How should government debt maturity be structured?
Motivation

- How should government debt maturity be structured?

- One motive: Hedge against shocks
Motivation

- How should government debt maturity be structured?

- One motive: Hedge against shocks

- Results in Angeletos (2002) and Buera and Nicolini (2004):
 - Governments purchase short-term assets, and issues long-term debt
 - Positions are very large (several multiples of GDP)
 - Debt positions are constant, not actively managed
Conclusions of previous research not robust to lack of commitment
This paper

- Conclusions of previous research not robust to lack of commitment

- In practice, government chooses debt and taxes sequentially
 \[\Rightarrow\text{ Commitment problem}\]
 - Government can change market value of outstanding debt ex-post
 - Ex-post policy not optimal ex-ante
Conclusions of previous research not robust to lack of commitment

In practice, government chooses debt and taxes sequentially
⇒ Commitment problem
 - Government can change market value of outstanding debt ex-post
 - Ex-post policy not optimal ex-ante

This paper: Optimal debt maturity under lack of commitment
 - Focus on Markov Perfect Equilibrium
Preview of the Model

- Standard model of optimal fiscal policy [Lucas-Stokey (1983)]
Standard model of optimal fiscal policy [Lucas-Stokey (1983)]

Add two frictions: non-contingent bonds and no gov’t commitment
Preview of the Model

- Standard model of optimal fiscal policy [Lucas-Stokey (1983)]

- Add two frictions: non-contingent bonds and no gov't commitment

- Debt maturity can solve either problem separately

 Non-contingent Bonds vs. Lack of Commitment
Preview of the Model

- Standard model of optimal fiscal policy [Lucas-Stokey (1983)]

- Add two frictions: non-contingent bonds and no gov’t commitment

- Debt maturity can solve either problem separately

 Non-contingent Bonds vs. Lack of Commitment
 ↓
 Large and Tilted Positions ↓ Flat Maturity
Main Results

- If debt positions are large and titled \rightarrow **Lack of commitment** is costly
 - Expectation of future deviation raises ex-ante borrowing costs
 - \rightarrow High *average* tax/spending distortions
Main Results

- If debt positions are large and titled \rightarrow **Lack of commitment** is costly
 - Expectation of future deviation raises ex-ante borrowing costs
 - \rightarrow High *average* tax/spending distortions

- If debt positions are flat \rightarrow **Lack of insurance** is less costly
 - Flat debt position \rightarrow Low fluctuation in market value of debt
 - \rightarrow High *volatility* in tax/spending distortions
Main Results

- If debt positions are large and titled \rightarrow **Lack of commitment** is costly
 - Expectation of future deviation raises ex-ante borrowing costs
 - \rightarrow High average tax/spending distortions

- If debt positions are flat \rightarrow **Lack of insurance** is less costly
 - Flat debt position \rightarrow Low fluctuation in market value of debt
 - \rightarrow High volatility in tax/spending distortions

- **High volatility** of distortions less costly than high average distortions
Main Results

- If debt positions are large and titled → **Lack of commitment** is costly
 - Expectation of future deviation raises ex-ante borrowing costs
 - → High *average* tax/spending distortions

- If debt positions are flat → **Lack of insurance** is less costly
 - Flat debt position → Low fluctuation in market value of debt
 - → High *volatility* in tax/spending distortions

- **High volatility** of distortions less costly than *high average* distortions

- Optimal maturity is quantitatively nearly flat
 - Reducing borrowing costs more important than insurance
 - Optimal policy approximated by active consol management
Government debt maturity under lack of commitment

- **This paper:** Economy without risk of default or surprise inflation
Related Literature

- Government debt maturity under lack of commitment
 - **This paper:** Economy without risk of default or surprise inflation

- Optimal fiscal policy under non-contingent debt and full commitment
 - **This paper:** Long-term debt. No inefficiencies under full commitment
Related Literature

- Government debt maturity under lack of commitment
 - This paper: Economy without risk of default or surprise inflation

- Optimal fiscal policy under non-contingent debt and full commitment
 - This paper: Long-term debt. No inefficiencies under full commitment

- Optimal fiscal policy under contingent debt and lack of commitment
 - This paper: Long-term debt. No inefficiencies under complete markets
Outline

1. Model

2. Lack of commitment benchmark

3. Lack of insurance benchmark

4. Maturity management under both frictions
$t \in \{0, 1, \ldots \}$. Shock $\theta_t \in \Theta$.

The Model

Lucas and Stokey (1983)
The Model
Lucas and Stokey (1983)

- $t \in \{0, 1, \ldots\}$. Shock $\theta_t \in \Theta$.

