Monetary Policy and Sovereign Debt Vulnerability

Galo Nuño & Carlos Thomas

Banco de España

May 27 2015

Motivation: European debt crisis

- Legacy of 2007-9 financial crisis: large fiscal deficits and soaring government debt
- Before summer 2012, sovereign yields rose sharply in EMU periphery (GR, IR, IT, PT, SP) ...
 - ... but not in other highly indebted countries (US, UK, etc.)
- Many argue a key difference is: US-UK can deflate debt away, EMU periphery countries cannot

Motivation: role of monetary policy

- What role, if any, should monetary policy play in guaranteeing sovereign debt sustainability?
- Arguments for and against monetary policy involvement:
 - provide 'monetary backstop' against default fears
 - creating inflation also entails costs
 - effect on inflation expectations (and yields) if low monetary credibility
- **This paper**: analyze trade-offs between price stability and sovereign debt sustainability...
 - ... when gov't cannot make credible commitments

Framework of analysis

- Small open-economy, continuous-time model
- Benevolent government issues nominal defaultable debt to foreign investors
- Gov't may default on debt at any time
 - costs of default: exclusion from capital markets + output loss
- Government chooses fiscal (primary deficit) and monetary policy (inflation) under discretion
- Benefits and costs of inflation:
 - debt can be deflated away
 - direct welfare losses

Preview of results

- Calibrate to average peripheral EMU economy
- Analyze two monetary regimes:
 - inflationary regime: benevolent gov't chooses inflation discretionarily
 - 2. no inflation regime: zero inflation at all times
- In (2), government gives up option to deflate debt away
 - issue foreign currency debt
 - join monetary union with strong anti-inflation mandate
- Main result: Welfare is higher in *no inflation* regime, for any debt ratio and on average

Literature review

- Links between sovereign debt vulnerability and monetary policy
 - Aguiar et al. (2013, 2015), Corsetti and Dedola (2013): self-fulfilling debt crises (à la Calvo,1988; Cole and Kehoe, 2000)
- Optimal fundamental sovereign default in quantitative models
 - Aguiar and Gopinath (2006), Arellano (2008), etc.
- Extend literature on continuous-time models of default to the pricing of defaultable nominal sovereign debt
 - Merton (1974), Leland (1994)

 Single consumption good with int'l price = 1. Exogenous output endowment,

$$dY_t = \mu Y_t dt + \sigma Y_t dW_t.$$

 Single consumption good with int'l price = 1. Exogenous output endowment,

$$dY_t = \mu Y_t dt + \sigma Y_t dW_t.$$

Local currency price,

$$dP_t = \pi_t P_t dt$$
.

 Single consumption good with int'l price = 1. Exogenous output endowment,

$$dY_t = \mu Y_t dt + \sigma Y_t dW_t.$$

Local currency price,

$$dP_t = \pi_t P_t dt$$
.

Sovereign debt,

$$dB_t = B_t^{new} dt - \lambda dt B_t.$$

 λ : amortization rate; fully held by foreign investors

 Single consumption good with int'l price = 1. Exogenous output endowment,

$$dY_t = \mu Y_t dt + \sigma Y_t dW_t.$$

Local currency price,

$$dP_t = \pi_t P_t dt$$
.

Sovereign debt,

$$dB_t = B_t^{new} dt - \lambda dt B_t.$$

 λ : amortization rate; fully held by foreign investors

Government's flow of funds

$$Q_t B_t^{new} = (\lambda + \delta) B_t + P_t (C_t - Y_t).$$

 δ : coupon rate

The state variable: debt-to-GDP ratio

• Debt-to-GDP ratio

$$b_t \equiv B_t / (P_t Y_t)$$

The state variable: debt-to-GDP ratio

• Debt-to-GDP ratio

$$b_t \equiv B_t / (P_t Y_t)$$

Applying Itô's lemma

$$db_t = \left[\left(\frac{\overbrace{\lambda + \delta}^{r_t \text{ (yield)}}}{Q_t} - \lambda + \sigma^2 - \mu - \pi_t \right) b_t + \frac{c_t}{Q_t} \right] dt - \sigma b_t dW_t,$$

where

$$c_t \equiv \left(C_t - Y_t \right) / Y_t$$

is primary deficit ratio

Preferences

Household preferences,

$$U_0 = \mathbb{E}_0 \left[\int_0^\infty \mathrm{e}^{-
ho t} \left(\log(C_t) - rac{\psi}{2} \pi_t^2
ight) dt
ight].$$

