0.07)

19 / 36

Quantitative Assessment of Lack of Commitment

- Three period environment t = 0, 1, 2
- Preferences and parameters [following Chari, Christiano and Kehoe (1995)]

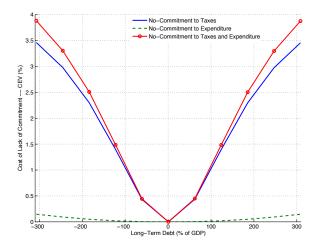
$$\log c + \eta \log (1 - n) + \theta_t \log g$$

- $\beta = 0.9644$ (yearly model)
- $\eta = 3.33$ (implies n = 0.23)
- $\theta_1 = \theta_2 = 0.2195$ (imply $g_1/y_1 = g_2/y_2 = 0.18$)
- $\theta_0 = 0.2360$, implies $g_0/y_0 = 0.19$ (std(g)=0.07)
- Calculate welfare cost of no commitment given

$$B_0^1 + \beta B_0^2 = \overline{B} (1 + \beta)$$

- Consider lack of commitment to spending and to taxes separately
- Main result: Welfare cost rises in tilt of maturity structure

Cost of Lack of Commitment Rises with Tilt of Debt



Positions exceeding 100% of GDP costs more than 1% of consumption

Lack of Insurance

Tilted Maturity Fixes Lack of Insurance

Proposition (Angeletos, Buera and Nicolini):

If # available maturities equals # states of the world \Downarrow

solution under incomplete markets = solution under complete markets.

Tilted Maturity Fixes Lack of Insurance

Proposition (Angeletos, Buera and Nicolini):

If # available maturities equals # states of the world \Downarrow solution under incomplete markets = solution under complete markets.

- Implemented with time-invariant non-contingent debt
- Insurance through fluctuations in market value of debt

Example in a three-period model

- Suppose $\theta_1 \in \{\theta_H, \theta_L\}$ is stochastic.
- Let $S^*(\theta_H)$ and $S^*(\theta_L)$ be the value of surpluses under complete markets.
- One can find B_0^S and B_0^L such that,

$$\begin{bmatrix} S^*(\theta_H) \\ S^*(\theta_L) \end{bmatrix} = \begin{bmatrix} 1 & q_0^{*,1} \\ 1 & q_0^{*,2} \end{bmatrix} \begin{bmatrix} B_0^S \\ B_0^L \end{bmatrix}$$

Example in a three-period model

- Suppose $\theta_1 \in \{\theta_H, \theta_L\}$ is stochastic.
- Let $S^*(\theta_H)$ and $S^*(\theta_L)$ be the value of surpluses under complete markets.
- One can find B_0^S and B_0^L such that,

$$\left[\begin{array}{c} S^*(\theta_H) \\ S^*(\theta_L) \end{array}\right] = \left[\begin{array}{cc} 1 & q_0^{*,1} \\ 1 & q_0^{*,2} \end{array}\right] \left[\begin{array}{c} B_0^S \\ B_L^I \end{array}\right]$$

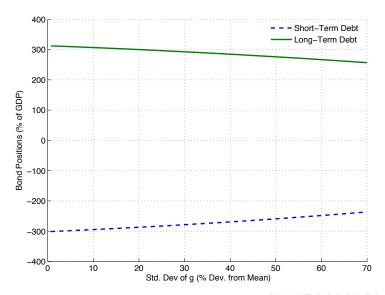
• **Lemma.** If θ_1 stochastic in three-period model, optimal policy:

$$B_0^1 < 0 \text{ and } B_0^2 > 0$$

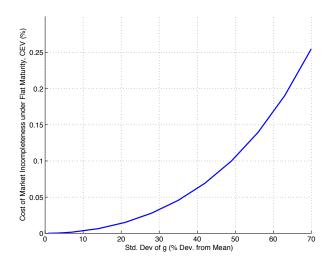
• Market value of debt declines when θ_1 high, g_1 high, and c_1 low:

$$B_0^1 + \beta \frac{c_1}{c_2} B_0^2$$

Maturity is Tilted and Large under Commitment



Welfare Cost of Flat Maturity Rises with Volatility



Cost is below 0.05% under empirical volatility of spending



Lack of Insurance Less Costly than Lack of Commitment

Flat debt position → Low fluctuation in market value of debt

Lack of Insurance Less Costly than Lack of Commitment

- Flat debt position Low fluctuation in market value of debt
- Low insurance → High volatility in tax/spending distortions

Lack of Insurance Less Costly than Lack of Commitment

- Flat debt position Low fluctuation in market value of debt
- Low insurance → High volatility in tax/spending distortions
- High volatility of distortions less costly than high average distortions
 - Similar argument to Lucas (1987)

Quantitative Analysis: Infinite Horizon

Optimal Maturity in Infinite Horizon

 \bullet Let $t=\{{\tt 0},\infty\}.$ $\theta_t=\left\{\theta^L,\theta^H\right\}$ with persistence ρ

Optimal Maturity in Infinite Horizon

- Let $t=\{0,\infty\}$. $\theta_t=\left\{\theta^L,\theta^H\right\}$ with persistence ho
- ullet Available maturities: One period bond (B^S) and a consol (B^L)

$$\tau_t n_t - g_t = -q_t^S B_t^S + q_t^L \left(B_{t-1}^L - B_t^L \right) + \left(B_{t-1}^S + B_{t-1}^L \right)$$

- Initial debt consistent with avg. level and maturity of US (1980 2008)
 - Total Debt 60% of GDP, of which 30% with maturity ≤ 1 year.