- Representative household. Preferences:

$$
\mathbb{E} \sum_{t=0}^{\infty} \beta^t u(c_t, n_t) + \theta_t v(g_t)
$$
The Model
Lucas and Stokey (1983)

- \(t \in \{0, 1, \ldots \} \). Shock \(\theta_t \in \Theta \).

- Representative household. Preferences:

\[
\mathbb{E} \sum_{t=0}^{\infty} \beta^t u(c_t, n_t) + \theta_t v(g_t)
\]

- Household budget constraints

\[
c_t = n_t (1 - \tau_t) + \sum_{j=1}^{\infty} q_{t+j}^t \left(B_{t-1}^{t+j} - B_{t+1}^{t+j} \right) + B_{t-1}^t
\]
The Model
Lucas and Stokey (1983)

- $t \in \{0, 1, \ldots\}$. Shock $\theta_t \in \Theta$.

- Representative household. Preferences:

$$\mathbb{E} \sum_{t=0}^{\infty} \beta^t u(c_t, n_t) + \theta_t v(g_t)$$

- Household budget constraints

$$c_t = n_t (1 - \tau_t) + \sum_{j=1}^{\infty} q^{t+j}_t \left(B^{t+j}_{t-1} - B^{t+j}_t \right) + B_{t-1}$$

- Government budget constraint

$$\tau_t n_t - g_t = \sum_{j=1}^{\infty} q^{t+j}_t \left(B^{t+j}_{t-1} - B^{t+j}_t \right) + B_{t-1}$$
Government strategy: choose $\tau_t, g_t, \left\{ B_{t+j}^t \right\}_{j=1}^\infty$ given $\theta_t, \left\{ B_{t-1+j}^t \right\}_{j=1}^\infty$.
Markov Perfect Competitive Equilibrium

- Government strategy: choose $\tau_t, g_t, \left\{B^{t+j}_t\right\}_{j=1}^\infty$ given $\theta_t, \left\{B^{t+j}_{t-1}\right\}_{j=1}^\infty$

- Household allocation: choose $c_t, n_t, \left\{B^{t+j}_t\right\}_{j=1}^\infty$ given $\tau_t, \left\{q^{t+j}_t, B^{t+j}_{t-1}\right\}_{j=1}^\infty$
Markov Perfect Competitive Equilibrium

- Government strategy: choose \(\tau_t, g_t, \left\{ B^{t+j}_t \right\}_{j=1}^{\infty} \) given \(\theta_t, \left\{ B^{t+j}_{t-1} \right\}_{j=1}^{\infty} \)

- Household allocation: choose \(c_t, n_t, \left\{ B^{t+j}_t \right\}_{j=1}^{\infty} \) given \(\tau_t, \left\{ q^{t+j}_t, B^{t+j}_{t-1} \right\}_{j=1}^{\infty} \)

- Markov Perfect Competitive Equilibrium:
 1. Government strategy optimal
 2. Household allocation optimal
 3. Bond prices \(q^{t+j}_t \) clears the market
Equilibrium conditions

Primal approach

- Intertemporal condition:

\[q_{t+j}^t = \beta_j E_t u_{c,t+j} / u_{c,t} \]
Equilibrium conditions

Primal approach

- Intertemporal condition:
 \[q_{t+j}^t = \beta^j \mathbb{E}_t \frac{u_{c,t+j}}{u_{c,t}} \]

- Intratemporal condition:
 \[1 - \tau_t = -\frac{u_{n,t}}{u_{c,t}} \]
Equilibrium conditions

Primal approach

- Intertemporal condition:
 \[q_t^{t+j} = \beta_j \mathbb{E}_t \frac{u_{c,t+j}}{u_{c,t}} \]

- Intratemporal condition:
 \[1 - \tau_t = -\frac{u_{n,t}}{u_{c,t}} \]

- Budget Constraint (implementability condition):
 \[
 \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j u_{c,t} \left[c_t + \frac{u_{n,t}}{u_{c,t}} n_t \right] = \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j u_{c,t+j} B_{t-1}^{t+j}
 \]
 Primary Surpluses \(S(\theta_t) \)
 Value of Debt
Perfect insurance: fiscal policies only depend on θ_t, not on the history.
Perfect insurance: fiscal policies only depend on θ_t, not on the history

Optimal spending:

$$u_{c,t} \left[(1 + \mu) + \mu \frac{u_{cc,t} c_t + u_{cn,t} n_t}{u_{c,t}} \right] = \theta_t v_{g,t}$$