 $\psi>0$: distaste for inflation, reduced-form $\pi\text{-disutility}$ following Aguiar et al. (2013)

Preferences

Household preferences,

$$U_0 = \mathbb{E}_0 \left[\int_0^\infty \mathrm{e}^{-
ho t} \left(\log(C_t) - rac{\psi}{2} \pi_t^2
ight) dt
ight].$$

 $\psi>0$: distaste for inflation, reduced-form π -disutility following Aguiar et al. (2013)

• Using $C_t = (1+c_t) Y_t$,

$$U_0 = \mathbb{E}_0 \left[\int_0^\infty \mathrm{e}^{-
ho t} \left(\log(1+c_t) - rac{\psi}{2} \pi_t^2
ight) dt
ight] + V_0^{aut},$$

where $V_0^{aut}=\mathbb{E}_0\left[\int_0^\infty e^{ho t}\log(Y_t)dt
ight]$ is the (exogenous) autarky value

Fiscal and monetary policy

- At each point in time, choose
 - default or continue repaying debt ⇔ optimal default threshold b*
 - primary deficit ratio (c_t) , inflation rate (π_t)

under discretion (take investor's pricing scheme $Q\left(b\right)$ as given)

- First analyze default scenario
- Then lay out general optimization problem

The default scenario

- Default (at a debt ratio b) implies
 - ullet exclusion from capital markets (reenter at rate χ)
 - and contraction in output endowment (in logs, $\epsilon \max\{0, b \hat{b}\})$
- At end of exclusion period, gov't reenters markets with debt ratio θb
- Value of defaulting (net of autarky value),

$$V^{def}\left(b
ight) = -rac{\epsilon \max\{0,b-\hat{b}\}}{
ho + \chi} + rac{\chi}{
ho + \chi} V\left(heta b
ight).$$

The general problem

Let T (b*) be time-to-default. Government value function,

$$V\left(b\right) = \max_{b^{*}, \{c_{t}, \pi_{t}\}} \mathbb{E}\left\{ \begin{array}{l} \int_{0}^{T\left(b^{*}\right)} e^{-\rho t} \left(\log\left(1 + c_{t}\right) - \frac{\psi}{2}\pi_{t}^{2}\right) dt \\ + e^{-\rho T\left(b^{*}\right)} V_{def}(b^{*}) | b_{0} = b \end{array} \right\}$$

subject to b's law of motion, and

$$V(b^*) = V_{def}(b^*),$$

 $V'(b^*) = V'_{def}(b^*),$

i.e. value matching & smooth pasting conditions

The 'no inflation' regime

Consider an alternative scenario where

$$\pi(b) = 0$$

for all b.

- Government renounces the ability to deflate debt away
- Possible interpretations:
 - Issue foreign currency debt
 - Join a monetary union with a strong anti-inflationary stance
 - (Appoint extremely conservative central banker)

International investors (bond pricing)

- Risk-neutral investors can invest elsewhere at riskless real rate \bar{r}
- Unit price of the nominal non-contingent bond

$$Q(b) = \mathbb{E}\left[\begin{array}{c} \int_{0}^{T^{*}} e^{-(\bar{r}+\lambda)t - \int_{0}^{t} \pi_{s} ds} \left(\lambda + \delta\right) dt \\ + e^{-\bar{r}(T^{*}+\tau) - \lambda T^{*} - \int_{0}^{T^{*}} \pi_{s} ds} \theta \frac{Y_{T^{*}+\tau}}{Y_{T^{*}}} Q\left(\theta b^{*}\right) | b_{0} = b \end{array}\right],$$

 $T^* \equiv T(b^*)$, with boundary condition

$$Q(b^*) = \mathbb{E}\left[e^{-ar{r} au} heta rac{Y_ au}{Y_0} Q\left(heta b^*
ight)
ight] = rac{\chi}{ar{r} + \chi - \mu} heta Q\left(heta b^*
ight).$$

Calibration

ullet Calibrate to the average peripheral EMU economy, time unit =1 year

Parameter	Value	Description	Source/Target		
\bar{r}	0.04	world real interest rate	standard		
ρ	0.20	subjective discount rate	standard		
μ	0.022	drift output growth	average growth EMU periphery		
σ	0.032	diffusion output growth	growth volatility EMU periphery		
λ	0.16	bond amortization rate	Macaulay duration = 5 years		
δ	0.04	bond coupon rate	price of riskless real bond $= 1$		
χ	0.33	reentry rate	mean duration of exclusion $= 3$ years		
θ	0.56	recovery rate parameter	mean recovery rate $=60\%$		
ϵ	1.50	default cost parameter	output loss during exclusion $=6\%$		
\hat{b}	0.332	default cost parameter	average external debt/GDP ratio (35.6%)		
ψ	9.15	inflation disutility parameter	mean inflation rate (1987-1997) = 3.2%		

