Multinational Production and Comparative Advantage

Vanessa Alviarez

Sauder Business School University of British Columbia

May, 2015

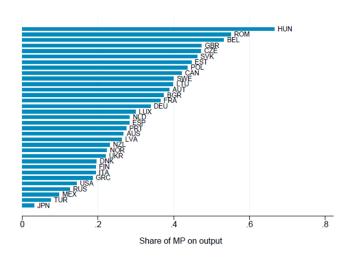
Multinational Production (MP) and Sectoral Productivity

▶ What is the relationship between MP and differences in relative productivity across sectors?

Observations:

- ► MP represents a large fraction of output, employment and trade
- ► The fraction of MP on output is significantly heterogeneous across sectors
- ► Significant cross-country differences in the sectoral heterogeneity of MP
- ▶ MP and sectoral productivity are negatively correlated

Relevance of Multinational Production



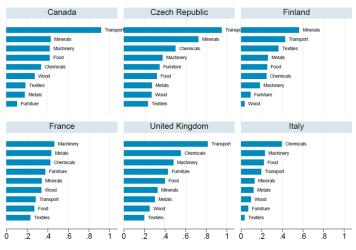
Multinational Production (MP) and Sectoral Productivity

▶ What is the relationship between MP and differences in relative productivity across sectors?

Observations:

- ► MP represents a large fraction of output, employment and trade
- ► The fraction of MP on output is significantly heterogeneous across sectors
- ► Significant cross-country differences in the sectoral heterogeneity of MP
- ▶ MP and sectoral productivity are negatively correlated

Sectoral Heterogeneity of MP shares



Share of MP on output (by sector)

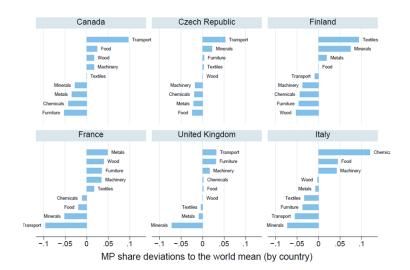
Multinational Production (MP) and Sectoral Productivity

▶ What is the relationship between MP and differences in relative productivity across sectors?

Observations:

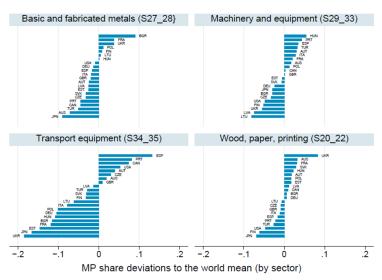
- ► MP represents a large fraction of output, employment and trade
- ► The fraction of MP on output is significantly heterogeneous across sectors
- ► Significant cross-country differences in the sectoral heterogeneity of MP
- ▶ MP and sectoral productivity are negatively correlated

Cross-country differences in MP heterogeneity



Cross-country differences in MP heterogeneity

▶ index



Multinational Production (MP) and Sectoral Productivity

▶ What is the relationship between MP and differences in relative productivity across sectors?

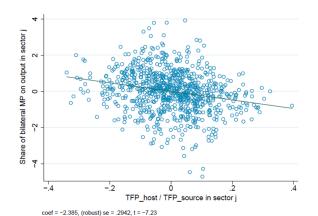
Observations:

- ► MP represents a large fraction of output, employment and trade
- ► The fraction of MP on output is significantly heterogeneous across sectors
- ► Significant cross-country differences in the sectoral heterogeneity of MP
- ► MP and sectoral productivity are negatively correlated

MP is correlated with sectoral productivity

Negative Correlation Between $(MP_{hs}^{j}/output_{h}^{j})$ and Relative TFP

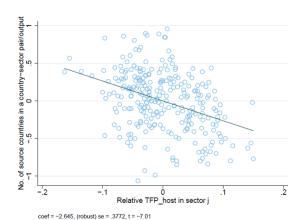
► Foreign affiliate sales are higher in sectors where the host economy is relatively less productive.



MP is correlated with sectoral productivity

Negative Correlation Between $(\#sources_{hs}^j/output_h^j)$ and Relative TFP

▶ More source countries invest in sectors where the host economy is relatively less productive.



Bilateral MP and Productivity Differences

	Relative Productivity Measures					
Dep. Variable	Model Base Productivity		RCA Index		GDDC productivity	
$ln\left(MP_{hs}^{j}/output_{h}^{j}\right)$						
	(1)	(2)	(3)	(4)	(5)	(6)
$ln\left(TFP_h^j/TFP_s^j\right)$	-1.872***	-1.657***	-1.359***	-1.387***	-0.428**	-0.392**
	(0.3260)	(0.3304)	(0.4376)	(0.4464)	(0.2023)	(0.1709)
$\ln(\mathrm{Distance})$	-0.5130***		-0.168		-0.161	
	(0.0926)		(0.1923)		(0.1572)	
Common Language	0.077		0.6093**		0.0692	
	(0.1996)		(0.297)		(0.2164)	
Colony	0.643***		0.2961		0.5254***	
	(0.1496)		(0.2768)		(0.1703)	
Border	0.188		0.225		0.666***	
	(0.1819)		(0.2094)		(0.2411)	
RTA	0.259		0.300		0.865***	
	(0.1832)		(0.3604)		(0.2495)	
Hecksher-Ohlin:						
$log(K/L)^j \times log(K/L)_\hbar$	-0.2676	-0.258	-0.1529	-0.1612	-0.163	-0.168
	(0.2502)	(0.2518)	(0.1756)	(0.1767)	(0.1432)	(0.1449)
Controls						
Source-country FE	Yes	_	Yes	_	Yes	_
Host-country FE	Yes	_	Yes	_	Yes	_
Host-source FE	No	Yes	No	Yes	No	Yes
Sector FE	Yes	Yes	Yes	Yes	Yes	Yes
No. of observations	10,098	7,101	1,404	1,242	2,448	2,200
Adjusted R^2	0.29	0.42	0.59	0.69	0.34	0.47