Optimal taxes:

$$u_{c,t} = -u_{n,t} - \frac{\mu}{1 + \mu} \left[(u_{cc,t} + u_{cn,t}) c_t + (u_{cn,t} + u_{nn,t}) n_t \right]$$
• Perfect insurance: fiscal policies only depend on θ_t, not on the history

• Optimal spending:

$$u_{c,t} \left[(1 + \mu) + \mu \frac{u_{cc,t} c_t + u_{cn,t} n_t}{u_{c,t}} \right] = \theta_t v_{g,t}$$

• Optimal taxes:

$$u_{c,t} = -u_{n,t} - \frac{\mu}{1 + \mu} \left[(u_{cc,t} + u_{cn,t}) c_t + (u_{cn,t} + u_{nn,t}) n_t \right]$$

• Government may choose to reduce these distortions ex-post (i.e. change μ)
$t = 0, 1, 2. \ \theta_0 > \theta_1 = \theta_2 = 1$ (high spending at date 0)
Example of Three Period Economy

- $t = 0, 1, 2$. $\theta_0 > \theta_1 = \theta_2 = 1$ (high spending at date 0)

- Suppose that tax revenues are exogenously fixed
 - e.g., applies under GHH preference with commitment to τ

Example of Three Period Economy

- \(t = 0, 1, 2. \, \theta_0 > \theta_1 = \theta_2 = 1 \) (high spending at date 0)

- Suppose that tax revenues are exogenously fixed
 - e.g., applies under GHH preference with commitment to \(\tau \)

- Government welfare:
 \[
 (1 - \psi) \log c + \psi \theta g
 \]

- Consider the limit as \(\psi \to 1 \)
The government solves the following problem

\[
\min \theta_0 c_0 + \beta c_1 + \beta^2 c_2
\]

s.t.
Example of Three Period Economy (cont’d)

The government solves the following problem

\[
\begin{align*}
\text{min} & \quad \theta_0 c_0 + \beta c_1 + \beta^2 c_2 \\
\text{s.t.} & \quad [c_0 - n (1 - \tau)] +
\end{align*}
\]

At an optimum:

\[c_1 = c_2 = n (1 - \tau) + B\]

where \(B\) is the primary surplus at date 1 and 2.

REMARK 1: It implies a bond price at date 1

\[q_2^1 = \beta c_1 c_2 = \beta\]

REMARK 2: It can be implemented with any maturity structure, such that

\[
B_1 + \beta B_2 = (1 + \beta)B
\]
Example of Three Period Economy (cont’d)

- The government solves the following problem

\[
\begin{align*}
\min & \quad \theta_0 c_0 + \beta c_1 + \beta^2 c_2 \\
\text{s.t.} & \quad [c_0 - n (1 - \tau)] + \beta \frac{c_0}{c_1} [c_1 - n (1 - \tau)] + \beta^2 \frac{c_0}{c_2} [c_2 - n (1 - \tau)] \geq 0
\end{align*}
\]

REMARK 1: It implies a bond price at date 1

\[q_2^0 = \beta c_1 \]

REMARK 2: it can be implemented with any maturity structure, such that

\[B_1^0 + \beta B_2^0 = (1 + \beta) B_0 \]

The government solves the following problem

\[
\min \theta_0 c_0 + \beta c_1 + \beta^2 c_2 \\
\text{s.t. } [c_0 - n(1 - \tau)] + \beta \frac{c_0}{c_1} [c_1 - n(1 - \tau)] + \beta^2 \frac{c_0}{c_2} [c_2 - n(1 - \tau)] \geq 0
\]

At an optimum:

\[c_1 = c_2 = n(1 - \tau) + \overline{B}\]

where \(\overline{B}\) is the primary surplus at date 1 and 2.
Example of Three Period Economy (cont’d)

- The government solves the following problem

 \[
 \min \theta_0 c_0 + \beta c_1 + \beta^2 c_2 \\
 \text{s.t.} \quad \left[c_0 - n (1 - \tau) \right] + \beta \frac{c_0}{c_1} \left[c_1 - n (1 - \tau) \right] + \beta^2 \frac{c_0}{c_2} \left[c_2 - n (1 - \tau) \right] \geq 0
 \]

- At an optimum:

 \[\begin{align*}
 c_1 &= c_2 = n (1 - \tau) + \overline{B} \\
 \end{align*} \]

 where \(\overline{B} \) is the primary surplus at date 1 and 2.

