

Home Away From Home? Foreign Demand and London House Prices

ESSIM 2015 - Tarragona, Spain

Tarun Ramadorai Oxford, CEPR Cristian Badarinza Oxford

May 2015

London and the Lucas Puzzle

- ▶ Residential real estate in a time of globalization.
 - Cross-border ownership of this "non-tradable" asset.
 - "Global" cities on the frontlines.
- Shrill commentary: "oligarchs seeking safe haven," "immigrants usurping housing stock."
 - Rigorous evidence notably absent.

London and the Lucas Puzzle

- ▶ Residential real estate in a time of globalization.
 - Cross-border ownership of this "non-tradable" asset.
 - "Global" cities on the frontlines.
- Shrill commentary: "oligarchs seeking safe haven," "immigrants usurping housing stock."
 - Rigorous evidence notably absent.
- Consistent with PolyEc theories of Lucas puzzle.
 - Private capital flees risk in poor countries, seeks rich-country "safe" assets.

London and the Lucas Puzzle

- ▶ Residential real estate in a time of globalization.
 - Cross-border ownership of this "non-tradable" asset.
 - "Global" cities on the frontlines.
- Shrill commentary: "oligarchs seeking safe haven," "immigrants usurping housing stock."
 - Rigorous evidence notably absent.
- Consistent with PolyEc theories of Lucas puzzle.
 - Private capital flees risk in poor countries, seeks rich-country "safe" assets.
- London: natural candidate for investigation
 - Liberal regime, visible issue, high-quality data.
 - But identification is a challenge.

Media Attention

- ► "The New York real-estate market is now the premier destination for wealthy foreigners with rubles, yuan, and dollars to hide." New York Magazine (2014)
- "The rising flow of foreign capital [...] has turned Vancouver into a truly global real estate market. [...] There is a search for better data on foreign buyers, which is only haphazardly tracked." The Globe and Mail (2014)
- "In recent years, Asian buyers have made an impact on cities around the world, with Hong Kong, Singapore, Mumbai, and London among the top locations for residential investment." Financial Times (2014)
- "Worsening financial and political turmoil in Southern Europe caused a surge of interest in London property." Reuters (2012)
- "There is a real lack of data to underpin a systematic study of the market impact of overseas investment in London." Andrew Heywood (2012), International Union for Housing Finance

This paper

- New approach to identify impacts of foreign demand on house prices in "global cities".
- ► Identifying assumption: foreign capital exhibits **home bias abroad** within London.
 - Additional power of the cross-section.
 - More general methodological contribution.

This paper

- New approach to identify impacts of foreign demand on house prices in "global cities".
- Identifying assumption: foreign capital exhibits home bias abroad within London.
 - Additional power of the cross-section.
 - More general methodological contribution.
- Evidence that London housing is a safe-haven for foreign capital flows pushed by domestic risk.
 - Arbitrage frictions in real estate assist identification, illiquidity helps interpretation as flight-to-safety effect.
- Interesting insights into sources of these effects.

Illustrating the Method

► In late 2009 and early 2010, Greek economic and political risk rises.

Illustrating the Method

- ► In late 2009 and early 2010, Greek economic and political risk rises.
- Suppose Greek residents purchase London real-estate as a safe-haven investment.
- Suppose also that their "preferred habitat" is parts of London with a higher concentration of Greek-origin residents.
 - Also use other identifying variables: language share, high-income locations, etc.

Illustrating the Method

- ► In late 2009 and early 2010, Greek economic and political risk rises.
- Suppose Greek residents purchase London real-estate as a safe-haven investment.
- Suppose also that their "preferred habitat" is parts of London with a higher concentration of Greek-origin residents.
 - ► Also use other identifying variables: language share, high-income locations, etc.
- ► Then increases in Greek risk will predict London sub-region price increases that line-up with Greek-origin share.
 - Important to control for variation in local economic conditions and characteristics of properties.

Period of low global risk

Correlation coefficient: -12%

House price appreciation between 2001 and 2006

99%

Share of foreign-born people in the 2001 census

Period of high global risk

House price appreciation between 2007 and 2012

86%

Share of foreign-born people in the 2001 census

Related Literature

▶ Political economy explanations for the Lucas puzzle

Alesina and Tabellini (1988), Lucas (1990), Tornell and Velasco (1992), Carroll and Jeanne (2009), Gourio et al. (2014), Ahnert and Perotti (2015).