Interaction between Multinational Production (MP) and Comparative Advantage

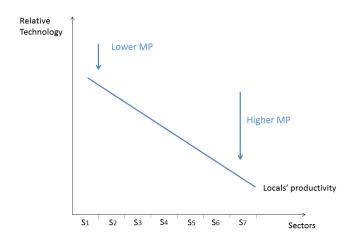
- ► Are the observed uneven allocation of MP across sectors related to differences in sectoral productivity?
- ▶ Does multinational production affect the average productivity of each industry differently?
- ▶ What are the welfare implications of the interaction between MP and relative differences in sectoral productivity?

Can MP affect relative productivity differences across sectors?

- ► Multinationals bring knowhow, innovative knowledge, and managerial skills.
- ▶ MP induces larger transfer of technology in sectors where the host country is relatively less productive
 - Reducing differences in relative productivity across sectors

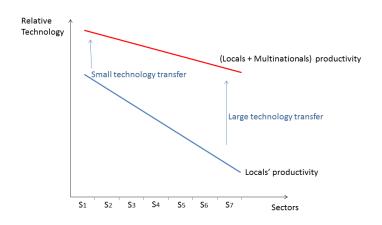
$CA \rightarrow MP$

Effect of Comparative Advantage on MP allocation



$MP \rightarrow CA$

Effect of MP on Comparative Advantage



This paper

- 1. Assembles an industry-level dataset of bilateral foreign affiliates' sales to document some empirical regularities
- 2. Incorporates a sectoral dimension into a multi-country model of trade and MP:
 - ► Estimates productivities at the sectoral level for domestic and all producers in the economy
 - ▶ Derives analytical implications for welfare
 - ► Conducts counterfactual exercises to evaluate the effects of MP
 - ► Unisectoral models of Trade and MP are silent with respect to the interaction between MP and comparative advantage

Preview of Results

- ▶ The increase in real income following an opening to multinational activity is 15 percentage points higher compared to the case where MP is homogeneous across sectors (27% compared to 12%)
- ▶ The increase in real income following a trade liberalization is about half of what it would be if MP does not affect comparative advantage (10% compared to 19.4%)

Preview of Results

- ▶ The increase in real income following an opening to multinational activity is 15 percentage points higher compared to the case where MP is homogeneous across sectors (27% compared to 12%)
- ▶ The increase in real income following a trade liberalization is about half of what it would be if MP does not affect comparative advantage (10% compared to 19.4%)

Contribution to Related Literature

- ▶ Uni-sector MP-trade models:
 - ► Ramondo and Rodriguez-Clare (2011); Shikher (2011)
 - Arkolakis, Ramondo, Rodriguez-Clare and Yeaple (2012)
 - ▶ Alfaro and Chen (2012, 2011)
- ► Multi-sector trade-only models:
 - Costinot, Donalson and Komunjer (2012), Caliendo and Parro (2013), Levchenko and Zhang (2012)
- ► Horizontal MP and technology transfer:
 - Guadalupe, Kuzmina and Thomas (2012), Fons-Rosen et al (2013), Chen and Alfaro (2011), Békeé, Kleinert and Toubal (2009), Blyde et al. (2004)
 - ► Brainard (2009, 2011), Ramondo et al. (2012), Neary (2007)

Roadmap

- ▶ Presents a GE model of trade and MP that incorporates the sectoral dimension.
- ► Estimates productivity parameters of local producers and overall economy for each country-sector pair.
- ► Evaluates the welfare implications of the effect of MP on comparative advantage.

- ▶ N countries: source (s), host (h) and destination market (m)
- ightharpoonup J tradable sectors and one (J+1) non-tradable sector
 - Each sector has a continuum of varieties $\omega = [0, 1]$
- ▶ MP by source country s in host country h occurs when a technology from s is used in h to produce variety ω .
 - ▶ Trade: Country produces from their own market to sell to a foreign market s = h.
 - MP: Country produces at the destination market h = m.
 - Export Platforms: Country s produces in h to sell from there to destination market m.

- ▶ N countries: source (s), host (h) and destination market (m)
- ightharpoonup J tradable sectors and one (J+1) non-tradable sector
 - Each sector has a continuum of varieties $\omega = [0, 1]$
- ▶ MP by source country s in host country h occurs when a technology from s is used in h to produce variety ω .
 - ▶ Trade: Country produces from their own market to sell to a foreign market s = h.
 - MP: Country produces at the destination market h = m.
 - ► Export Platforms: Country s produces in h to sell from there to destination market m.