- REMARK 1: It implies a bond price at date 1

 \[q_1^2 = \beta \frac{c_1}{c_2} = \beta \]
The government solves the following problem

\[
\begin{align*}
\min & \quad \theta_0 c_0 + \beta c_1 + \beta^2 c_2 \\
\text{s.t.} & \quad [c_0 - n (1 - \tau)] + \beta \frac{c_0}{c_1} [c_1 - n (1 - \tau)] + \beta^2 \frac{c_0}{c_2} [c_2 - n (1 - \tau)] \geq 0
\end{align*}
\]

At an optimum:

\[
c_1 = c_2 = n (1 - \tau) + \overline{B}
\]

where \(\overline{B}\) is the primary surplus at date 1 and 2.

REMARK 1: It implies a bond price at date 1

\[
q_1^2 = \beta \frac{c_1}{c_2} = \beta
\]

REMARK 2: it can be implemented with any maturity structure, such that

\[
B_0^1 + \beta B_0^2 = (1 + \beta) \overline{B}
\]
A Simple Example
No Uncertainty
A Simple Example: No Uncertainty
A Simple Example
No Uncertainty

Short-term or Long-Term?
Only **Short-term** debt
Only **Short-term** debt
Only **Short-term** debt

```
<table>
<thead>
<tr>
<th></th>
<th>t=0</th>
<th>t=1</th>
<th>t=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>B_{0}^{1}</td>
<td>G</td>
<td>r_{0}^{1}B_{0}^{1}</td>
</tr>
<tr>
<td>Taxes</td>
<td></td>
<td>Taxes_1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B_{0}^{1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```


Only **Short–term** debt

New debt issued at date 1

- Taxes_0
- Taxes_1
- Taxes_2

$t=0$ $t=1$ $t=2$

$r_0^1 \text{B}_0^1$ $r_1^2 \text{B}_1^2$
Only Long-term debt
Only Long-term debt
Only **Long-term** debt

![Diagram showing financial flows at different time periods](image-url)

- **t=0**: Initial state with debt and taxes.
- **t=1**: Intermediate state showing surplus at date 1.
- **t=2**: Final state with future debt and taxes.

Key elements:
- **B_0^2**, **$Taxes_0$**, **G** at t=0
- **B_1^2**, **$Taxes_1$**, **G** at t=1
- **B_0^2**, **B_1^2**, **$Taxes_2$**, **G** at t=2

Arrows indicate financial flows and growth factors $r_1^2B_1^2$ and $r_0^2B_0^2$.
Lack of Commitment
The Commitment Problem

- If government is allowed to deviate in period 1
- ... given a maturity structure B_0^1 and B_0^2

\[
\min c_1^{\tau} + \beta c_2^{\tau-1} [c_1^{\tau-1} - n(1-\tau)] + \beta c_1^{\tau} c_2^{\tau-1} [c_2^{\tau-1} - n(1-\tau)] \\
\geq B_0^1 + \beta c_1^{\tau} c_2^{\tau-1} B_0^2
\]

Is it still optimal to choose $c_1 = c_2$?

The FOC implies:

\[
c_1^{\tau} c_2^{\tau-1} = \left(n(1-\tau) + B_0^1 n(1-\tau) + B_0^2 \right)^{1/2}
\]

FLAT MATURITY solves commitment problem:

$c_1 = c_2$ if and only if $B_0^1 = B_0^2$

Debortoli-Nunes-Yared (2015)
The Commitment Problem

- If government is allowed to deviate in period 1
- ... given a maturity structure B_0^1 and B_0^2

$$\begin{align*}
\min & \quad c_1 + \beta c_2 \\
\text{s.t.} & \quad [c_1 - n (1 - \tau)] + \beta \frac{c_1}{c_2} [c_2 - n (1 - \tau)] \geq B_0^1 + \beta \frac{c_1}{c_2} B_0^2
\end{align*}$$
The Commitment Problem

- If government is allowed to deviate in period 1
- ... given a maturity structure B_0^1 and B_0^2

$$\min \quad c_1 + \beta c_2$$

$$s.t. \quad [c_1 - n (1 - \tau)] + \beta \frac{c_1}{c_2} [c_2 - n (1 - \tau)] \geq B_0^1 + \beta \frac{c_1}{c_2} B_0^2$$

- Is it still optimal to choose $c_1 = c_2$?
The Commitment Problem

- If government is allowed to deviate in period 1
- ... given a maturity structure B_0^1 and B_0^2

$$\min \ c_1 + \beta c_2$$

$$s.t. \quad [c_1 - n (1 - \tau)] + \beta \frac{c_1}{c_2} \ [c_2 - n (1 - \tau)] \geq B_0^1 + \beta \frac{c_1}{c_2} B_0^2$$

- Is it still optimal to choose $c_1 = c_2$?
- The FOC implies

$$\frac{c_1}{c_2} = \left(\frac{n (1 - \tau) + B_0^1}{n (1 - \tau) + B_0^2} \right)^{1/2}$$
The Commitment Problem

- If government is allowed to deviate in period 1