Home bias and loyalty based portfolio choice

Lewis (1999), Coval and Moskowitz (2001), Cohen (2009).

Real estate markets, capital and immigration flows

Aizenman and Jinjarak (2009), Campbell et al. (2011), Jinjarak and Sheffrin (2011), Saiz and Wachter (2011), Sa (2013).

► International capital flows and contagion

Forbes and Warnock (2011), Kaminsky et al. (2004), Jotikasthira et al. (2012), Schnabl (2012).

"Flight-to-quality" and safe-haven assets

Longstaff (2004), Beber et al. (2009), Campbell et al. (2010), Baur and McDermott (2010), and Ranaldo and Söderlind (2010).

Roadmap

- Methodology and data
- 2 Results
- 3 Time series dynamics
- 4 Sources of safe-haven effects
- **6** Conclusions

Methodology - I

$$\ln P_{i,t} = \delta_t + \phi_w + \beta \mathbf{X}_{i,t} + \sum_{k \in K} \gamma_0^k f_w^k z_{t-1}^k + \gamma_1 y_w \bar{z}_{t-1} + \rho_1 \ln \overline{P}_{w,t-1} + \rho_2 \ln \overline{P}_{w,t-2} + u_{i,t}.$$
(1)

P_{i,t}: price of property i, in electoral ward w, in month t,
 X_{i,t}: hedonic characteristics

Methodology - I

$$\ln P_{i,t} = \delta_t + \phi_w + \beta \mathbf{X}_{i,t} + \sum_{k \in K} \gamma_0^k f_w^k z_{t-1}^k + \gamma_1 y_w \bar{z}_{t-1} + \rho_1 \ln \overline{P}_{w,t-1} + \rho_2 \ln \overline{P}_{w,t-2} + u_{i,t}.$$
 (1)

 $ightharpoonup P_{i,t}$: price of property i, in electoral ward w, in month t,

 $X_{i,t}$: hedonic characteristics,

 $\overline{P}_{w,t-1}$: average prices in ward w in period t-1,

 f_w^k : fraction of people in ward w who originate from country k,

 $\{z_{t-1}^k\}_{k\in K}$: risk in country/world-region k in period t-1,

- $ightharpoonup y_w$: ward-level indicator of desirability, e.g., net average income,
 - \overline{z}_{t-1} : average level of risk across all countries/regions $k \in K$.
- Implementation: top quintiles of variables.

Methodology - II

- Ward-level and time period fixed effects.
- Cross-ward price spreads are persistent:
 - ▶ Past average prices $\ln \overline{P}_{w,t-1}$, $\ln \overline{P}_{w,t-2}$ on the right-hand side of equation (1).
- Spatial and temporal correlation across electoral wards:
 - Double-clustered standard errors at borough and time level.
- ► Slow-moving components of **foreign risk**:
 - Multiple regression for nine world regions.
- Robustness:
 - Interact mortgage interest rate with UK-born share.
 - Time-varying coefficients on aggregate share of foreigners.
 - Borough × year fixed effects.

World region joint estimation results

Hedonic regression framework

Data

Land Registry

 All residential property transactions in London: 2,425,603 observations, between 1995 and 2013.

Nationwide Building Society

 All residential mortgages with London property as collateral: 154,137 observations, between 1996 and 2012.

Office for National Statistics

- Neighbourhood Statistics and ward-level census data, including economic and environmental characteristics.
- ▶ 624 wards, sampled in 2001 and 2011.

External developments

- International Country Risk Guide (ICRG) composite index.
- ▶ Bond yield spreads: 10-year sovereign bond yields relative to the UK.
- Economic policy uncertainty index of Baker, Bloom and Davis (2013).

Time variation in risk

Cross-section of preferred habitats

Shares of foreign-born people

Roadmap

- Methodology and data
- 2 Results
- 3 Time series dynamics
- 4 Sources of safe-haven effects
- **6** Conclusions

World region joint estimation results

Hedonic regression framework

Estimation results

Summary

- Strong positive effects on relative house prices in wards with high shares of people originating from a particular country following periods of elevated risk in that country.
- Separate channel operates through ward-level net average income.
- Results broadly consistent when risk measured by 10-year bond yield spread, Economic Policy Uncertainty index of Baker, Bloom and Davis (2013).
- Next:
 - Instrument transaction volumes using foreign risk.
 - Understand persistence of effects.