- ▶ N countries: source (s), host (h) and destination market (m)
- ightharpoonup J tradable sectors and one (J+1) non-tradable sector
 - Each sector has a continuum of varieties $\omega = [0, 1]$
- ▶ MP by source country s in host country h occurs when a technology from s is used in h to produce variety ω .
 - ▶ Trade: Country produces from their own market to sell to a foreign market s = h.
 - ▶ MP: Country produces at the destination market h = m.
 - Export Platforms: Country s produces in h to sell from there to destination market m.

- ▶ N countries: source (s), host (h) and destination market (m)
- ▶ J tradable sectors and one (J+1) non-tradable sector
 - Each sector has a continuum of varieties $\omega = [0, 1]$
- ▶ MP by source country s in host country h occurs when a technology from s is used in h to produce variety ω .
 - ▶ Trade: Country produces from their own market to sell to a foreign market s = h.
 - ▶ MP: Country produces at the destination market h = m.
 - ► Export Platforms: Country s produces in h to sell from there to destination market m.

- Using technology to produce in a foreign country entails a cost:
 - Iceberg MP costs: $g_{hs}^j > 1$, and $g_{ss}^j = 1$
- ► Trade across countries is costly:
 - Iceberg trade costs: $d_{nh}^j > 1$, and $d_{hh}^j = 1$
- ► Factors of Production: capital (K), labor (L)
- ▶ Productivity of each country-sector pair is described by:

$$\mathbf{z_{s}^{j}}\left(\omega\right)\equiv\left\{ z_{1s}^{j}\left(\omega\right),z_{2s}^{j}\left(\omega\right),...,z_{Ns}^{j}\left(\omega\right)\right\} \quad\forall i,j=1:N$$

Production Structure

Production function:

$$Q_{mhs}^{j}\left(\omega\right) = \left[\left(L_{h}^{j}\right)^{\alpha_{j}}\left(K_{h}^{j}\right)^{1-\alpha_{j}}\right]^{\beta_{j}} \left[\prod_{k=1}^{J+1}\left(Q_{s}^{k}\right)^{\gamma_{kj}}\right]^{1-\beta_{j}} \left(\frac{z_{hs}^{j}\left(\omega\right)}{g_{hs}^{j}}\right)$$

$$\Rightarrow p_{mhs}^{j}(\omega) = \left(\frac{c_{h}^{j}g_{hs}^{j}}{z_{hs}^{j}(\omega)}\right)d_{mh}^{j}$$

where:

$$c_h^j = \left[\left(w_h^j \right)^{\alpha_j} \left(r_h^j \right)^{1 - \alpha_j} \right]^{\beta_j} \left[\prod_{k=1}^{J+1} \left(p_h^k \right)^{\gamma_{kj}} \right]^{1 - \beta_j}.$$

Production Structure

ightharpoonup Seller s will choose the location h to reach country m with the lowest possible price

$$p_{ms}^{j}\left(\omega\right)=\min\left\{ p_{m1s}^{j}\left(\omega\right),p_{m2s}^{j}\left(\omega\right),...,p_{mNs}^{j}\left(\omega\right)\right\}$$

ightharpoonup Consumers in m will choose to buy from the source technology country s that offers the cheapest price

$$p_{m}^{j}\left(\omega\right)=\min\left\{ p_{m1}^{j}\left(\omega\right),p_{m2}^{j}\left(\omega\right),...,p_{mN}^{j}\left(\omega\right)\right\}$$

Market Structure

▶ Hence, the probability that country (m) imports sector (j) goods from country (h) using country (s) technologies is described as:

$$\pi_{mhs}^{j} = \underbrace{\frac{T_{s}^{j} \left(\Delta_{ms}^{j}\right)^{-\theta_{j}}}{\sum_{s} T_{s}^{j} \left(\Delta_{ms}^{j}\right)^{-\theta_{j}}} \cdot \underbrace{\frac{\left(\delta_{mhs}^{j}\right)^{-\theta_{j}}}{\sum_{h} \left(\delta_{mhs}^{j}\right)^{-\theta_{j}}}}_{\text{Term 1}}.$$

where
$$\Delta_{ms}^j = \left(\sum_h \left(\delta_{mhs}^j\right)^{-\theta_j}\right)^{-\frac{1}{\theta_j}}$$
 and $\delta_{mhs}^j = d_{mh}^j c_h^j g_{hs}^j$.