- ... given a maturity structure B_1^1 and B_2^2

$$\begin{aligned}
&\text{min} \quad c_1 + \beta c_2 \\
&\text{s.t.} \quad [c_1 - n (1 - \tau)] + \beta \frac{c_1}{c_2} [c_2 - n (1 - \tau)] \geq B_1^1 + \beta \frac{c_1}{c_2} B_2^2
\end{aligned}$$

- Is it still optimal to choose $c_1 = c_2$?
- The FOC implies

$$\frac{c_1}{c_2} = \left(\frac{n (1 - \tau) + B_0^1}{n (1 - \tau) + B_0^2} \right)^{1/2}$$

- **FLAT MATURITY** solves commitment problem: $c_1 = c_2 \iff B_0^1 = B_0^2$
A simple example: Commitment Problem
A deviation from original plan at t=1
A simple example: Commitment Problem
A deviation from original plan at $t=1$
A simple example: Commitment Problem
A deviation from original plan at t=1
A simple example: Commitment Problem
A deviation from original plan at t=1

r₁^2 can be changed in t=1

r₀^2 was set in t=0
A simple example: Commitment Problem
A deviation from original plan at $t=1$

INCENTIVE
Spend more in $t=1$ → B_1^2 lower → r_1^2 higher
A simple example: Commitment Problem
A deviation from original plan at t=1

INCENTIVE
Spend more in t=1
$\Rightarrow B_1^2$ lower
$\Rightarrow r_1^2$ higher
FLAT MATURITY solves COMMITMENT PROBLEM
FLAT MATURITY solves COMMITMENT PROBLEM
FLAT MATURITY solves COMMITMENT PROBLEM

No incentive to change r_1^2 ex-post
Government wants to reduce value of what it owes:

\[B_0^1 + \beta \frac{c_1}{c_2} B_0^2 \]

If \(B_0^1 = 0 \) and \(B_0^2 > 0 \) \(\Rightarrow \) \(\uparrow \) \(c_2 \) and \(\downarrow \) \(c_1 \) (deviation: \(\uparrow \) \(B_1^2 \))
Why Does a Flat Debt Position Fix Commitment?

- Government wants to reduce value of what it owes:

 \[B_0^1 + \beta \frac{c_1}{c_2} B_0^2 \]

 - If \(B_0^1 = 0 \) and \(B_0^2 > 0 \) ⇒ \(\uparrow c_2 \) and \(\downarrow c_1 \) (deviation: \(\uparrow B_1^2 \))

- Government wants to increase value of what it issues:

 \[\beta \frac{c_1}{c_2} B_1^2 \]

 - If \(B_0^1 > 0 \) and \(B_0^2 = 0 \) ⇒ \(B_1^2 > 0 \) ⇒ \(\downarrow c_2 \) and \(\uparrow c_1 \) (deviation: \(\downarrow B_1^2 \))
Why Does a Flat Debt Position Fix Commitment?

- Government wants to reduce value of what it owes:

\[B_0^1 + \beta \frac{c_1}{c_2} B_0^2 \]

If \(B_0^1 = 0 \) and \(B_0^2 > 0 \) \(\Rightarrow \) \(c_2 \) and \(c_1 \) (deviation: \(B_1^2 \))

- Government wants to increase value of what it issues:

\[\beta \frac{c_1}{c_2} B_1^2 \]

If \(B_0^1 > 0 \) and \(B_0^2 = 0 \) \(\Rightarrow B_1^2 > 0 \) \(\Rightarrow \) \(c_2 \) and \(c_1 \) (deviation: \(B_1^2 \))

If \(B_0^2 = B_0^1 = \bar{B} \) \(\Rightarrow \) No gains from deviation

True since it implies \(B_0^2 = B_1^2 = \bar{B} \)
Proposition. Let $B_0^1 + \beta B_0^2 = \bar{B} (1 + \beta)$. The higher is $|B_0^2 - B_0^1|$, the higher the cost of lack of commitment.
Cost of Lack of Commitment Depends on Maturity

Proposition. Let $B_0^1 + \beta B_0^2 = \bar{B} (1 + \beta)$. The higher is $|B_0^2 - B_0^1|$, the higher the cost of lack of commitment.

Date 1 government wants to relax implementability condition:

$$
\frac{c_1 - n (1 - \tau)}{c_1} + \beta \frac{c_2 - n (1 - \tau)}{c_2} \geq \frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2}
$$

- e.g. if $B_0^2 > B_0^1$, reducing c_1 / c_2 reduces RHS
Cost of Lack of Commitment Depends on Maturity

- **Proposition.** Let $B_0^1 + \beta B_0^2 = B (1 + \beta)$. The higher is $|B_0^2 - B_0^1|$, the higher the cost of lack of commitment.

- Date 1 government wants to relax implementability condition:
 \[
 \frac{c_1 - n(1 - \tau)}{c_1} + \beta \frac{c_2 - n(1 - \tau)}{c_2} \geq \frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2}
 \]

 e.g. if $B_0^2 > B_0^1$, reducing c_1 / c_2 reduces RHS