Housing Transaction Volumes

- ► Interaction terms help explain:
 - Ward-year variation in housing transaction volumes.
 (Table 5, Panel A)
 - Comovement between prices and transaction volumes.
- ▶ Isolate the safe-haven component of housing demand:

$$\ln V_{w,t} = \tau_t + \varphi_w + \sum_{k \in K} \chi_0^k f_w^k z_{t-1}^k + \chi_1 y_w \bar{z}_{t-1} + v_{w,t},
\ln P_{i,t} = \delta_t + \phi_w + \beta X_{i,t} + \theta \widehat{\ln V_{w,t}}
+ \ln \overline{P}_{w,t-1} + \ln \overline{P}_{w,t-2} + u_{i,t}.$$

Safe-haven demand $(\widehat{\theta})$ 0.262***

Roadmap

- Methodology and data
- 2 Results
- **3** Time series dynamics
- 4 Sources of safe-haven effects
- **6** Conclusions

Methodology: Understanding Dynamics

► Construct monthly (cleaned of hedonics) **price spreads** $\{s_{k,t}\}$ between top and bottom 20% of wards sorted on foreign-origin share from country k:

$$s_t^k \equiv \ln \overline{P}_{w \in \{high_k\}, t} - \ln \overline{P}_{w \in \{low_k\}, t}$$

Methodology: Understanding Dynamics

► Construct monthly (cleaned of hedonics) **price spreads** $\{s_{k,t}\}$ between top and bottom 20% of wards sorted on foreign-origin share from country k:

$$s_t^k \equiv \ln \overline{P}_{w \in \{high_k\}, t} - \ln \overline{P}_{w \in \{low_k\}, t}$$

Specification:

$$s_t^k = \mu^k + \delta_t + \rho_1 s_{t-1}^k + \rho_2 s_{t-2}^k + \zeta z_{t-1}^k + u_t^k$$

 Separate countries with a priori low levels of political risk (Northern Europe and North America).

Average levels of political risk

Understanding Spread Dynamics

Effects across risk deciles, Registry dataset

$$s_{t}^{k} = \mu^{k} + \rho_{1} s_{t-1}^{k} + \rho_{2} s_{t-2}^{k} + \sum_{t=1}^{10} \zeta_{d} decile_{d}(z_{t-1}^{k}) + u_{t}^{k}$$

Understanding Spread Dynamics

Cross-country panel framework

	ICRG index		Yield spread vs. the UK	Policy uncertainty	ICRG index
	(1)	(2)			Low-risk countries
Registry dataset	0.17***	0.11**	0.25**	0.42**	-0.05
	(0.06)	(0.04)	(0.11)	(0.20)	(0.09)
Loans dataset	0.27	0.02	0.70**	1.35***	-0.57***
	(0.23)	(0.13)	(0.33)	(0.50)	(0.20)
Country fixed effects	Yes	Yes	Yes	Yes	Yes
Time fixed effects	No	Yes	No	No	Yes

House price spreads

Temporary, but long-lived effects

$$\begin{split} s^k_t &= \mu^k + \sum_{q=1}^Q \rho_q s^k_{t-q} + \sum_{q=1}^Q \zeta_q z^k_{t-q} + u^k_t, \\ z^k_t &= \theta^k + \sum_{q=1}^Q \pi_q z^k_{t-q} + \varepsilon^k_t. \end{split}$$

Understanding Spread Dynamics

Placebo tests I

$$s_t^k = \mu^k + \delta_t + \rho_1 s_{t-1}^k + \rho_2 s_{t-2}^k + \beta z_{t-1}^{\tilde{k}} + u_t^k$$
, for $\tilde{k} \neq k$

Understanding Spread Dynamics

Placebo tests II

$$s_t^k = \mu^k + \delta_t + \rho_1 s_{t-1}^k + \rho_2 s_{t-2}^k + \zeta z_{t-1}^k + \beta z_{t-1}^{\tilde{k}} + u_t^k$$
, for $\tilde{k} \neq k$

Specification without time fixed effects

Roadmap

- Methodology and data
- 2 Results
- 3 Time series dynamics
- 4 Sources of safe-haven effects
- **6** Conclusions

Sources of safe-haven effects

- ▶ Political economy explanations of the Lucas puzzle:
 - Wealthy individuals in poor countries most likely to suffer expropriation.
 - Is this the only channel?
- Does political risk also predict migration from source to destination?
 - Investor visas: consistent with the ultra-wealthy moving capital across.
 - National insurance registration: consistent with foreigners entering the UK labour market, different channel.
- Check whether foreign demand effects non-linear in the price of the property.