Trade Shares: π_{mh}^{j}

▶ Summing up π_{mhs}^{j} across source countries s

$$\pi_{mh}^{j} = \sum_{s=1}^{N} \pi_{mhs}^{j}$$

$$\frac{X_{mh}^{j}}{X_{m}^{j}} = \pi_{mh}^{j} = \frac{\widetilde{T_{h}^{j}} (c_{h}^{j} d_{mh}^{j})^{-\theta}}{\sum_{k=1}^{N} \widetilde{T_{k}^{j}} (c_{k}^{j} d_{mk}^{j})^{-\theta}}$$

Where T_h^j is the effective technology:

$$\widetilde{T_h^j} = T_1^j {g_{h1}^j}^{-\theta} + T_2^j {g_{h2}^j}^{-\theta} + \ldots + T_N^j {g_{hN}^j}^{-\theta}$$

MP Shares: $y_{h_a}^{j}$

▶ MP sales: summing up $\pi_{mhs}^{j}X_{m}^{j}$ across destination countries m; where $X_m^j = p_m^j Q_m^j$

$$I_{hs}^j = \sum_{m=1}^N \pi_{mhs}^j X_m^j$$

$$I_{hs}^{j} = \frac{T_{s}^{j} (g_{hs}^{j} c_{h}^{j})^{-\theta}}{(p_{h}^{j})^{-\theta}} \frac{(X_{h})^{2}}{X_{hh}}$$

▶ MP shares are given by:

$$y_{hs}^{j} = \frac{I_{hs}^{j}}{\sum_{s} I_{hs}^{j}} = \frac{I_{hs}^{j}}{I_{h}^{j}} = \frac{T_{s}^{j} \left(g_{hs}^{j}\right)^{-\theta}}{\widetilde{T}_{h}^{j}}$$

Closing the Model

▶ Given the set of prices $\left\{w_h, r_h, P_h, \left\{p_h^j\right\}_{j=1}^{J+1}\right\}_{h=1}^N$, production is allocated across countries and sectors as follows:

$$p_h^j Q_h^j = p_h^j Y_h^j + \sum_{k=1}^{J+1} (1 - \beta_k) \gamma_{j,k} \left(\sum_{m=1}^N \sum_{s=1}^N \pi_{mhs}^k p_m^k Q_m^k \right)$$

▶ The optimal sectoral factor allocations in country h and tradable sector j must thus satisfy:

$$\sum_{m=1}^{N} \sum_{s=1}^{N} \pi_{mhs}^{j} p_{m}^{j} Q_{m}^{j} = \frac{w_{h} L_{h}^{j}}{\alpha_{j} \beta_{j}} = \frac{r_{h} K_{h}^{j}}{(1 - \alpha_{j}) \beta_{j}}.$$

Analytical predictions

Simplifying assumptions

- ► Cobb Douglas preferences and equal expenditure shares (Preferences
- ▶ A mirror image of the fundamental productivity across sectors and countries: $T_1^a = T_2^b$ and $T_1^b = T_2^a$
- \triangleright Country 2 has comparative advantage in sector a:

$$T_2^a > T_2^b$$

- ▶ Symmetry in trade and MP barriers
- ▶ The above assumptions ensure that wages are equal in both countries, $w_1 = w_2 = 1$

Welfare Analysis: Gains from Trade

▶ Welfare: an expression for real wage

$$W_{s} = \frac{w_{s}}{(p_{s}^{a}p_{s}^{b})^{\frac{1}{2}}} = \Gamma^{-1} \left(T_{s}^{a}T_{s}^{b}\right)^{\frac{1}{2\theta}} \left(\pi_{ss}^{a}\pi_{ss}^{b}\right)^{-\frac{1}{2\theta}} \left(y_{ss}^{a}y_{ss}^{b}\right)^{-\frac{1}{2\theta}}$$

• Gains from trade: $(\pi_{ss}^a \pi_{ss}^b)^{-\frac{1}{2\theta}}$

$$GT_s = \frac{W_{d>0}^s}{W_{d\to\infty}^s} = \left(\frac{\left(\widetilde{T_1^a}/T_1^a\right)\left(\widetilde{T_1^b}/T_1^b\right)}{\sum_{j=a,b} (1 + (dg^j)^{-\theta}) + \frac{T_1^{\neq j}}{T_1^j}(g^{j-\theta} + d^{-\theta})}\right)^{-1/2\theta}$$

Welfare Analysis: Gains from MP

▶ Welfare: an expression for real wage

$$W_{s} = \frac{w_{s}}{\left(p_{s}^{a}p_{s}^{b}\right)^{\frac{1}{2}}} = \Gamma^{-1}\left(T_{s}^{a}T_{s}^{b}\right)^{\frac{1}{2\theta}}\left(\pi_{ss}^{a}\pi_{ss}^{b}\right)^{-\frac{1}{2\theta}}\left(y_{ss}^{a}y_{ss}^{b}\right)^{-\frac{1}{2\theta}}$$

► Gains from MP:

$$GMP_{s} = \frac{W_{g>0}^{s}}{W_{g\to\infty}^{s}} = \left[\frac{\sum_{j=a,b} \left(1 + \frac{T_{1}^{\neq j}}{T_{1}^{j}} d^{-\theta} \right)}{\sum_{j=a,b} \left(1 + (dg^{j})^{-\theta} \right) + \frac{T_{1}^{\neq j}}{T_{1}^{j}} (g^{j-\theta} + d^{-\theta})} \right]^{-\frac{1}{2\theta}}$$

Alviarez (Sauder)

MP is disproportionately allocated in comparative disadvantage sectors

Proposition 1

In a two-country, two-sector world economy, the lower the technology of country 1 in sector a (country 1's comparative disadvantage sector) relative to sector b, the higher the probability that firms from country 2 will produce in sector a relative to sector b in country 1.