Equilibrium: inflationary regime

Equilibrium: inflationary vs no-inflation regime

Risk premia & inflation premia

Nominal bond yield r (b) can be decompose as risk premium
 + inflation premium

Average performance

- Inflationary regime yields lower value function $V\left(b\right)$ at any debt ratio, but...
- ... If it delivers sufficiently lower debt ratio most of the time,
 average welfare could be higher
- Compute stationary debt distribution so as to calculate unconditional average values

Stationary debt distribution

Inflationary regime shifts distribution to the left (debt deflation)...

Average performance (cont'd)

 ... but not enough to make inflationary policy better on average

	Data	Мо	del
	1995-2012	No inflation	Inflationary
debt-to-GDP, b (%)	35.6	35.6	35.6
primary deficit ratio, $c\ (\%)$	-4.1	-0.01	-0.12
inflation, π (%)	0.4	0	3.20
bond yields (net of \bar{r}), $r-\bar{r}$ (bp)	187	154	448
risk premium, $r- ilde{r}$ (bp)	154	154	139
inflation premium, , $ ilde{r}-ar{r}$ (bp)	33	0	309
Exp. time to default, T^e (years)	-	29.4	37.1
Welfare loss, $V-V_{\pi=0}$ (% cons.)	-	0	-0.25

 Again, ↑ in mean risk premia dominated by ↓ in mean inflation premia & direct utility costs

Robustness

- Investigate robustness to alternative calibrations of:
 - bond amortization rate (λ)
 - ullet bond recovery parameter (heta)
 - output loss from default (\hat{b})
- For all parameter values, we continue to find higher average welfare in no-inflation regime

Monetary policy delegation

- 'No inflation' regime equivalent to appointing an extremely conservative central banker
- Consider intermediate arrangement: appoint a central banker...
 - who dislikes inflation more than society...
 - ... but not so much as to set $\pi = 0$ at all times
- ullet Given government's $c\left(b
 ight)$ and b^{*} , central banker chooses π ...
- to maximize its value function \tilde{V} , defined similarly to V, but with $\tilde{\psi} \geq \psi$

Monetary policy delegation: results

• Average welfare increases monotonically with $ilde{\psi}/\psi$ but *never* reaches $\mathbb{E}\left(V_{\pi=0}\right)$

Conclusions

- Analyzed trade-offs between price stability and sovereign debt sustainability...
 - ... in an open-economy model with nominal debt and optimal default
- Welfare is higher if gov't renounces the option to deflate debt away, e.g. by
 - · issuing foreign currency debt
 - joining an anti-inflationary monetary union
- Intuition: benefits (lower inflation premia, no direct welfare costs) outweigh costs (higher risk premia)

Appendix: Robustness

	Welfare	Time to default	Inflation	Risk premium	Inflation premium
	% cons.	years	%	bp	bp
Benchmark					
No inflation	0	29.4	0	317	0
Inflationary	-0.25	37.1	2.97	298	299
Difference	0.25	-7.7	-2.97	19	-299
Duration = 3					
No inflation	0.1	40.4	0	311	0
Inflationary	-0.36	47.4	3.28	304	331
Difference	0.35	-7.0	3.28	7	-331
Duration = 7					
No inflation	0.0	26.0	0	309	0
Inflationary	-0.17	34.7	2.75	278	278
Difference	0.17	-8.7	-2.75	31	-278
Recovery rate = 50%					
No inflation	-0.08	30.7	0	401	0
Inflationary	-0.33	38.5	3.00	373	302
Difference	0.25	-7.8	-3.00	28	-302
$Recovery\ rate = 70\%$					
No inflation	0.09	28.3	0	246	0
Inflationary	-0.20	35.8	2.94	236	297
Difference	0.29	-7.5	-2.94	10	-297
Default costs = 3.5%					
No inflation	0.43	29.7	0	318	0
Inflationary	0.33	34.6	1.87	304	189
Difference	0.10	-4.9	-1.87	14	-189
Default costs = 7%					
No inflation	-0.22	29.6	0	314	0
Inflationary	-0.59	38.7	3.50	293	353
Difference	0.37	-9.1	-3.50	21	-353