 ... BUT this tightens the constraint at date 0
 \[
 \frac{c_0 - n(1 - \tau)}{c_0} + \beta \left(\frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2} \right) \geq 0
 \]
Cost of Lack of Commitment Depends on Maturity

Proposition. Let $B^1_0 + \beta B^2_0 = \overline{B} (1 + \beta)$. The higher is $|B^2_0 - B^1_0|$, the higher the cost of lack of commitment.

Date 1 government wants to relax implementability condition:

$$\frac{c_1 - n(1-\tau)}{c_1} + \beta \frac{c_2 - n(1-\tau)}{c_2} \geq \frac{B^1_0}{c_1} + \beta \frac{B^2_0}{c_2}$$

- e.g. if $B^2_0 > B^1_0$, reducing c_1 / c_2 reduces RHS
- ... BUT this tightens the constraint at date 0

$$\frac{c_0 - n(1-\tau)}{c_0} + \beta \left(\frac{B^1_0}{c_1} + \beta \frac{B^2_0}{c_2} \right) \geq 0$$

- If $|B^2_0 - B^1_0| \uparrow \Rightarrow$ deviation at time 1↑
Cost of Lack of Commitment Depends on Maturity

- **Proposition.** Let $B_0^1 + \beta B_0^2 = \bar{B} (1 + \beta)$. The higher is $|B_0^2 - B_0^1|$, the higher the cost of lack of commitment.

- Date 1 government wants to relax implementability condition:

 $$ \frac{c_1 - n(1 - \tau)}{c_1} + \beta \frac{c_2 - n(1 - \tau)}{c_2} \geq \frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2} $$

 - e.g. if $B_0^2 > B_0^1$, reducing c_1 / c_2 reduces RHS
 - ... BUT this tightens the constraint at date 0

 $$ \frac{c_0 - n(1 - \tau)}{c_0} + \beta \left(\frac{B_0^1}{c_1} + \beta \frac{B_0^2}{c_2} \right) \geq 0 $$

- If $|B_0^2 - B_0^1| \uparrow \iff$ deviation at time 1↑
 \[\Rightarrow \] the tighter the constraint at date 0 \[\Rightarrow \] welfare at time 0↓.
Generalizable Insights from Example

- Government can deviate ex post to relax budget constraint
 - Method: Increase consumption in direction of maturity of debt
 - Deviation incentives larger if debt more tilted
 - Relaxing budget allows reducing ex-post tax/spending distortions
Generalizable Insights from Example

- Government can deviate ex post to relax budget constraint
 - Method: Increase consumption in direction of maturity of debt
 - Deviation incentives larger if debt more tilted
 - Relaxing budget allows reducing ex-post tax/spending distortions

- Expectation of future deviation raises ex-ante borrowing rates
 - Households expect higher future consumption in high debt periods
 - Higher borrowing rates + large debt positions tighten ex-ante budget
Generalizable Insights from Example

- Government can deviate ex post to relax budget constraint
 - Method: Increase consumption in direction of maturity of debt
 - Deviation incentives larger if debt more tilted
 - Relaxing budget allows reducing ex-post tax/spending distortions

- Expectation of future deviation raises ex-ante borrowing rates
 - Households expect higher future consumption in high debt periods
 - Higher borrowing rates + large debt positions tighten ex-ante budget

- Tighter ex-ante budget \rightarrow Higher initial tax/spending distortions
Quantitative Assessment of Lack of Commitment

- Three period environment $t = 0, 1, 2$

Preferences and parameters [following Chari, Christiano and Kehoe (1995)]

$\log c + \eta \log (1 - n) + \theta t \log g$

$\beta = 0.9644$ (yearly model)

$\eta = 3.33$ (implies $n = 0.23$)

$\theta_1 = \theta_2 = 0.2195$ (implies $g_1/y_1 = g_2/y_2 = 0.18$)

$\theta_0 = 0.2360$, implies $g_0/y_0 = 0.19$ (std(g) = 0.07)

Calculate welfare cost of no commitment given $B_1 + \beta B_2 = B(1 + \beta)$

Consider lack of commitment to spending and to taxes separately

Main result: Welfare cost rises in tilt of maturity structure
Quantitative Assessment of Lack of Commitment