➤ Proposition 1

The higher the heterogeneity of MP across sectors, the higher the gains from MP

Proposition 2

The higher the heterogeneity of MP across sectors, the higher the gains from MP. When the share of domestically produced goods is the same across sectors $(y_{hh}^a = y_{hh}^b)$, the gains from MP attain a minimum. Therefore, uni-sectoral trade-MP models understate the actual gains from MP as long as $y_{hh}^a \neq y_{hh}^b$

Gains from trade are lower the more heterogeneous the technology upgrade across sectors

Proposition 3

The more heterogeneous the technology upgrade across sectors toward comparative disadvantage sectors, the lower the dispersion of effective technologies and the lower the gains from trade

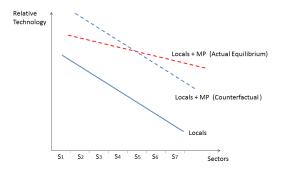


Figure: Proportional Technology Transfer

- Coverage:
 - ▶ 34 declaring countries
 - ▶ 9 manufacturing and 4 non-manufacturing sectors
- ► Variables:
 - ▶ Sales, and employment
- ▶ Unit of Analysis:
 - ► Each observation is a (source-host-sector) triplet, averaged over the period 2002-2010
- ► Sources:
 - ► OECD (Statistics on Measuring Globalization and IDIS)
 - ► Eurostat (Foreign Affiliates Statistics (FATS))
 - ► UNCTAD (FDI Country Profiles)
 - ORBIS dataset

- Coverage:
 - ▶ 34 declaring countries
 - ▶ 9 manufacturing and 4 non-manufacturing sectors
- ► Variables:
 - ▶ Sales, and employment
- ▶ Unit of Analysis:
 - ► Each observation is a (source-host-sector) triplet, averaged over the period 2002-2010
- Sources:
 - ► OECD (Statistics on Measuring Globalization and IDIS)
 - ► Eurostat (Foreign Affiliates Statistics (FATS))
 - ► UNCTAD (FDI Country Profiles)
 - ORBIS dataset

- Coverage:
 - ▶ 34 declaring countries
 - ▶ 9 manufacturing and 4 non-manufacturing sectors
- ► Variables:
 - ▶ Sales, and employment
- ▶ Unit of Analysis:
 - ► Each observation is a (source-host-sector) triplet, averaged over the period 2002-2010
- Sources:
 - ► OECD (Statistics on Measuring Globalization and IDIS)
 - ► Eurostat (Foreign Affiliates Statistics (FATS))
 - ► UNCTAD (FDI Country Profiles)
 - ORBIS dataset

- ► Coverage:
 - ▶ 34 declaring countries
 - ▶ 9 manufacturing and 4 non-manufacturing sectors
- ► Variables:
 - ▶ Sales, and employment
- ▶ Unit of Analysis:
 - ► Each observation is a (source-host-sector) triplet, averaged over the period 2002-2010
- Sources:
 - ► OECD (Statistics on Measuring Globalization and IDIS)
 - ► Eurostat (Foreign Affiliates Statistics (FATS))
 - ► UNCTAD (FDI Country Profiles)
 - ► ORBIS dataset

Trade and MP Gravity Equations

► Trade Gravity Equation

$$ln\left(\frac{X_{mh}^{j}}{X_{mm}^{j}}\right) = \underbrace{\ln\left(\widetilde{T_{h}^{j}}\left(c_{h}^{j}\right)^{-\theta}\right)}_{\text{exporter fixed effect}} - \underbrace{\ln\left(\widetilde{T_{m}^{j}}\left(c_{m}^{j}\right)^{-\theta}\right)}_{\text{importer fixed effect}} - \underbrace{\theta ln\left(d_{mh}^{j}\right)}_{\text{bilateral observables}}$$

Trade barriers are defined as:

$$ln\left(d_{mh}^{j}\right) = d_{k}^{j} + b_{mh}^{j} + CU_{mh}^{j} + RTA_{mh}^{j} + exporter_{h}^{j} + v_{mh}^{j}$$

Trade and MP Gravity Equations

▶ MP Gravity Equation

$$ln\left(\frac{I_{hs}^{j}}{I_{hh}^{j}}\right) = \underbrace{ln\left(T_{s}^{j}\right)}_{\text{source fixed effect}} - \underbrace{ln\left(T_{h}^{j}\right)}_{\text{host fixed effect}} - \underbrace{\theta ln\left(g_{hs}^{j}\right)}_{\text{bilateral observables}}$$

▶ MP barriers are defined as:

$$ln\left(g_{hs}^{j}\right)=d_{k}^{j}+b_{hs}^{s}+CU_{hs}^{j}+RTA_{hs}^{j}+source_{s}^{j}+\mu_{hs}^{j}$$