Political risk and capital inflows

A Cross-Country View: 2008 to 2013

Political risk and population migration

A Cross-Country View: 2008 to 2013

Country-by-country estimation results

Loans dataset

high shares of residents linked to foreign countries (% price change following risk shock)

Roadmap

- Methodology and data
- 2 Results
- 3 Time series dynamics
- 4 Sources of safe-haven effects
- **6** Conclusions

Conclusions

- Evidence in support of political economy explanations for the Lucas puzzle, using recent developments in the London housing market.
- Novel empirical method to identify the impacts of demand on asset prices.
 - Potentially useful whenever demand demonstrates cross-sectional (within asset class) as well as time-series variation.
- Detect strong, but ultimately temporary impacts of foreign risk on the London housing market.
- Insights into cross-country heterogeneity and sources of foreign demand: safe-haven effects and immigration.

London house price spread

Time series variation lines up with the dynamics of global uncertainty

List of countries

SAID BUSINESS SCHOOL UNIVERSITY OF OXFORD

Grouping at the level of world regions

Northern 1	Europe and Nor	th America
Austria	Belgium	Denmark
Finland	Netherlands	Germany
Sweden	USA	Canada
Southern	Europe	
Italy	Spain	Portugal
France	Greece	
Eastern Eu	ırope	
Poland	Romania	Czech Rep.
Russia		
Asia-Pacif	ic	
China	Hong Kong	New Zealand
Malaysia	Singapore	Australia
Japan		
South Asia	ı	
India	Bangladesh	Pakistan
Sri Lanka		

Africa		
Nigeria	Sierra Leone	Congo
Kenya	South Africa	Somalia
Zimbabwe		
Middle Eas	t	
Cyprus	Turkey	Iran
Iraq	Tunisia	Libya
Algeria	Egypt	Qatar
S. Arabia	UAE	Lebanon
Syria	Israel	
South- and	Central Americ	a
Jamaica	Brazil	Argentina
Chile	Mexico	

Methodology

List of countries

SAID BUSINESS SCHOOL UNIVERSITY OF OXFORD

Average ICRG index of political risk

Understanding Spread Dynamics

Placebo tests

$$s_t^k = \mu^k + \rho_1 s_{t-1}^k + \rho_2 s_{t-2}^k + \zeta z_{t-1}^k + \beta z_{t-1}^{\tilde{k}} + u_t^k, \text{ for } \tilde{k} \neq k$$

▶ Specification with time fixed effects

Capital inflows into the London market

Foreign purchases of commercial real estate

33/40

Capital outflows and domestic political risk

Results from cross-country panel data

$$Outflows_{t}^{k} = \mu^{k} + \delta_{t} + \rho Outflows_{t-1}^{k} + \tau^{k}t + \beta_{0}z_{t}^{k} + \beta_{1}z_{t-1}^{k} + \gamma X_{t}^{k} + \varepsilon_{t}^{k}.$$

Capital outflows relative to GDP				
	(in percent)			
	High-risk countries	Low-risk countries		
β_0	0.43**	0.09		
	(0.21)	(0.21)		
31	-0.44	-0.19		
	(0.28)	(0.20)		

Registrations for National Insurance

Correlation with political risk in the country of origin

Shares of foreign-born people

Change between 2001 and 2011

$$\Delta f_{w,2011}^k = \alpha + \rho^k f_{w,2001}^k + \beta \Delta f_{w,2011}^{UK} + e_{w,2011}.$$

Time variation in risk

Time variation in risk

Time variation in risk

ICRG risk indicators

World region joint estimation results

Effects across price categories

Groups according to the 70th and 90th percentiles of the within-borough-year distribution of house prices