- Three period environment $t = 0, 1, 2$
- Preferences and parameters [following Chari, Christiano and Kehoe (1995)]

$$\log c + \eta \log (1 - n) + \theta_t \log g$$

- $\beta = 0.9644$ (yearly model)
- $\eta = 3.33$ (implies $n = 0.23$)
- $\theta_1 = \theta_2 = 0.2195$ (imply $g_1/y_1 = g_2/y_2 = 0.18$)
- $\theta_0 = 0.2360$, implies $g_0/y_0 = 0.19$ (std(g)=0.07)
Quantitative Assessment of Lack of Commitment

- Three period environment $t = 0, 1, 2$
- Preferences and parameters [following Chari, Christiano and Kehoe (1995)]
 \[\log c + \eta \log (1 - n) + \theta_t \log g \]
- $\beta = 0.9644$ (yearly model)
- $\eta = 3.33$ (implies $n = 0.23$)
- $\theta_1 = \theta_2 = 0.2195$ (imply $g_1/y_1 = g_2/y_2 = 0.18$)
- $\theta_0 = 0.2360$, implies $g_0/y_0 = 0.19$ (std(g)=0.07)

- Calculate welfare cost of no commitment given
 \[B_0^1 + \beta B_0^2 = \bar{B} (1 + \beta) \]
 - Consider lack of commitment to spending and to taxes separately
 - Main result: Welfare cost rises in tilt of maturity structure
Cost of Lack of Commitment Rises with Tilt of Debt

Positions exceeding 100% of GDP costs more than 1% of consumption
Lack of Insurance
Proposition (Angeletos, Buera and Nicolini):

If \# available maturities equals \# states of the world

\[\downarrow\]

solution under incomplete markets = solution under complete markets.
Tilted Maturity Fixes Lack of Insurance

Proposition (Angeletos, Buera and Nicolini):

If \(#\) available maturities equals \(#\) states of the world

\[\downarrow\]

solution under incomplete markets = solution under complete markets.

- Implemented with time-invariant non-contingent debt
- Insurance through fluctuations in market value of debt
Example in a three-period model

- Suppose $\theta_1 \in \{\theta_H, \theta_L\}$ is stochastic.
- Let $S^*(\theta_H)$ and $S^*(\theta_L)$ be the value of surpluses under complete markets.
- One can find B_0^S and B_0^L such that,

\[
\begin{bmatrix}
S^*(\theta_H) \\
S^*(\theta_L)
\end{bmatrix} =
\begin{bmatrix}
1 & q_{0,1}^* \\
1 & q_{0,2}^*
\end{bmatrix}
\begin{bmatrix}
B_0^S \\
B_0^L
\end{bmatrix}
\]
Example in a three-period model

- Suppose $\theta_1 \in \{\theta_H, \theta_L\}$ is stochastic.
- Let $S^*(\theta_H)$ and $S^*(\theta_L)$ be the value of surpluses under complete markets.
- One can find B_0^S and B_0^L such that,

$$\begin{bmatrix} S^*(\theta_H) \\ S^*(\theta_L) \end{bmatrix} = \begin{bmatrix} 1 & q_0^{*,1} \\ 1 & q_0^{*,2} \end{bmatrix} \begin{bmatrix} B_0^S \\ B_0^L \end{bmatrix}$$

Lemma. If θ_1 stochastic in three-period model, optimal policy:

$$B_0^1 < 0 \text{ and } B_0^2 > 0$$

- Market value of debt declines when θ_1 high, g_1 high, and c_1 low:

$$B_0^1 + \beta \frac{c_1}{c_2} B_0^2$$
Maturity is Tilted and Large under Commitment

May 2015 24 / 36
Welfare Cost of Flat Maturity Rises with Volatility

Cost is below 0.05% under empirical volatility of spending

Flat debt position \rightarrow Low fluctuation in market value of debt
Lack of Insurance Less Costly than Lack of Commitment

- Flat debt position \rightarrow Low fluctuation in market value of debt

- Low insurance \rightarrow High volatility in tax/spending distortions
Lack of Insurance Less Costly than Lack of Commitment

- Flat debt position \rightarrow Low fluctuation in market value of debt

- Low insurance \rightarrow High volatility in tax/spending distortions

- High volatility of distortions less costly than high average distortions
 - Similar argument to Lucas (1987)
Quantitative Analysis: Infinite Horizon
Let $t = \{0, \infty\}$. $\theta_t = \{\theta^L, \theta^H\}$ with persistence ρ.
Let \(t = \{0, \infty\} \). \(\theta_t = \{\theta^L, \theta^H\} \) with persistence \(\rho \)