Recovering the T_h^j

 Recall that effective technology parameters are given by

$$\begin{bmatrix} \widetilde{T}_{1}^{j} \\ \widetilde{T}_{2}^{j} \\ \vdots \\ \widetilde{T}_{N}^{j} \end{bmatrix} = \begin{bmatrix} g_{11}^{j} & g_{12}^{j} & \dots & \dots & g_{1N}^{j} \\ g_{21}^{j} & g_{22}^{j} & \dots & \dots & g_{2N}^{j} \\ \vdots & \vdots & \ddots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \dots & \dots & \dots \\ g_{N1}^{j} & g_{N2}^{j} & \dots & \dots & g_{NN}^{j} \end{bmatrix} \times \begin{bmatrix} T_{1}^{j} \\ T_{2}^{j} \\ \vdots \\ T_{N}^{j} \end{bmatrix}$$

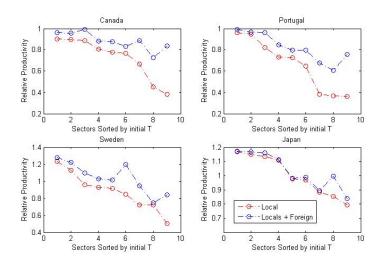
▶ Given \widetilde{T}_s^j and h_{si}^j we can solve for the fundamental productivity T_i^j using the above system of equations for each sector j

Table: Change in Absolute and Comparative Advantage

	Variable	Mean
Group 1 (10 countries)	$\Delta { m CV}$	-0.19
	ΔT	0.09
Group 2 (24 countries)	$\begin{array}{c} \Delta \text{CV} \\ \Delta T \end{array}$	-0.29 0.17
All sample (34 countries)	$\Delta { m CV}$	-0.25
	ΔT	0.14

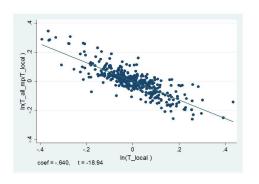
per country

MP Technology Transfer



MP technology transfer

$$ln\left(\widetilde{T}_{h}^{j}\right)^{1/\theta} - ln\left(T_{h}^{j}\right)^{1/\theta} = \beta_{0} + \beta_{1}ln\left(T_{h}^{j}\right)^{1/\theta} + \gamma_{h} + \delta_{j} + \epsilon_{hj}$$



The Fit of the Baseline Model with the Data

		Model	Data
Wages			
	Mean	0.761	0.650
	Median	0.790	0.710
	corr(model, data)	0.920	
Imports/GDP			
	Mean	0.364	0.359
	Median	0.342	0.291
	corr(model, data)	0.829	
Inward MP/Production	·		
	Mean	0.338	0.269
	Median	0.302	0.258
	corr(model, data)	0.758	

Proportional Technology Transfer

Counterfactual 1: Gains from Trade

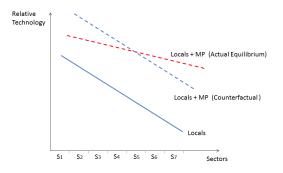


Figure: Counterfactual 2: Proportional Technology Transfer

Gains from MP: in a multisector framework

Counterfactual 1: Gains from MP

Table: Gains From MP

	Median	Mean	Std.Dev	Min	Max
	M	Gains	(Multisect	or) (%))
Counterfactual Vs	15.59	27.01	0.29	9.58	93.48
Baseline					
	M	P Gains	(Uni-secto	or) (%)	
Counterfactual Vs	8.42	12.03	0.17	0.02	79.35
Baseline					

Proportional Technology Transfer

Counterfactual 2: Gains from Trade

Table: Proportional Technology Transfer

	Mean	Median	Std .Dev	Min	Max
		Gains f	rom Trade	(%)	
Actual Gains	10.39	9.28	0.05	1.19	24.53
Counterfactual	19.05	17.42	0.08	9.18	33.81

Infinity barriers to MP in non-tradable sectors

Counterfactual 3: welfare effect

Table: MP in non-tradables

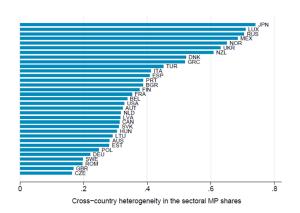
	Median	Mean	Std.Dev	Min	Max
		Welfar	e Change ((%)	
Counterfactual Vs	4.69	6.53	0.05	1.54	12.33
Baseline					
	Γ	radable	Price Inde	\mathbf{x} (%)	
Counterfactual Vs	1.87	1.62	0.04	0.63	2.13
Baseline					

Conclusion

- ► This paper documents a new empirical regularity: A negative relationship between MP and comparative advantage
- ▶ It shows that MP weakens countries comparative advantage
- ▶ It shows that uni-sectoral models systematically overstate the gains from trade and understate the gains from MP

Appendix

Cross-country differences in MP heterogeneity



Preferences

► Consumers in country m maximize utility subject to the budget constraint:

$$U_{m} = \left(\sum_{j=1}^{J} \omega_{j}^{\frac{1}{\eta}} \left(Y_{m}^{j}\right)^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}\xi_{m}} \left(Y_{m}^{J+1}\right)^{1-\xi_{m}},$$

s.t.

$$\sum_{i=1}^{J+1} p_m^j Y_m^j = w_m L_m + r_m K_m$$

▶ P_m - price level in country m is given by:

$$P_{m} = B_{m} \left(\sum_{j=1}^{J} \omega_{j} \left(p_{m}^{j} \right)^{1-\eta} \right)^{\frac{1}{1-\eta} \xi_{m}} \left(p_{m}^{J+1} \right)^{1-\xi_{m}},$$