Optimal Maturity in Infinite Horizon

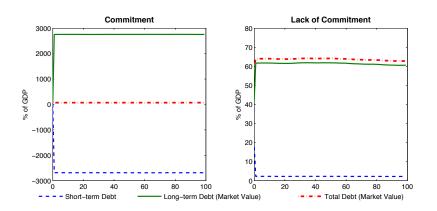
- Let $t=\{0,\infty\}$. $\theta_t=\left\{\theta^L,\theta^H\right\}$ with persistence ho
- Available maturities: One period bond (B^S) and a consol (B^L)

$$\tau_t n_t - g_t = -q_t^S B_t^S + q_t^L \left(B_{t-1}^L - B_t^L \right) + \left(B_{t-1}^S + B_{t-1}^L \right)$$

- Initial debt consistent with avg. level and maturity of US (1980 2008)
 - Total Debt 60% of GDP, of which 30% with maturity ≤ 1 year.
- No inefficiency under full commitment or full insurance
 - Full commitment: Angeletos and Buera-Nicolini result apply
 - Full insurance: Consol enforces perfect smoothing
 - If there is full commitment to either taxes or spending

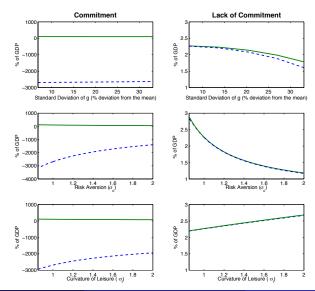
Optimal Maturity Is Nearly Flat

Average Debt Positions at Market Value (% of GDP) - Model with Exog. g



Optimal Maturity Is Nearly Flat

Average Debt Positions (% of GDP)



Why Is Optimal Maturity Is Nearly Flat?

Cost of incompleteness low for empirical volatility of spending

31 / 36

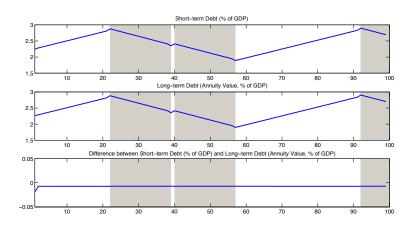
Why Is Optimal Maturity Is Nearly Flat?

- Cost of incompleteness low for empirical volatility of spending
- Cost of lack of commitment high under standard preferences
 - Incentives to deviate strong given large tilted debt needed for hedging
 - Anticipation of future deviation increases cost of financing today
 - Significant hedging would require high tax/spending distortions

Why Is Optimal Maturity Is Nearly Flat?

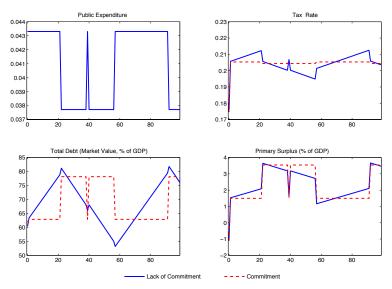
- Cost of incompleteness low for empirical volatility of spending
- Cost of lack of commitment high under standard preferences
 - Incentives to deviate strong given large tilted debt needed for hedging
 - Anticipation of future deviation increases cost of financing today
 - Significant hedging would require high tax/spending distortions
- Optimal policy goal should be to minimize average distortion
 - Reducing volatility of distortions is second order

Debt Is Actively Managed



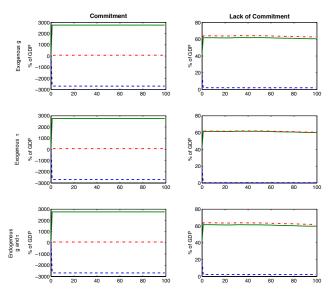
32 / 36

Fiscal Policy is History Dependent (no perfect insurance)



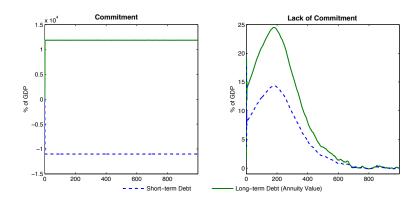
Robustness 2: Different models

Average Debt Positions at Market Value (% of GDP)



Robustness 3: Different Maturities ($\gamma = 0.5$)

Average Debt Positions (% of GDP)



Conclusion

- Results of previous literature not robust to lack of commitment
 - Tradeoff between hedging and commitment

Conclusion

- Results of previous literature not robust to lack of commitment
 - Tradeoff between hedging and commitment
- Optimal debt maturity is quantitatively nearly flat
 - Active management of consol in response to shocks

Conclusion

- Results of previous literature not robust to lack of commitment
 - Tradeoff between hedging and commitment
- Optimal debt maturity is quantitatively nearly flat
 - Active management of consol in response to shocks
- Considerations for future research
 - Monetary policy interactions
 - Debt maturity and financial frictions
 - Redistributive taxation