Available maturities: One period bond \((B^S) \) and a consol \((B^L) \)

\[
\tau_t n_t - g_t = -q^S_t B^S_t + q^L_t \left(B^L_{t-1} - B^L_t \right) + \left(B^S_{t-1} + B^L_{t-1} \right)
\]

Initial debt consistent with avg. level and maturity of US (1980 - 2008)
- Total Debt 60% of GDP, of which 30% with maturity \(\leq 1 \) year.
Optimal Maturity in Infinite Horizon

- Let \(t = \{0, \infty\} \). \(\theta_t = \{\theta^L, \theta^H\} \) with persistence \(\rho \)

- Available maturities: One period bond (\(B^S \)) and a consol (\(B^L \))

\[
\tau_t n_t - g_t = -q^S_t B^S_t + q^L_t \left(B^L_{t-1} - B^L_t\right) + \left(B^S_{t-1} + B^L_{t-1}\right)
\]

- Initial debt consistent with avg. level and maturity of US (1980 - 2008)
 - Total Debt 60% of GDP, of which 30% with maturity \(\leq 1 \) year.

- No inefficiency under full commitment or full insurance
 - Full commitment: Angeletos and Buera-Nicolini result apply
 - Full insurance: Consol enforces perfect smoothing
 - If there is full commitment to either taxes or spending
Optimal Maturity Is Nearly Flat
Average Debt Positions at Market Value (% of GDP) - Model with Exog. g
Optimal Maturity Is Nearly Flat

Average Debt Positions (% of GDP)

[Graphs showing the relationship between debt positions and various economic parameters such as standard deviation of growth, risk aversion, and curvature of leisure.]
Why Is Optimal Maturity Is Nearly Flat?

- Cost of incompleteness low for empirical volatility of spending
Why Is Optimal Maturity Is Nearly Flat?

- Cost of incompleteness low for empirical volatility of spending
- Cost of lack of commitment high under standard preferences
 - Incentives to deviate strong given large tilted debt needed for hedging
 - Anticipation of future deviation increases cost of financing today
 - Significant hedging would require high tax/spending distortions

Debortoli-Nunes-Yared (2015)
Why Is Optimal Maturity Is Nearly Flat?

- Cost of incompleteness low for empirical volatility of spending
- Cost of lack of commitment high under standard preferences
 - Incentives to deviate strong given large tilted debt needed for hedging
 - Anticipation of future deviation increases cost of financing today
 - Significant hedging would require high tax/spending distortions
- Optimal policy goal should be to minimize average distortion
 - Reducing volatility of distortions is second order
Debt Is Actively Managed

Debortoli-Nunes-Yared (2015)
Optimal Government Debt Maturity
May 2015
32 / 36
Fiscal Policy is History Dependent (no perfect insurance)

Robustness 2: Different models

Average Debt Positions at Market Value (% of GDP)

Debortoli-Nunes-Yared (2015)
Optimal Government Debt Maturity
May 2015
Robustness 3: Different Maturities ($\gamma = 0.5$)

Average Debt Positions (% of GDP)

Debortoli-Nunes-Yared (2015)
Optimal Government Debt Maturity
May 2015
Conclusion

- Results of previous literature not robust to lack of commitment
 - Tradeoff between hedging and commitment
Conclusion

- Results of previous literature not robust to lack of commitment
 - Tradeoff between hedging and commitment

- Optimal debt maturity is quantitatively nearly flat
 - Active management of consol in response to shocks
Conclusion

- Results of previous literature not robust to lack of commitment
 - Tradeoff between hedging and commitment

- Optimal debt maturity is quantitatively nearly flat
 - Active management of consol in response to shocks

- Considerations for future research
 - Monetary policy interactions
 - Debt maturity and financial frictions
 - Redistributive taxation