Technology

▶ Productivity vectors are drawn independently across varieties ω in sector j and origin country i from a multivariate Frechet distribution

$$F_s^j(\mathbf{z}) = exp\left[-T_s^j\left(\sum_{h=1}^N \left(z_{hs}^j\right)^{-\theta_j}\right)\right].$$

- ▶ Productivity differences are characterized by :
 - 1. Inter-industry heterogeneity or relative technology differences in fundamental productivity across industries $\left(T_s^{j=a}/T_s^{j=b}\right)$
 - 2. Intra-industry heterogeneity, governed by θ^{j}

MP and sectoral productivity

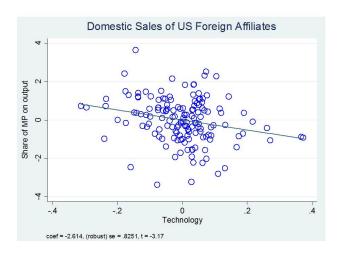
	Employment	Sales	Value Added
			Added
		BEA	
Rel. Productivity	-3.71***	-1.98**	-2.12**
Obs.	1,089	1,089	$1,\!353$
		OECD	
Rel. Productivity	-1.39***	-1.05***	-1.08***
Obs.	1,260	$1,\!366$	$1,\!100$

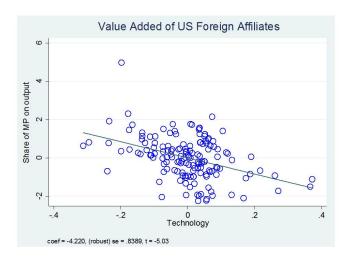
Note: Standard errors are cluster at the country level. All regressions have country and year fixed effects

$$MPsales_n^j = \alpha + \beta \cdot TFP_n^j + \delta_n + \gamma_j + \epsilon_n^j$$

- MP sales are normalized by output in country n and sector j
- Total Factor Productivity (TFP_n^j) is measured relative to the frontier in sector j
- δ_n and γ_n denotes country and sector fixed effects
- robust to *TFP* correction by selection in open economies, and alternative measures of MP

▶ Robustness





MP in comparative disadvantage sectors

Proof: Lets define the ratio of probabilities $\frac{\pi_{112}^a}{\pi_{112}^b}$ that country 2 produce in country 1 as:

$$\frac{\pi_{112}^{a}}{\pi_{112}^{b}} = \frac{T_{2}^{a}}{T_{2}^{b}} \left[\frac{\frac{T_{2}^{b}}{T_{1}^{a}} \left(h^{-\theta} + d^{-\theta} \right)^{-\frac{1}{\theta}} + \frac{T_{1}^{b}}{T_{1}^{a}} \left[1 + (hd)^{-\theta} \right]^{-\frac{1}{\theta}}}{\frac{T_{1}^{a}}{T_{1}^{b}} \left(h^{-\theta} + d^{-\theta} \right)^{-\frac{1}{\theta}} + \left[1 + (hd)^{-\theta} \right]^{-\frac{1}{\theta}}} \right]$$

$$\partial \left(\frac{\pi_{112}^{a}}{\pi_{112}^{b}} \right) / \partial T_{1}^{a} < 0$$

$$\partial \left(\frac{\pi_{112}^{a}}{\pi_{112}^{b}} \right) / \partial T_{2}^{a} > 0$$

◆ Proposition

Estimating Model's Parameters Recovering the T_s^j

▶ Given T_s^j (obtained from the gravity equation fixed effects) and h_{si}^j we can calculate the effective productivity T_i^j for each sector j

$$\begin{split} \widetilde{T}_{1}^{j} &= T_{1}^{j} {h_{11}^{j}}^{-\theta} + T_{2}^{j} {h_{12}^{j}}^{-\theta} \\ \widetilde{T}_{2}^{j} &= T_{1}^{j} {h_{21}^{j}}^{-\theta} + T_{2}^{j} {h_{22}^{j}}^{-\theta} \end{split}$$

Generalize Method of Moments

• Given h_{si}^j and d_{si}^j , T_i^j are chosen to minimize:

$$\min_{T_s^j} \left[(1 - R^T) + (1 - R^{MP}) \right]$$

where R^T and R^{MP} are given by:

$$R^{T} \equiv 1 - \frac{\sum_{i,n;n\neq i} \left[\widetilde{X}_{ni}^{j,data} - \widetilde{X}_{ni}^{j,model} \right]^{2}}{\sum_{i,n;n\neq i} \left(\widetilde{X}_{ni}^{j,data} \right)^{2}}$$

$$R^{MP} \equiv 1 - \frac{\sum_{i,n;n\neq i} \left[\widetilde{I}_{ni}^{j,data} - \widetilde{I}_{ni}^{j,model} \right]^{2}}{\sum_{i,n;n\neq i} \left(\widetilde{I}_{ni}^{j,data} \right)^{2}}$$

◆ preferred method

Effective technology: two step procedure

► The importer fixed effect

$$S_n^j = \frac{\widetilde{T}_n^j}{\widetilde{T}_{us}^j} \left(\frac{c_n^j}{c_{us}^j}\right)^{-\theta}$$

▶ The share of spending going to home-produced goods

$$\frac{X_{nn}^j}{X_{us}^j} = \widetilde{T}_n^j \left(\frac{c_n^j}{p_n^j}\right)^{-\theta}$$

▶ Dividing it by US, we have:

$$\frac{X_{nn}^j/X_n^j}{X_{us,us}^j/X_{us}^j} = \frac{\widetilde{T}_n^j}{\widetilde{T}_{us}^j} \left(\frac{c_n^j}{c_{us}^j}\right)^{-\theta} \left(\frac{p_n^j}{p_{us}^j}\right)^{-\theta} = S_n^j \left(\frac{p_{us}^j}{p_n^j}\right)^{-\theta}$$

Effective technology: two step procedure

► The ratio of price levels in sector j relative to US becomes

$$\frac{p_n^j}{p_{us}^j} = \left(\frac{X_{nn}^j / X_n^j}{X_{us,us}^j / X_{us}^j} \frac{1}{S_n^j}\right)^{\frac{1}{\theta}}$$

➤ The cost of the input bundles relative to the U.S can be written as:

$$\frac{c_n^j}{c_{us}^j} = \left(\frac{w_n^j}{w_{us}^j}\right)^{\alpha_j\beta_j} \left(\frac{r_n^j}{r_{us}^j}\right)^{(1-\alpha_j)\beta_j} \left(\prod_{k=1}^{J+1} \left(\frac{p_n^k}{p_{us}^k}\right)^{\gamma_{k,j}}\right)^{1-\beta_j}$$

◆ Trade Gravity Equation

Technology

▶ Productivity vectors are drawn independently across sector varieties ω in sector j and origin country i from univariate Frechet marginals combined by a copula

$$F_{i}^{j}(\mathbf{z}) = exp\left\{-T_{i}^{j}\left[\left(z_{1i}^{j}\left(\omega\right)\right)^{-\frac{\theta_{j}}{1-\rho_{j}}} + \left(z_{2i}^{j}\left(\omega\right)\right)^{-\frac{\theta_{j}}{1-\rho_{j}}}\right]^{1-\rho_{j}}\right\}$$

- ► There are three levels of heterogeneity in this model:
 - 1. Inter-industry heterogeneity or relative technology differences in fundamental productivity across industries T_i^1/T_i^2
 - 2. Intra-industry heterogeneity, governed by θ
 - 3. Correlation between draws from different locations ρ .

Preferences

- ► Two-tier preferences:
 - First tier: Cobb-Douglas (ξ_n) on aggregate tradable sectors Y_n^j

$$Y_n = (Y_n^a)^{\xi_n} \left(Y_n^b \right)^{1 - \xi_n}$$

▶ Second tier: CES (ε_n) on varieties $Y_n^j(\omega)$

$$Y_n^j = \left(\int_0^1 Y_n^j \left(\omega\right)^{\frac{\varepsilon_j - 1}{\varepsilon_j}} d\omega\right)^{\frac{\varepsilon_j}{\varepsilon_j - 1}}$$

 \blacktriangleright And the actual price in sector j, country n is given by:

$$P_n^j = B_n (p_{n1})^{\xi_n} (p_{n2})^{1-\xi_n}$$

◆ Assumptions

MP and trade barriers

Table: Estimated trade d_{nh}^j and g_{hs}^j

Sector	Trade	MP
Food	2.64	2.75
Textiles	2.13	2.64
Wood	2.65	2.16
Chemicals	2.28	3.14
Non-metallic	2.75	2.25
Metals	2.39	3.87
Machinery	1.98	2.91
Transport	2.37	3.76
Furniture	2.15	2.07

Average Change		Relative Change	
Top 10: Largest Change		Top 10: Largest Change	
Countries		Countries	
Czech Rep.	0.41	Poland	-0.53
Poland	0.35	Czech Rep	-0.52
Lithuania	0.30	Spain	-0.52
Hungary	0.29	Portugal	-0.52
Austria	0.24	Canada	-0.51
${ m Netherlands}$	0.22	Austria	-0.48
Slovakia	0.22	Italy	-0.47
Portugal	0.22	Turkey	-0.43
Sweden	0.20	Russia	-0.42
Canada	0.17	Sweden	-0.41
Turkey	0.14	Slovenia	-0.39

Average Change		Relative Change	
Bottom 10: Smallest		Bottom 10: Smallest	
Change Countries		Change Countries	
Finland	0.09	Japan	-0.14
France	0.07	Belgium	-0.08
Switzerland	0.06	Denmark	-0.07
Denmark	0.04	Greece	-0.06
Norway	0.04	United Kingdom	-0.06
New Zealand	0.04	Norway	-0.04
Australia	0.03	Latvia	0.05
Belgium	0.02	Germany	0.08
Greece	0.01	France	0.14
Israel	0.01	Bulgaria	0.14

Alviarez (Sauder)

Model's correlation of MP sales and T_s^j

